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Abstract: To extract useful information from preterm electroencephalogram (EEG) for diagnosis and long-term 
prognosis, automated processing of EEG is a crucial step to reduce the workload of neurologists. Important 
information is contained in the bursts, the interburst-intervals (IBIs) and the evolution of their duration over 
time. Therefore, an algorithm to automatically detect bursts and IBIs would be of significant value in the 
Neonatal Intensive Care Unit (NICU). The developed algorithm is based on calculation of the line length to 
segment EEG into bursts and IBIs. Validating burst detection of this algorithm with expert labelling and 
existing methods shows the robustness of this algorithm for the patients under test. Moreover, automation is 
within our grasp as calculated features mimic values obtained by scoring of experts. The outline for 
successful computer-aided detection of bursting processes is shown, thereby paving the way for 
improvement of the overall assessment in the NICU. 

1 INTRODUCTION 

Premature infants are at high risk for neurological 
disorders. Electroencephalography (EEG) indicates 
both the nature and the location of the pathogenesis.  
It would be very helpful, in addition to the visual 
inspection of time-consuming EEG by 
neonatologists, to develop an automatic algorithm 
that quantifies the brain activities and its evolution. 

Despite the fact that EEG is already widely used 
for registration of brain processes for epilepsy 
patients, (semi-)automated monitoring of 
quantitative EEG variables and its validated use is 
almost nonexistent. Moreover, there is a high need 
for automatic analysis of the neonatal EEG to 
significantly reduce the workload of clinicians in the 
NICU. In this paper, an algorithm is developed for 
premature infants. For these patients it is very 
important to monitor EEG within the first six hours 
after birth to make an accurate prognosis on survival 
quality and neurological outcome.  

This diagnosis is based on the ‘hidden’ information 
in the so-called background EEG activity. Critical 
factors for prognosis are amplitude and the degree of 
(dis-)continuities of the background EEG (Vanhatalo 
and Kaila, 2006).  

Furthermore, specifically abnormal patterns can 
be observed. Discontinuous EEG pattern, or the so-
called trace discontinue, consists of bursts with high 
frequencies and high amplitude, interrupted by 
periods of low brain activity with low-voltage EEG, 
named the interburst intervals (IBIs). It is believed 
that long low-voltage periods give rise to an 
increased risk of brain dysfunctions (Le Bihannic et 
al., 2011). Nevertheless, good neurological outcome 
can be expected if low-voltage activity recovers into 
increasing activity between bursts and evolve to a 
normal pattern within 12 hours after birth. However, 
there is no golden standard for the description of 
bursts in the literature, so validation of the detection 
algorithm is subjective. In this way, validation 
should be performed by more than one clinician and
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 the experience of experts should be combined. 
Earlier, automatic detection of bursts was often 

only based on a threshold on the amplitude of the 
EEG channels, but this has some drawbacks. High 
frequency artefacts which are not filtered out can be 
seen as bursts, whereas medication and filter settings 
can also influence the amplitude of the EEG. Recent 
studies include besides amplitude content also 
frequency content of bursts and IBIs, e.g. they make 
use of a non-linear energy operator (Särkelä et al., 
2002); (Palmu et al., 2010) or threshold detection on 
the envelope of the EEG channels (Jennekens et al., 
2011). 

The goal of this study was to implement a 
reliable detection algorithm with the focus on the 
advantage of combining amplitude and frequency 
content.   Therefore, line length is introduced for this 
application, because it is very accurate in detecting 
the onset of high activity in the EEG (Esteller et al., 
2001). Moreover, the developed method allows 
defining an adaptive and patient specific threshold. 
This avoids the limitations of changing amplitudes’ 
level, e.g. when medication is administrated. 
Furthermore, no training set is needed. Such an 
algorithm in the NICU would allow a more objective 
analysis. Future research will also investigate the 
influence of additional artefact removal as proposed 
in (De Vos et al., 2011) on the accuracy of burst and 
IBI detection. The computer-aided analysis of the 
EEG enables to reduce the cost for the time-
consuming long-term analysis, and thereby reduces 
the risk of brain damage of preterm infants. 

2 DATA ACQUISITION 

The EEG was measured with OSG equipment at 9 
electrode locations (Fp1, Fp2, T3, T4, C3, C4, Cz, 
O1, O2) and sampling frequency of 250 Hz. The 
polysomnographic dataset included long-term video-
EEG recordings of 5 preterm infants with a 
postmenstrual age of 24-32 weeks. Two patients had 
measurements at 3 different moments in time to see 
an evolution in the brain development. These 
moments are as soon as possible after birth, at day 
14 and at the day when the patient could leave the 
hospital.  The protocol was approved by the ethics 
committee of the University Hospitals of Leuven, 
Belgium. First, a pre-processing step is performed; a 
50 and 100 Notch filter and a 1-20 Hz band pass 
filter are applied. After this step, twenty minutes of 
each EEG were chosen for further analysis and 
scored (burst/IBI) by two experienced clinicians. 

3 METHODOLOGY 

3.1 Detection based on Line Length   

Fractal dimension (FD) is a promising method for 
transient detection, requiring no prior knowledge of 
the characteristics of the transient (Accardo et al., 
1996). As the dimension of a line is 1 and for a plane 
2, the FD in EEG will always be between 1 and 2. 
The more the line fluctuates, the more the plane is 
‘covered’, so the more the FD increases. The line 
length is a simplified version of the FD. Line length 
is more successful than FD for burst detection.  It is 
also reported (Esteller et al., 2001) for the detection 
of seizures in the EEG. The line length is the 
running sum of the absolute differences between all 
consecutive samples within a predefined window. 
An efficient burst detection algorithm is derived 
from this feature.  The algorithm consists of the 
following steps: 
1. Segmentation of each EEG channel in 

consecutive segments of 1 second, with an 
overlap of 0.12 second (Figure 1) (Accardo et al., 
1996). To have reliable detection of transient 
events like bursts, short duration segments are 
necessary. Line length will grow as the data 
sequence magnitude or signal variance increases. 
Hence, it can be seen as an amplitude and 
frequency demodulator (Esteller et al., 2001). 

 

Figure 1: Partition of the EEG signals in overlapping 
consecutive segments of 1 second. The overlap is 0.12 
second. 

2. For each segment i of each channel n, the total 
length is calculated as in formula 1. L(i) 
represents the line length value for each segment 
i, calculated as the sum of the distances between 
successive data samples xj within this segment. 
 

250-1

j+1 j
j=1

L(i)= x -x  (1)

After that, these line lengths are normalized by the 
total sum of the line lengths of that EEG channel n 
(Accardo et al., 1996): 

n

i

L(i)L (i)=
L(i)

 
(2)

BIOSIGNALS�2013�-�International�Conference�on�Bio-inspired�Systems�and�Signal�Processing

106



 

Finally, the median value over all channels is 
taken for each segment (median Ln(i)), which is 
the (blue) curve in Figure 2 part c. Median value 
is more robust than the mean value because high 
amplitude or frequency content in only one 
channel would influence the mean value too 
much. Thereby, experts define bursts as high 
activity on more than one channel (or more than 
half of the EEG channels).   

3. Bursts are detected when the amplitude of this 
curve (median Ln(i)) is above Thr_Det. This 
patient dependent threshold is calculated as 
0.85*mean of this curve. An additional condition 
for detection is that the difference in amplitude 
between a successive non-detected and detected 
point (and vice versa) should be large enough 
(>0.4*std(median Ln(i)), so only pronounced 
peaks are detected. Additionally, all IBIs shorter 
than 2 seconds are removed as they are also not 
considered by clinical experts. For an example of 
65 seconds EEG, this leads to detection of the 
segments indicated by red circles in Figure 2 c. 
In part b of Figure 2, the detected bursts are 
compared with clinical labelling of high activity. 
 

 

Figure 2: a) Example of 65 seconds 9-channel EEG 
recording, b) Burst detection: by 2 clinicians and by 
algorithm, c) Blue curve: median Ln(i) as calculated in step 
2, grey line: threshold for detection of bursts (Thr_Det), 
red circles: detected bursts after step 3. 

3.2 Comparison of Detection Methods  

Jennekens et al.(2011) first calculate the envelope 
values EV(i), which are derived from the average 
signal power P(i) as in formula 3. x(i) is the 
amplitude of the signal and Nw a window length 
equal to the number of sample points in 1 second of 
data. When these envelope values are obtained for 

every EEG channel, an amplitude-threshold is 
applied. If point Ev(i) has a value higher than this 
threshold on two or more channels, this sample x(i) 
is detected as a burst sample. IBIs shorter than two 
seconds are removed. 

Nw
2

i=1

2
EV(i)= 2P(i)= x(i)

Nw
 (3)

Another non-linear method is explored. It makes use 
of the non-linear energy operator (formula 4) 
(Palmu, 2010), where i is the current sample and x(i) 
the value at that sample. 

NLEO(x(i))=|x(i)x(i-3)-x(i-1)x(i-2)|  (4)

Thereafter, the processed signal is smoothed by the 
average value of a sliding window of 1.5 second 
centred at the time sample NLEO(x(i)). To remove 
continuous artefacts, a baseline correction is done by 
subtracting the minimum value of the smoothed 
signal from 1 minute epoch before the current 
sample. As in the previous method, marking as a 
burst is performed when the sample has a value 
higher than a predefined amplitude on two or more 
channels. 

We compared those two methods with the 
developed burst detection algorithm, by comparing 
the accuracy of detection (to clinical labelling) and 
different features describing these epochs. The 
accuracy is calculated sample by sample, where a 
true positive (TP) is found as a sample x(i) which is 
both by the algorithm and by the clinician detected 
as a burst. A true negative stands for a sample x(i) 
which is marked as an interburst interval by the 
expert and by the algorithm. Then, the accuracy is 
calculated as in formula 5. 

accuracy=(TP+TN) #samples   (5)

3.3 Features Describing Epochs 

To see an evolution of the EEG pattern of the 
premature brain, we will look at parameters which 
describe bursts and IBIs. Namely, more bursts 
indicate more activity and more connectivity 
between neurons in the premature brain.  

In this paper, several parameters were used to 
compare epochs detected by different algorithms 
with clinical detected epochs (Palmu et al., 2010): 
- Number of Bursts / IBIs: number of these 

specific epochs. It cannot be confused with the 
number of points in the EEG time series 
classified as bursts. 

- Mean Burst / IBI Duration: average length of 
the burst or interburst interval. 
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- Median Burst / IBI Duration: middle value 
of a finite ordered list of these bursts or IBIs. 

- Burst%: proportion of time covered by bursts. 
Although these parameters are clinically relevant, 

they do not fully summarize the patient’s state.  
Therefore, some additional parameters are explored 
(Särkelä et al., 2002) related to the energy within the 
burst / IBI: 
- Average Bursts / IBIs Amplitude: average 

absolute amplitude values of the original EEG 
samples which are detected as a burst or an IBI. 
It is calculated for the bursts as in formula 6: 

burst length

#bursts
i=1

#channels
j=1

n=1

|x(i)|

burst length

#bursts
#channels





 

(6)

- Average Energy Operator Bursts / IBIs: 
averaged NLEO values characterize the burst 
suppression pattern. Formula 7 presents how to 
calculate this value for burst epochs. 
 

burst length

#bursts
i=4

#channels
j=1

n=1

|x(i)x(i-3)-x(i-1)x(i-2)|

burst length

#bursts
#channels






 

(7)

4 RESULTS AND DISCUSSION 

4.1 Accuracy of Detection Methods  

Validation of the different algorithms is performed 
by comparison of automatic versus manually 
indicated bursts. In Figure 3, we present accuracy 
for the three algorithms: 1. based on line length, 2. 
based on envelope calculation and 3. based on 
NLEO.  

It can be seen that the developed algorithm 
(meth1) performs similarly to the inter-rater 
agreement in almost all patients. The mean accuracy 
is respectively 83.8% for validation of meth1 and 
86.5% for inter-rater agreement. For patient 3 the 
inter-rater agreement is very high (90.6%) and 
differs 5% from the automatic detection. In many 
cases, NLEO-based algorithm (80.9% mean 
accuracy) performs similarly to the method based on 
line length calculation, but with the difference that 
the first method has a computation speed of 4-5 
times faster. This is because in the latter one, there is 
a smoothing step. For one case, the NLEO method 

has clearly a lower accuracy (68.6%). The EEG of 
this patient has higher activity periods which are not 
seen by clinicians as bursts. Because of a smoothing 
step, this higher activity is smoothed out. 
Afterwards, detection is performed with fixed 
amplitude in contrast to the proposed patient 
dependent amplitude (meth1).  

The mean accuracy for meth2 (based on 
envelope detection) is 78.8%. False positives are 
introduced by movement artefacts as there is only an 
amplitude threshold on the envelope values (around 
30 µV). These are bursts detected by the algorithm, 
but not by the expert. Besides that, a training phase 
is needed for this algorithm to tune the different 
parameter values for the algorithm settings, which is 
not optimal here because the dataset is limited. This 
method has around the same computation time as the 
one based on NLEO. Hence, it can be concluded that 
the developed algorithm is accurate, robust and fast. 

 

Figure 3: Accuracy obtained by comparing sample by 
sample clinical labelling with automatic detections of 
bursts. In the first column labelling of clinical expert 1 are 
compared with the labelling of the three methods, whereas 
in the second column this is done for clinical expert 2. In 
the third column labelling of both clinicians are compared. 
This analysis is done for 5 patients, where pt12 stands for 
the second measurement of patient 1 at day 14 and pt13 for 
the measurement when the patient could leave the 
hospital. 

4.2 Comparison of Features  

Figure 4 summarizes the calculated features for the 
detection of bursts and IBIs by three previously
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Figure 4: Results for each feature after clinical labelling of bursts and applying different burst detection methods (meth1: 
based on line length calculation, meth2: based on envelope calculation, meth3: using Non-Linear Energy Operator). 
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described methods and two clinicians. Mean 
duration is not shown because it has similar values 
as the median duration, where the median is more 
robust. Detection is subjective from rater to rater, 
what always leads to a difference between the values 
between the raters. In other words, there is no golden 
standard for the description of bursts and IBIs.  

Nevertheless, a clear distinction between bursts 
and IBIs can be found by looking at two features: 
average amplitude and average energy operator. 
Namely, the average amplitude for IBIs is smaller 
than the average amplitude for bursts. This is always 
the case, for all methods and for all raters. This is 
also true for values of the average energy operator. 
IBIs contain less energy than bursts.  

Although burst% was considered as the 
statistically most significant parameter for 
correlations between all raters (Palmu et al., 2010), 
representation of this feature in Figure 4 shows that 
the correlation between values obtained by the 
NLEO algorithm and the clinicians is not that high. 
Especially the line length method gives a high 
correlation.  

Maximum IBI duration has been reported to 
decrease as the postmenstrual age increases 
(Hayakawa et al., 2001). In the present study, the 
maximum IBI decreases from the first measurement 
to the second measurement two weeks later for 
patients 1 and 4 (Figure 4).  Not only a decrease of 
the maximum IBI duration, but also a decrease of 
the median IBI value has a good prognostic value for 
good neurological outcome. Values for this 
parameter decrease as well for patients 1 and 4.  

By checking differences between values obtained 
for clinical and algorithm detection, it can be said 
that the developed algorithm approximates well the 
values of the parameters after the clinical detection.  

5 CONCLUSIONS 

The developed algorithm is a successful strategy to 
detect patterns in the premature EEG, like bursts and 
the intervals between them. The automated analysis 
of EEG provides possibilities to look over a longer 
period of time and over various records at different 
points in time. Also, assessment of the evolution 
over time of the unique characteristics of the EEG is 
very valuable. Consequently, good approximation of 
clinical features is of high importance. Thereby, it 
aggregates the experience and trained eyes of more 
clinical doctors and researchers in an overarching 
model. Future work will focus on fine-tuning the 
algorithm based on a larger dataset of validated EEG 

segments. Additionally, more features and their 
clinical relevance have to be explored. Such a 
detection algorithm would dramatically improve the 
overall assessment in the NICU for EEG diagnosis. 
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