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Abstract: We analytically study the collective dynamics of mutually interacting heterogeneous agents evolving in a
random environment. Our formal framework consists of a collection ofN scalar drifted Brownian motions
(BM) diffusing onR. The mutual interactions are introduced via a ranked-based, real-time mechanism always
endowing the laggard (i.e the agent with the leftmost position) with an extra positive drift. The extra drift
generates a net tendency for any agents not to remain the laggard of the society. For well chosen individual
and extra laggard’s drifts, the agents organize with time to flock towards a tight and stable travelling spatial
pattern. For a population of(N−1) identical agents and an atypical fellow (called hereafter the shill), we are
able to analytically discuss the dynamics. In particular we exhibit how a single turbulent shill, stylized here
by a ballistic diffusion process, can destroy the cohesion of a swarm. Conversely, we also analytically show
how a single shill is able to safely pilot a whole swarm to avoid an obstacle, via interactions with its fellows.
A series of simulations experiments comfort our analytic findings.

1 INTRODUCTION

The capability of a collection of interacting stochas-
tic agents to exhibit an emergent collective behaviour
(i.e flocking behaviour) even in random environments
stimulates a strong research activity devoted to both
experimental and theoretical modeling approaches.
For suitable range of mutual interactions, flocking
(phase) transitions are observed, namely the self-
organized capability to create finite and persistent
spatio-temporal patterns (Banner A. D. and Karatzas,
2005; Yates C. A. and Sumpter, 2009; Chatterjee
and Pal, 2010; Dosseti, 2012; Pal and Pitman, 2008;
Ichiba T. and Fernhold, 2011; Bialek W. and Walczak,
2012).

Agents societies can be composed of either dy-
namically homogeneous or heterogeneous individu-
als requiring for each case drastically different ap-
proaches. For large andhomogeneouspopulation
of agents, the classical statistical mechanics concepts
and in particular themean-field description(MF) di-
rectly offers an appropriate tool to analytically discuss
the global dynamics. In the MF description, one basi-
cally assumes that the behaviour of the global society
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can be characterized by the dynamics of a single rep-
resentative agent which feels its fellows’ interactions
via an effective external field. In most circumstances
however, homogeneity fails, and therefore a growing
attention is now paid toheterogeneouspopulations.
Heterogeneity occurs typically when one or several
masked agents, that we shall from now on refer to
asshills, exhibit leaders or troublemakers behaviours.
These shills are not recognized by the regular agents
which see them as ordinary fellows, leaving the inter-
action rules between them unchanged. The presence
of shills can strongly alter the ultimate evolution of
the whole society and it is the central goal here to an-
alytically study this problematic.

Our approach involves assemblies of interacting
stochastic agents in which a single shill exhibits a dif-
ferent individual behaviour. All agents, including the
shill, interact with their fellows with fixed given rules.
The paradigmatic vision of this situations has been
currently explored in ethology where one fake indi-
vidual is introduced among schools of fishes, cock-
roaches, newborn chicken, etc. The shill is able to
ultimately pilot the whole population (Gribovskiy A.
and Mondada, 2010; Faria J. J. and Krause, 2010;
Vaughan R. and Cameron, 2000). This basic mech-
anism also referred as thesoft control of a popula-
tion (Han and Wang, 2010; Wang X. and Han, 2011;
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Wang Y. and Liu, 2009; Wang and Guo, 2008) is the
core of our present paper. As heterogeneous societies
preclude MF approaches, rather few analytical results
are yet available. Recent mathematical models of het-
erogeneousrank-based interacting Brownian mo-
tions (RBM), introduced in finance (Banner A. D.
and Karatzas, 2005; Chatterjee and Pal, 2010; Pal and
Pitman, 2008; Ichiba T. and Fernhold, 2011), will be
used in the sequel to analytically approach the soft
control problematic. We shallanalytically showhow
a troublemaker can break the cohesionof an ini-
tially tight swarm andhow a single agent can effi-
ciently incitate its fellows to achieve a preassigned
task.

Our paper is organized as follows: we first recall in
section 2 relevant properties of RBM, also known in
economy as theAtlas models. In section 3, we use
the RBM’s framework to show how a troublemaker
is able to smash an initially tight swarm. Our indi-
vidual dynamics are one-dimensional diffusion pro-
cesses with piecewise constant drifts except for the
shill, which will be assumed to be driven by aballistic
process with quadratic variance in time. The ballis-
tic noise is itself generated by a simple non-Gaussian
diffusive stochastic process with nonlinear drift. In
section 4, we address the dual soft control problem in
which a shill is used to steer the whole collection of
RBM’s towards slots that are drilled through an ob-
stacle board.

2 RANK-BASED BROWNIAN
MOTIONS - ATLAS MODEL

Our approach makes extensive use of recent results
(Ichiba T. and Fernhold, 2011), that we now briefly
summarize. Let us consider a collection ofN inter-
acting agents diffusing according to the class of pro-
cesses:

dYi (t)=

(

N

∑
k=1

gk1Qk(i) {Y(t)}+ γi + γ

)

dt+σidWi (t) ,

Yi (0) = yi , t ∈R
+, (1)

whereY(t) = (Y1,Y2, · · · ,YN) ∈ R
N and dWi (t) are

N independent standard White Gaussian Noise pro-
cesses (WGN) processes. The indicator function 1Qk

in Eq.(1) effectively generates mutual interactions.
The effective, time-dependent drift componentgk en-
tering into the drifts(gk+ γi + γ) of the N Brown-
ian motions onR, is rank-based. Namely, it is in-
stantaneously adjusted according to the position (i.e.
the rank) occupied by each agent with respect to

the remaining(N − 1) fellows. The constant drift
componentsγi are name-based, i.e. they are defi-
nitely assigned to each individual agent (γi is time-
independent). Finally, a constant drift componentγ
can be added, which is common to all agents. Ac-
cordingly Eq.(1) describes a collection ofN diffusion
processes having piecewise deterministic drifts. The
somehow simpler situation obtained whenγi ≡ 0 ∀i
has been thoroughly studied (Pal and Pitman, 2008).
In the sequel and without loss of generality, we sys-
tematically chooseγ to be the (average) barycentric
speed of the swarm. This is achieved, provided one
has: N

∑
k=1

[gk+ γk] = 0. (2)

For future use, we introduce the following notations
and definitions:
1. We write

Ȳ (t) =
1
N

N

∑
k=1

Yk (t) , Ȳ ∈ R, (3)

for the barycenter position. The setΣN stands for
the set of all the permutations of{1,2, ...,N}. It
is proven (Ichiba T. and Fernhold, 2011) that, for
almost every initial conditions and when the set of
constraints l

∑
k=1

[

gk+ γp(l)
]

< 0 (4)

are fulfilled for all possible permutationsp =
(p(1) , ..., p(N)) ∈ ΣN, then theN deviations pro-
cesses: Ỹi (t) = [Yi (t)− Ȳ(t)] (5)

converge to stationary probability measures. Note
that Eq.(4) yields therefore a set of(N−1)×
|ΣN|= N! (N−1) constraints to be verified.

2. When all constraints in Eq.(4) are fulfilled, the dy-
namics given by Eq.(1) then converges to atight
swarm described by astationary multi-variate
processcharacterizing the(N−1)-gap processes

Ξi (t) = [Yi+1 (t)−Yi (t)] . (6)

The associated probability densityψ(z), z∈R
N−1
+

can be written as a sum-of-product-of-exponential
form:

ψ(z) =

(

∑
q∈ΣN

N−1

∏
k=1

λ−1
p,k

)−1

∑
p∈ΣN

exp(−〈λp,z〉)

(7)
with the parameters explicitly given by

λp =
(

λp,k
)N−1

k=1 λp,k =

−4
k
∑

l=1

(

gl + γp(l)
)

σ2
k +σ2

k+1

. (8)

Remark. It is worth observing that the diffusion co-
efficientsσi do not enter into the set of tightness con-
straints given in Eq.(4). However, theσi ’s do enter
into the parameters Eq.(7) characterizing the station-
ary probability measure.
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3 HOW DOES A
SUPER-DIFFUSIVE FELLOW
SMASH TIGHTNESS

We first investigate how a single ”turbulent” fellow
can destroy the cohesion of a tight swarm. To this
aim, we use the RBM formalism introduced in section
(2). We consider a configuration involving(N− 1)
identical mutually interacting RBM’s, referred from
now on as the regular agents, interacting with a sin-
gle fellow, theshill, say agent number one, which is
itself driven by aballistic diffusion process(remem-
ber from Eq.(1) that the(N − 1) regular agents are
driven by independent WGN’s). The ballistic process,
to be introduced below, exhibits a variance∝ t +βt2

with a ballistic parameter β ≥ 0 a constant. For
β = 0, the shill simply behaves as a regular fellow
and therefore, in thisβ = 0 limit, our global dynamics
reduces to a standard version of Eq.(1). We set the
specific parameters:gN = (N−1)g andgk = −g for
1 ≤ k ≤ N− 1. In addition, we shall further assume
that:

i) ∑N
i=1 γi = 0,

ii) max
1≤i≤N

γi < g.

The couple of constraints i) and ii) imply that the
Eq.(4) is fulfilled. Indeed, we directly verify that :

−g+ γp(1) < 0, −2g+ γp(1)+ γp(2) < 0, · · ·

−(N−1)g+
N−1

∑
k=1

γp(k) < 0. (9)

Hence, forβ = 0, our collection of agents behaves
as a tight swarm enjoying a stationary joint proba-
bility law for the inter-distance between successive
agents.

Let us now focus onβ > 0. Now, the shillY1 (t) be-
haves as aturbulent fellow which interact with the
remaining(N− 1) regular fellows. Specifically the
dynamics ofY1 (t) is chosen to be described by:

dY1 (t) =

(

N

∑
k=1

gk1Qk(i) {Y (t)}+ γ1+ γ

)

dt +dZ(t) ,

Y1 (0) = y1 t ∈ R
+, (10)

where the process dZ(t) is asuper-diffusive bal-
listic noise generatorintroduced in (Hongler M. O.
and Blanchard, 2006; Hongler M. O. and Rodriguez,
2012):

dZ(t) = {β tanh[βZ(t)]}dt+dW (t) , Z(t = 0) = 0.
(11)

The non-Gaussian Markov diffusion processZ(t)
given in Eq.(11) is fully characterized by its transition
probability densityP±(z, t | 0) which simply reads:

P±(z, t | 0) =

(

P++P−
)

(z, t | 0)

2
=

e−
β2

2 t
√

2πt
e
(x±βt)2

2t ,

(12)
with average〈Z(t)〉 = 0 and variance〈Z2(t)〉 = t +
β2t2.
The simple form given in Eq.(12) suggests the exis-
tence of an alternative representation for the ballistic
noiseZ(t). Indeed, writingBM±β(t) for the Brown-
ian motions with±β constant drifts, we observe that
the transition probability for the processZ(t) can be
rewritten asZ(t) = BBM±β(t) whereB is a symmet-
ric Bernoulli r.v., taking the values±1 with equal
probability 1/2. Hence, one realisation of theZ(t)
consists first in choosing with probability 1/2 one
among the couple processesBM±β(t), and then fol-
low the realisation of the selected process (see ex-
ample 2 in (Rogers and Pitman, 1981) and (Hongler
M. O. and Blanchard, 2006; Hongler M. O. and Ro-
driguez, 2012)).

We now come back to the dynamics jointly involv-
ing a turbulent fellow given by Eq.(10) and(N− 1)
regular agents described by Eq.(1). We then view the
(N− 1) regular agents as beinginfiltrated by a the
shill Y1(t).
Now we have to investigate the values ofβ enabling
the swarm to remain tight (i.e. if a stationary prob-
ability measure for the intervals between successive
agents exists). In view of the representation given in
Eq.(12), for each realisation of the noise sourceZ(t),
we effectively deal with a standard RBM model with
a re-normalized name-based drift ofY1(t), namely
γ1 7→ γ1±β depending on the outcome ofB . Accord-
ingly, to infer on the tightness of the swarm, we sim-
ply have to separately examine Eq.(4) for the couple
of outcomes±β.

Realisation+β. Let us defineγ = β
N , γ1 =

N−1
N β

andγi =−γ =− β
N for 2≤ i ≤ N. The constraints

Eq.(6) are required for the swarm to be tight. This
yields, forl = 1 andp= (1,2,3...,N), to the most
critical constraint:

g1+ γp(1) < 0 ⇒ −g+
N−1

N
β < 0

⇔ β <
N

N−1
g. (13)

Provided that Eq.(13) holds, the swarm remains
tight when theZt noise induces a+β extra drift.

Realisation−β. The same reasonning applied to
the−β case yields:

γ=− β
N

γ1=−N−1
N

β γi =
β
N

(2≤ i ≤ N) .

(14)
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The critical constraint arises whenl = 1 andγp :=
(

β
N , ...,

β
N ,−N−1

N β
)

with:

−g+
β
N

< 0 ⇔ β < N ·g. (15)

This implies that forβ < N ·g, the swarm remains
tight when theZt noise induces a−β extra drift.

The previous considerations can be summarized by
observing that when the constraints Eq.(13) are ful-
filled, so are also those given in Eq.(15). This
suggests to distinguish an alternative“semi”-tight
regime which arises when the constraints Eq.(15)
alone are fulfilled. In this “semi”-tight case, the
swarm exhibits a tight configuration when the−β re-
alisation is achieved and is not tight for the other alter-
native+β. This intrinsic asymmetry can be easily un-
derstood as our RBM dynamics only pushes the lag-
gard towards the others. Hence, regarding the tight-
ness, the shill is obviously less influential when the
−β extra drift is realised.

3.1 Spatial Dispersion of the Agents

The extra±β-drifts due to the super-diffusive process
driving the shill dynamics obviously affect the spatial
dispersion of the swarm. As all noise sources (includ-
ing thedZ(t) process) have zero average, the barycen-
ter of the whole population will remain unchanged by
the presence ofdZ(t). However, due to the presence
of the shill, an initial single-modal cluster of agents
will, as time increases, be split into two separately
evolving population subgroups. According to the±β
realisation taken bydZ(t), the overall effect of the
shill will steer the swarm either towards the negative
or positive direction; this generates the formation of
two distinct clusters. Each cluster has an individual
barycentric velocity:γ= γ1

N = ±β
N ; this guarantees that

the average barycenter remains unchanged.
Specifically, whenever the shill’s drift assumes the

value−β, the shill has an overall propensity to stay at
the rear of the swarm. Accordingly, all regular agents
will, with high probability, be endowed with the rank-
based drift−g. Hence the regular agents possess a
clear tendency to be driven toward the negative direc-
tion onR. Conversely, in presence of the+β reali-
sation, the shill is very likely to belong to the group
of leaders. This imposes to the remaining(N − 1)
regular fellows to equally share, with alternations, the
rank-based drift of(N−1)g which drives the laggard.
Therefore, with the+β realisation, the whole popu-
lation is driven towards the positive direction ofR.
We now can isolate three regimes depending on the
strengthβ.

a)β < βc := N
N−1g. In this regime, the shill is able

to steer the whole population in one of the two
possible directions while remaining itself attached
to the swarm. In other words, a stationary proba-
bility measure exists for the distance between the
agents (i.e. all agents evolve in a single flock).
Note however that the presence of the shill breaks
an initially uni-modal spatial repartition into abi-
modal repartition .

For three agents (i.e. one shill and two regular
fellows), the resulting spatial repartition obtained
by simulation is shown in Figure (1). In Figures
(1) and (2), the shill’s position is represented in
black, the others being displayed in grey.

Figure 1: Probability of spatial repartition of the agents at
tend= 10, numerical computation over 103 runs, withN =
3, g= 1, β = 1.1< βc =

3
2 .

b) βc ≤ β< g·N. Here the strength of the ballistic
noise precludes to reach a global stationary state
for the inter-distance processes between theN
agents. Indeed, the remormalized drift associated
with the+β realisation ofdZ(t) (i.e. γ̂1 = γ1+β),
violates the constraint Eq.(13). However, for the
−β realisation, the constraint forγ̂1 = γ1−β is ful-
filled, implying that the shill remains flocked with
its (N−1) remaining fellows. An experiment with
β chosen in this range, shows the spatial reparti-
tion in Figure (2) (left).

Figure 2: Left: End position distribution attend= 10, with
N = 3, g= 1, β = βc = 1.5.
Right panel: Probability density of the position attend= 10
for N = 3, g= 1, β = 4> N ·g. Both numerical computa-
tions include 103 runs.

c) Finally, forβ > g ·N, the shill becomes highly
turbulent and the tightness constraints are never
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fulfilled. The shill escapes from the flock and the
resulting spatial repartition is typically shown in
Figure (2) (right).

For all choices of the ballistic strengthβ, the numeri-
cal results intimately match the analytical predictions.
In particular, the shill escapes from the flock when the
critical ballistic strengthβ= βc is reached (for the+β
realisation, or whenβ = N · g for the−β realisation
of dZ(t). In these non-stationary regimes, the shill
quits the(N− 1)- regular tight swarm with velocity
V (β) ∝ β.

3.2 Distance between Successive Agents

Complementary to the tightness constraints, let us
now briefly discuss the stationary probability measure
which characterizes the distances between successive
agents. To this aim, we shall chooseβ to ensure the
existence of a global stationary regime (i.e. ensures
tightness), namely 0≤ β < βc =

N
N−1g.

Note however that using the results derived in
(Ichiba T. and Fernhold, 2011), heterogeneous dif-
fusion constants can also be analytically discussed.
The distances separating consecutive agents defined
in Eq.(6) can be explicitly computed by using the re-
sults summarized in section (2). For agentY1(t) and
in view of the extraβ-drift induced by the shill bal-
listic driving, we are now led to define a couple of
name-based drifts vectors as:

γ± =±
(

N−1
N β − β

N · · · − β
N

)

. (16)

The fulfillment of the tightness constraints given in
Eq.(4) ensures that theλp,k from Eq. (8) are strictly
positive (∀p,k). Hence, it results a couple of sta-
tionary probability densities (one for each realisation
+β and−β), characterizing the inter-distance process
Ξ(t) (see Eq.(6)):

P{z≤ Ξ(t)≤ z+dz— ±β is realised}= P±β (z)dz

=



 ∑
p∈ΣN

(

N−1

∏
k=1

λ±
p,k

)−1




−1

∑
p∈ΣN

exp
(

−
〈

λ±
p ,z
〉)

dz.

(17)
The complete stationary probability density then
reads:

P(z) =
1
2

[

P+β (z)+P−β (z)
]

. (18)

4 USING A SHILL TO GUIDE
THE COLLECTIVE CROSSING
OF OBSTACLES

The shillY1(t) of section (3) has so far been viewed
as a mere trouble maker. However, for specific tasks

to be achieved, a shill’s presence might become truly
beneficial. Indeed, the presence of a shill cansoftly
control a swarm towards a preassigned target.
To concretely illustrate this alternative view point, let
us, once again, consider a collection of(N−1) iden-
tical drifted Brownian (regular) agents and one shill,
sayY1(t), all diffusing onR. From now on, we shall
represent the evolution onR2 with the time being
identified with thex-axis, and positions with they-
axis. At time t = 0, all N agents start at location
yi (0) = 0, 1≤ i ≤ N. We may think of agents running
on thex-axis with constant unit speed, as we therefore
identify thex-axis with time. At thex-locationT (see
Figure 3), we introduce a solid wall (i.e. the obstacle)
in which two-slots are drilled. The global objective
for theN agents is to try to avoid the fatal collisions
with the wall by traveling trough one of the couple of
slots. The two slots have widthW and are symmetri-
cally drilled at the ordinates±D, see Figure (3) for a
sketch of the configuration.

Figure 3: Initial configuration for the soft control problem.
The agents start their diffusion at(t0,y0) = (0,0).

In absence of shill, one has an homogeneous swarm
(all agents are dynamically identical) and theN-
swarm proceeds according to the rule defined in
Eq.(1). As a consequence, the wall will be hit with
high probability as, at timeT, the probability den-
sity of the positions will be given by a collection of
N centered Gaussians (we basically haveN Brow-
nian motions with constant drifts having their mean
barycenter located at zero). As seen in section (3), the
presence of a super-diffusive shillY1(t) may strongly
modify this nominalβ = 0 picture. IndeedY1(t), with
suitable parametersβ andg is able to steer the whole
swarm with high preference to one of the slots. This
basic and simple idea can be made fully quantita-
tive as discussed below. In our simulations, we set
β= 0 once the slots are crossed. Therefore, the global
swarm continues its nominal path with a tight config-
uration after the obstacle.

4.1 Optimal Barycentric Driving for
Suitable Choice ofβ

First, we select theY1(t) parameters to ensure global
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tightness. This is achieved by definingβ < βc =
N

N−1g. For a single realisation of theZ(t) noise, we
already know that the average barycentricy-speed of
the swarm is±β

N . Hence, at timeT, the group barycen-

ter reaches they-position located at±βT
N . The center

of the slots being located at±
(

D+ W
2

)

, we therefore
naturally require:

±βT
N

=±
(

D+
W
2

)

⇔ βopt :=

(

D+ W
2

)

·N
T

.

(19)
The choiceβopt, does not yet ensure that the shillY1(t)
itself remains attached to the flock. This second re-
quirement can be achieved provided one has:

(

D+ W
2

)

·N
T

= βopt < βc =
N

N−1
g

⇔ g>

(

D+ W
2

)

· (N−1)

T
=: gc. (20)

This choice of the couple parametersβopt andg> gc
now jointly ensures that i) the barycenter is steered
towards one of the slots centers and ii)Y1(t) remains
tightly attached to the swarm. The overall swarm’s
y-dispersion is itself dependent on the diffusion con-
stantsσi , which were here taken as(σi := σ ∀i).

Figure 4: Left panel:N = 10 agents,W = 20 andD = 10.
Right panel:N = 20 agents,W = 20 andD = 50.

4.2 Adjusting the Spatial Dispersion
Resolution for a Given Drift g

When the driftg is fixed, the ballistic componentβ
cannot always be chosen to simultaneously ensure
tightness and the collective drive into one of the slots.
Keeping the barycentric drivingβ = βopt, as defined
in Eq.(19), three different scenarii are now possible:

a) β = βopt < βc. In this case, the shill nicely
steers the group towards one of the slots while
staying attached to the flock, as we already estab-
lished in section 4.1.

b) β = βopt ≥ βc. Here,Y1(t) escapes from the
(N − 1)-flock with a constant drifting velocity.
Two sub-cases have to be distinguished, i) drift
β−g resulting when+β is realised bydZ(t) and
conversely ii) drift(N−1)g−β for the alternative

−β case. In both cases, the regular agents evolve
with an average driftγave which reads:

γ =

{

β
N =

(β−g)·1+(N−1)·γave
N for +β

− β
N =

((N−1)g−β)+(N−1)γave
N for −β

⇔ γave=

{ g
N−1
−g

. (21)

c) β= βopt ≥ βc <N ·g. Here, the shill remains at-
tached to the flock for the−β realisation ofdZ(t),
but escapes otherwise. This then leads to a mix of
cases a) and b) depending on whether+β or −β
is realised.

The computation ofγave from case b) shows that with
g fixed such thatβopt ≥ βc, the shill escapes from the
flock (hence, no stationary probability measure ex-
ists). The remaining(N− 1) regular fellows evolve
with average speedγave (which is β-independent).
Whatever the values taken byβ, the shill is never
able to drive the swarm through one of the slots, the
swarm’s speed being onlyg-dependentif the shill is
not attached to the swarm.

So far, only the swarm’s directions has been con-
sidered. Obviously, the dispersion is also a determi-
nant feature for efficient slots crossings. Here, not
only g but the ratiog

σ will be determinant. Clearly
for smallg values, the swarm dispersion will exhibit
a clear tendency to exceed the slots widths, altering
therefore the overall efficiency.

4.3 Multi-slots Configurations

So far, we did consider the capability of a shill to steer
the swarm through a couple of slots. For multi-slots
configurations, the shill construction used before nat-
urally suggests to define more general shills to steer
swarms in many different directions. This is achiev-
able by replacing the ballistic noise driving the shill
with more complex stochastic processes. Doing so
however, the shill dynamics cannot be anymore rep-
resented by a simple diffusive stochastic differential
equation like Eq.(11). As an illustration, consider a
three symmetrical slots configuration for which one
is naturally driven to introduce the following noise
source:

dZ(t) =

{

β tanh(βZ(t))dt+dW(t) with prob. 2
3 ,

dW(t) with prob. 1
3 .

(22)

The shill dynamics is taken as before, namely with
probability 2

3 it steers the swarm towards the positive
or negative slots with ballistic parameterβ and with
probability 1

3, it behaves as a regular agent driving the
swarm on a centered path, see Figure (5).
For arbitrary number of slots and configurations, one
can generalize our construction by suitably adjusting
the properties of the noise source driving the shill.
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Figure 5: Trajectories forβ and g optimal, with Nd = 3
doors, under different conditions for the position/width of
the doors.

5 CONCLUSIONS

It is a true challenge, to analytically discuss the swarm
dynamics of heterogeneous interacting agents. Due to
heterogeneity, ordinary analytical tools like the mean-
field approach are to be ruled out a priori. Hence be-
sides simulation experiments, very little hope remains
for rigorous theoretical results. We think particularly
to modeling approaches relying on statistical mechan-
ics and phase transitions to explain the emergence of
self-organized spatio-temporal patterns (i.eflocking).
However as our paper intends to show, facing inhomo-
geneous swarms problems, complete hope for analyt-
ical results should not be abandoned. The theoretical
analysis, when achievable, definitely offers sources of
inspiration for new and unexpected research axis.

In our present contribution, we barely scratched
the wealth of analytical possibilities. Indeed, swarm
heterogeneity has numerous origins, affecting the in-
dividual drifts and/or the variances, modeling the sen-
sitivity of each agent to the external random environ-
ment. In parallel, heterogeneity can either be sys-
tematic, thus implying that each agent behaves dif-
ferently, or can be limited to one or only a few indi-
viduals who exhibit singular behaviors. In the latter
configuration, the emergent swarm dynamics can be
affected, sometimes even strongly, by the exotic be-
havior of this (or these) individual(s). The influence
of the exotic fellow(s) can hence be viewed as asoft
control mechanism, either harmful or beneficial. The
exotic insiders, acting as leaders (or asshills in econ-
omy) are not detected to be singular by the other fel-
lows, offering the (politically frightening possibility!)
to drive large swarms towards global goals known
only to the manipulators. A formal analytical ap-
proach (complemented with simulations) to this gen-
eral problematic is a truly fascinating challenge.

Further works include analysis of multiple shills
influence, leading to the separation of the initial
swarm into multiple flocks, one shill soft-controlling
each flock. Generalisation in two or three dimensions
would also provide more realistic applications.
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