
A Framework to Support Business Process Analytics

Alejandro Vera Baquero and Owen Molloy
Information Technology, National University of Ireland, Galway, Ireland

Keywords: Business Intelligence, Business Activity Monitoring, Business Performance Management, Business Process
Analytics, Event Modelling, Business Process Execution Language.

Abstract: Business intelligence (BI) systems have become a powerful tool for business users in decision making.
Through the analysis of historical (and increasingly, real-time) data, these systems assist end-users in
achieving visibility on process and business performance. While traditionally used to discover trends and
relationships in large, complex business data sets, there is a significant and growing demand for something
more than the use of mere historical data and rudimentary analysis tools. There is a demand for more
advanced analytics such as root cause analysis of performance issues, predictive analysis and the ability to
perform “what-if” type simulations. This paper proposes a technological solution for one of the core
components of these emerging BI systems, namely the ability to monitor and analyse the execution
outcomes of business processes. This provides essential insight into business process performance, key
intelligence in initiatives aimed at measuring and improving overall business performance, especially in
highly distributed business processes, where this type of visibility is especially hard to achieve across
heterogeneous systems.

1 INTRODUCTION

Business Intelligence (BI) and Business
Performance Management (BPM) systems are
complex, expensive and require considerable
resources and time to implement. However, in most
(distributed) process improvement initiatives we are
faced with the problem of heterogeneous systems
and standards. This applies of course to not only
Enterprise Resource Planning (ERP) systems, but to
a range of Human Resources (HR), Customer
Relationship Management (CRM), Finance and
other systems which may implement parts of the
processes we are interested in monitoring and
improving (see Figure 1).

Figure 1: Heterogeneous systems challenge.

This is further complicated by the fact that very
often process improvement initiatives, such as
Lean/Six-Sigma projects, need to be fast and agile,
easily moving from modelling to measurement and
analysis without investment and overheads for what
may be a rapidly changing business and process
environment.

While there has been significant deployment of
systems based on BPEL (Business Process
Execution Language) technology in recent years,
they generally still represent just parts of the
distributed business processes we are interested in.
While we can use Business Intelligence (BI) systems
to pull information from heterogeneous systems into
pre-defined data warehouses, this comes at a high
cost in terms of time and resources. Another
significant drawback from a process improvement
perspective is that BI systems are not typically
process-aware and must be re-engineered in
response to changes in the process design. On the
other hand process-aware, or process-oriented
systems allow querying directly on the process data
itself, while maintaining knowledge about the
process design or model. In a 100% BPEL world
this would not be a problem, as we could directly
mine BPEL databases, however as we have already

321Vera Baquero A. and Molloy O..
A Framework to Support Business Process Analytics.
DOI: 10.5220/0004178103210332
In Proceedings of the International Conference on Knowledge Management and Information Sharing (RDBPM-2012), pages 321-332
ISBN: 978-989-8565-31-0
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

stated, this is not the case. Therefore we present a
flexible, lightweight, BPEL-agnostic solution for
process monitoring in this paper.

1.1 Overview of Business Activity
Monitoring

It is useful at this point to discuss the common
terminology to be used in describing process
performance. When we discuss processes we must
remember that a process may itself be composed of a
number of different sub-processes or activities
which in turn may be decomposed into a set of
smaller related tasks (see Figure 2). There is no
globally accepted limit on the number of levels, and
depending on circumstances and data requirements,
it may be necessary to monitor both high level and
low level processes simultaneously.

Figure 2: Sample Process Hierarchy.

An interesting aspect of this, which is relevant
from a management perspective, is that we should be
able to monitor and manage performance at all
levels in the hierarchy. Some common process
measures are presented in Figure 3.

Figure 3: Sample Process Measures.

In a well running process we expect arrival
(demand) and throughput rates to be in balance. This

requires each stage in the process to be capable of
working at the rate at which inputs (e.g. .orders)
arrive. Processes or activities which do not have the
capacity to work to this arrival rate become
bottlenecks which must be identified and eliminated.
As well as causing unnecessary delays and
prompting “fire-fighting” responses from
management, bottlenecks can starving proceeding
activities of input. This results in valuable resources
such as people or machines being idle and
underutilized. The strategies for elimination of
bottlenecks will depend on our scope of action: it
may be possible to add extra processing resources,
or duplicate processes, or even to modify the arrival
rate through negotiation with the customer.
Therefore, the concepts of yield, error rate,
throughput etc. can be validly applied at all levels.

A Business Activity Monitoring (BAM)
component is clearly essential “for better business
performance or continuous process improvement of
an enterprise, real-time measurement and analysis of
the performance of managerial activities” (Kang and
Han, 2008). A BI component capable of deriving
higher level intelligence from the basic BAM data is
necessary for the creation of knowledge from a
business process perspective. Whereas the
mainstream BI systems of 10 years ago were
definitely not “process aware”, the overall process-
oriented approach (Seufert and Schiefer, 2005) is
gaining importance for companies seeking to remain
not just competitive but also viable in today’s
business environment.

2 THE FRAMEWORK

This paper proposes a framework that provides
business users with the ability to monitor and
analyse the execution outcomes of business
processes. The framework presented aims to assist
analysts in gaining an insight into business process
performance.

The contribution of this research pursues two
main aims. The first aim is to provide a generic
event model construct that can represent the
execution data of any business process regardless of
the environment in which it is executed. The second
aim is to provide an IT infrastructure with the ability
to monitor business processes from operational
systems and analyse their execution outcomes.

The next figure shows the architectural approach
of the proposed framework which is broken down
into two main components. A BAM component that
is responsible for providing event stream processing

KMIS�2012�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

322

capabilities and a BI component which is the
functional unit that produces the analytical
information on business process performance.

Figure 4: Architectural approach of the framework.

2.1 An Event Model for Business
Activity Monitoring and Business
Process Analysis

An event-based model is essential to provide the
framework of a concrete understanding and
representation of what needs to be monitored,
measured and analysed (Costello, 2008).

The event model proposed in this paper is built
upon the BPAF (Business Process Analytics Format)
standard, specified in (WfMC, 2009), combined with
some important features of the iWISE model
discussed in (Costello, 2008). The BPAF standard
has been extended in order to accommodate the
event correlation features defined by the iWISE
software.

2.1.1 iWISE

The iWISE software is an IT platform that provides
a full infrastructure to manage process models and to
monitor the activity of business processes with the
aim of capturing enterprise events from business
systems and leveraging such data to detect non-
compliant situations.

The iWISE system is fully described in
(Costello, 2008) and defines an event-based model
to represent the results of business process
executions as business events supplied from
heterogeneous environments where processes cross
both organizational and software boundaries. The
main modelling constructs are depicted using a
simplified UML (Unified Modelling Language)
class diagram depicted in Figure 5.

Figure 5: High-level event-based model (Costello, 2008).

The model entity is the root element of the
process model. It represents the definition of a
process model and contains a list of processes
connected by transitions. In turn, each process has
multiple event type definitions which may be
associated to a set of parameters (Costello, 2008).

The iWISE event model is structured in an XML
format that represents the UML specification
described above. The process element contains the
relevant information of a process instance, which in
turn, it references to a list of events associated.
These events are modelled in the EventType
element containing the definition of an event
instance. This element is used to provide some meta-
data about the event. In addition, each process can
have a reference to another model, thus enabling a
structure for accommodating multiple levels of sub-
process or activities (Costello, 2008).

A significant contribution to the event model
presented in this work from iWISE is the structure
used to represent a business event. An event is
documented in the Event element and references
and EventType through the EventTypeID element
(see Figure 6). This element establishes the
relationship between the events and their respective
process instances.

Figure 6: The iWISE Event element (Costello, 2008).

The Event elements are specified below.
EventInstanceID: Unique event identifier.
EventTypeID: Specifies the event type information.
Timestamp: Element that contains the time at
which the event occurred.

A�Framework�to�Support�Business�Process�Analytics

323

XMLPayload: The XML data containing the
business information.

The XMLPathExpression element, located in
the EventType data, is used to identify an element
or attribute within the XML document contained in
the XMLPayload of the event. The iWISE software
uses XPath to retrieve a part of the message payload
in XML format, that will later be used to uniquely
identify an event instance for a particular process
instance during execution (Costello, 2008)

2.1.2 The BPAF Model

BPAF is a standard format published by the
Workflow Management Coalition to support the
analysis of audit data across heterogeneous business
process management systems (WfMC, 2009). It
enables the delivery of basic frequency and timing
information to decision makers, such as the cycle
times of processes, wait time, number of process
instances completed against the failed ones, etc. (Zur
Muehlen and Shapiro, 2009).

BPAF is designed as an XML schema and
consists of a generic design for a process analytics
system which provides an event format independent
of the underlying process model. This format
enables analytic applications and BAM technology
to unify criteria and to standardize a state model for
auditing event purposes in heterogeneous
environments (Zur Muehlen and Shapiro, 2009).

The BPAF state model and transitions are
depicted at the following figure.

Figure 7: BPAF State Model (Zur Muehlen and
Shapiro, 2009).

2.1.3 The Extended BPAF Model

The BPAF has been modified with the purpose of
achieving two main aims. The first aim is to provide
the framework with the data required to correlate the

events produced by the execution of cross-
organizational business processes. And the second
aim is to accommodate the structural properties of
process or activity instances that are of relevance to
business analysts.

The extended and modified elements are
specified below.

ServerID: The proposed framework requires
uniquely identifying the business systems that
originated the event since the business processes are
to cross software boundaries throughout a diverse of
disparate software systems. Therefore, this attribute
must be mandatory.

ActivityParentID: The proposed format
permits to accommodate an unlimited number of
levels for sub-process / sub-activities. This is
accomplished by keeping a reference to its closest
parent.

DataElement [multiple, optional]: A name-
value-pair that can be used to store additional
process data.

Payload [multiple, optional]: A name-value-pair
that is used to uniquely store the event payload of
processes or activities.

ProcessInstanceID [optional]: The identifier
of the process instance whose source system has the
ability to identify a process instance by the means of
an identifier. This element is optional as not all
source systems are able to manage unique identifiers
on the execution of their business processes.

Correlation [multiple, optional]: A name-
value-pair that stores a subset of elements contained
on the event payload and that are used to identify a
determined process or activity.

2.2 Event Correlation

The event correlation is an essential part of the
proposed framework for achieving the correct
identification of process execution sequences.
Without the ability to correlate events it would not
be possible to generate metrics per process instance
or activity (Costello, 2008), and thus the business
analysts would be unable to identify exceptional
situations and potential improvement opportunities.

This work proposes an event correlation
mechanism based on the data shared between
business processes during their execution. In an
event-driven approach, such shared data usually
makes reference to the message payload, and this
information can be used to identify the start and end
event data for a particular process instance or
activity. The main difficulty with this approach is in

KMIS�2012�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

324

determining which part of the event payload is used
to identify and link the consecutive events.

The correlation process basically consists of
associating every event instance to the correct
process or activity. The identification of the process
or activity is undertaken by retrieving the exact
instance associated with a specific process model,
executed at a particular source and provided with
specific correlation data. This triplet allows us to
determine the process instance or activity that is the
owner of a specific event.

In source systems that have the ability to
generate and manage identifiers on their source
instances, such as BPEL engines, it is not necessary
to provide any correlation information on the event
message. In such cases, the instance identifier is
provided instead, and in turn, this is used to correlate
the subsequent events

2.3 Analytics Requirements

At the most basic level, operational systems deliver
timing information on the event occurrence. The
majority of process metrics are obtained by
analysing the timestamp of a set of correlated events
which are associated to a determined process
instance or activity (Zur Muehlen and Shapiro,
2009). The use of such metrics provides business
analysts with an understanding of the behavioural
aspects of business processes.

The proposed framework captures and records
the timestamp of events containing the time at which
they occurred on the source system, not when they
are packaged or delivered. This property is essential
in order to identify and analyse the correct sequence
of process instances, as well as ensuring that the
generation of metrics produces precise information
on its outcomes.

Based on the event timing information and the
BPAF state model presented in previous sections, it
is possible for an analyst to determine the
measurement of different behavioural aspects of
business processes with the aim at “evaluating what
happened in the past, to understand what is
happening at present and to develop an
understanding of what might happen in the future”
(Zur Muehlen and Shapiro, 2009).

Michael zur Muehlen in (Zur Muehlen and
Shapiro, 2009) propose leveraging the state change
records in the life cycle of business process to
determine the following information:

 Turnaround. Measures the gross execution
time of a process instance or activity.

 Wait Time. Measures the elapsed time
between the entrance of a process or
activity in the system and the assignment of
the process or activity to a user prior to the
start of its execution.

 Change-over Time. Measures the elapsed
time between the assignment of the process
or activity to a user and the start of the
execution of the process or activity.

 Processing Time. Measures the net
execution time of a process instance or
activity.

 Suspend Time. Measures the time a
execution of a process or activity is
suspended.

Figure 8 illustrates the metrics outlined above by
depicting a sample of the execution of an activity
instance as per the BPAF state model.

Figure 8: Activity Instance Metrics (Zur Muehlen and
Shapiro, 2009).

2.4 Architecture of the Framework
(F4BPA)

The architecture of the framework for business
process analytics (F4BPA) is illustrated in Figure 9
and consists of two main subsystems, the Business
Activity Monitoring subsystem and the Business
Intelligence subsystem. They are both built upon the
Spring Framework version 3, and hence, they are
Java-based enterprise applications.

A�Framework�to�Support�Business�Process�Analytics

325

Figure 9: F4BPA high-level system architecture.

The BAM subsystem is composed of a set of
listener software modules (Event Publisher) that
collects the events from business systems and
publishes them through a message broker platform,
an Event Subscriber module that listens and
processes the incoming events, an Event Correlator
module that identifies and correlates consecutive
events, and an Event Store module which persists
the event data.

The BI subsystem is composed of an Event Data
Warehouse and a Business Process Execution
Query Language (BPEQL) module. The Event
Data Warehouse is responsible for the generation
and persistence of metrics, as well as serving as a
data interface for querying the data warehouse
containing metrics. The BPEQL module basically
parses, executes and returns the results of query
statements.

2.4.1 Business Process Execution Query
Language

One key challenge in decision making is having
access to all relevant information in order to
undertake a performance and compliance
assessment. Such information is normally distributed
on diverse heterogeneous systems belonging to
different organisational units. In such cases, not
only the gathering, unification and correlation of
event data are required, but also the ability to query
the event repository and display the data thereof.

Many query languages for business processes
have been proposed, using a variety of different
approaches such as SQL-like languages, languages
based on graphs and ontologies.

The BP-Ex query language proposed in (Balan,
Milo and Sterenzy, 2010) is a user-friendly interface
based on a graph representation for querying
business process execution traces.

The FPSPARQL is a query language for
analyzing event logs of process-oriented systems
based on the concepts of folders and paths. These
concepts enable analysts to join related events
together and additionally, store the folders and paths
to later be used in future analysis. FPSPARQL
extends the SPARQL graph query language by
implementing progressive techniques in a graph
processing engine (Behesti, Benatallah, Motahari-
Nezhad, and Shakr, 2011).

The EP-SPARQL (Event Processing SPARQL)
is an extension of the SPARQL querying language
for event processing and stream reasoning that
enables stream-based querying (Anicic, Fodor,
Stojanovic and Rudolph, 2011).

The query language proposed in this work
resembles the SARI-SQL language discussed in
(Rozsnyai, Schiefer and Roth, 2009). SARI-SQL
defines a language comparable to ANSI-SQL from a
declarative perspective. The advantage of the
languages based on an SQL-like syntax is that SQL
is an industry standard that is widely used in
business environments. Furthermore, many non-
technical people are familiar with it (Rozsnyai,
Schiefer, and Roth, 2009). An SQL based language
is intuitive, and easier to learn for business users
who are familiar with the notion of entities and
queries for reporting purposes.

The BPEQL component provides a query engine
that processes query statements formulated in our
proposed query language. The query engine works
as a translator by parsing and converting BPEQL
query statements into JPQL (Java Persistence Query
Language) statements. Once the queries are
translated into JPQL statements, these are forwarded
to the Event Data Warehouse component, which
performs the query and returns the result back to the
query engine. The JPQL serves as a suitable
intermediary layer for accessing the metrics stored at
the data warehouse.

The query engine uses the ANTLR runtime for
parsing and translating the queries into JPQL.
ANTLR (ANother Tool for Language Recognition)
is an open source product that “provides a
framework for constructing recognizers, interpreters,
compilers and translators from grammatical
descriptors” (Parr).

The BPEQL grammar is based upon a reduced
version of the ANSI-SQL standard. Likewise, it
incorporates new features to adapt the language for a
business process domain.

The specification of the BPEQL grammar is as
follows:

KMIS�2012�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

326

SELECT [AGGREGATE]
 (
 (*) | (id | name | source
 | start_time | end_time
 | turn_around | wait
 | change_over | processing
 | suspend)
)
FROM (ACTIVITY | PROCESS | MODEL | MAP)
[WHERE condition]

SELECT Clause
The select clause specifies the attributes that will be
selected in the output.

The optional AGGREGATE clause groups the
result in just one row and applies the average
function to the metric attributes.

FROM Clause
The FROM clause specifies the context domain from
which the information will be retrieved. It can
specify an ACTIVITY, PROCESS, MODEL or
MAP.

WHERE Clause
The optional WHERE clause may specify either an
ID or a NAME or both, provided the FROM clause
references to an ACTIVITY, a PROCESS or a
MODEL. If the FROM clause references a MAP,
then only an ID can be specified at the WHERE
clause.

Grammar Specification
The grammar definition is broken down into two
main components, a lexer and a parser. The lexer is
specified by a set of rules that defines the lexical
analysis. The parser is a grammar specification that
determines if an input is syntactically correct with
respect to the formally defined grammar. This is also
known as syntactical analysis. Furthermore, the
proposed grammar features some semantic rules
which make the recognizer also work as a translator.

The next figure illustrates how the BPEQL
translator works internally by generating the parse-
tree and evaluating the semantic rules at the parse
tree nodes against the input statement. The
translation is carried out on the following input
query:

SELECT id, start_time, end_time
 FROM PROCESS
 WHERE NAME = ‘ProcesTripOrder’

Figure 10: BPEQL syntactic tree.

The example above shows how the parse-tree
generates the JPQL statement in pieces while
processing their nodes. The translated BPEQL
statement into JPQL is outlined below.

SELECT i.id, start_time, end_time
 FROM event_dw.event_fact f,
 event_dw.process_instance i,
 event_dw.process_model m
 WHERE m.id = i.model
 AND i.id = f.process
 AND f.activity is null
 AND name = ‘ProcessTripOrder’

3 EVALUATION

The initial evaluation strategy to date has been based
on a qualitative analysis in terms of effectiveness,
completeness and usability.

The effectiveness is assessed by verifying that
the framework addresses the success criteria, namely
to be capable of monitoring and analysing the
execution outcomes of business processes. Hence,
the framework must meet the following research
challenges:

1. Collect distributed event data from business
processes executed on heterogeneous
systems.

2. Unify the gathered event data in a unique
central repository.

3. Identify and correlate subsequent events.
4. Generate metrics from the business process

execution outcomes.
5. Query the structural and behavioural

properties of business processes from the
event repository.

The completeness attribute features the grade of
expressiveness of the proposed query language. This
qualitative metric is used to measure the coverage by
the query of business processes execution
information.

A�Framework�to�Support�Business�Process�Analytics

327

The usability attribute features the ease and
simplicity of the query constructs with respect to the
query expressiveness.

3.1 Prototype

An implementation of the framework presented in
this paper has been created along with a set of tests
to assess the proposed framework. The results of the
test executions were used to evaluate the framework
against the above quality attributes.

For capturing the events, three different instances
of BPEL engines have been deployed on a local
network. These engines recreate the business process
scenario specified in the next section, and which is
used for testing purposes. Obviously any system
capable of outputting the event format information
could be used instead of these test BPEL instances.

The BPEL vendor of choice is the Apache ODE
(Orchestration Director Engine) 1.3.5 of the Apache
Software Foundation. Every Apache ODE instance
corresponds to a determined organizational unit, and
under every unit is executed a particular BPEL
process.

A specific plug-in (F4BPA-ODE) captures the
business events produced by the Apache ODE
servers. This plug-in is attached to every BPEL
engine and uses the own Apache ODE API to access
to the persisted data. Once the data is retrieved, the
events are sent to the network in the BPAF extended
format (F4BPA-BPAF), after being converted by the
means of ETL processes.

The architecture of the prototype previously
described is graphically depicted in Figure 11.

Figure 11: Architecture of the prototype on the event
capturing side.

3.2 Sample Process Scenario

The event information managed by the framework
must be enclosed in a business domain, thus a
sample process scenario is needed for evaluating the
framework.

This sample business process is based on a travel
planner where the customers can book and order

trips. The business process model is illustrated in
Figure 12 in BPMN notation.

The business process is launched upon a plan trip
requested action. The root process interacts with
other sub-processes which are part of third party
systems that represents the organizational
boundaries of the business process.

Three different pools have been established, a
Customer, a Travel Agency and an Airline, where
each defines a different organization, and whose
processes are part of the trip planning process.

Figure 12: Sample Business Process in BPMN notation.

In order to simulate a distributed environment on
a real test case, each sub-process has been
implemented as BPEL processes which are executed
in a separated BPEL instance. Likewise, there is a
single BPEL instance per pool representing the
system boundaries, while the BPEL engines are fully
accessible throughout the network.

3.3 Tests

Several tests have been carried out over the
framework aiming to produce a volume of event
data large enough as to obtain fair results.

The storage of a large amount of event data,
produced by the continuous execution of the
business process, generates plenty of valuable
information that enables analysts to gain insight into
business performance.

Figure 13 is a screenshot taken from the
framework. It illustrates how a list of events, for a
particular process instance and related activities, are
displayed on the screen. It also highlights the

KMIS�2012�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

328

business data stored in the payload section of the
selected event.

Figure 13: Screenshot of the process instance
"ProcessTripOrder".

The event model allows drilling down the
business process execution outcomes into multiple
levels of detail, whereby it is possible to either know
the waiting time of a determined activity or the
overall execution time of a cross-organizational
process.

The following table outlines a sample of the
execution result of the activity getAirlinePrice
associated to the ProcessTripOrder process.

Table 1: Execution results of the activity 'getAirlinePrice'.

This information indicates that the activity was
executed successfully without interruption of any
kind, neither from a human interaction nor from
activity suspension. This is extremely useful for
business users to detect non-compliant situations,
but it is not sufficient. Whilst the live data outlined
above give an insight into the business process
execution flow, they do not provide measurable
information about business performance. Therefore,
it is desirable to provide a fact table per process
instance or activity.

Consequently, a dimensional model has been
settled for this purpose. The Figure 14 shows the
UML star diagram used for storing and accessing the
behavioural information of process and activity
instances.

Figure 14: Star diagram.

As depicted at the above figure, this dimensional
model allows the retrieval of any fact associated
with any process or activity instance regardless of
their nesting level. Likewise, it is possible to retrieve
accumulative metrics for a determined model. This
enables analysts to obtain information about the
average execution times, rate failures, standard
deviation, etc. for any part of a distributed business
process.

The following table illustrates a set of metrics
associated with the activity getAirlinePrice
outlined in the Table 1. The information displayed
states that the activity was executed in 1840 ms and
it was not interrupted.

Table 2: Metrics of the activity 'getAirlinePrice'.

The fact table provides valuable information for
analysing the behaviour of organizational processes
which are represented in single instances. However,
what business users really often need is to know the
average execution time for a particular business
process or activity, and not only for a unique
isolated instance. This is possible by grouping rows
in the fact table and applying an aggregate function
over the metrics. A filter around a set of processes or
activities, which correspond to a specific model, will
achieve the desired result.

3.4 Evaluation Results

The execution of test cases has shown that the
prototype meets the research challenges. The
prototype collected the data from the Apache ODE
server, correlated and stored the business events in a
central repository. Additionally, the metrics were
generated successfully as per previous points.

Certainly, the framework has provided a
knowledge base that enables analysts to track
business processes, but it still requires evaluation of
the proposed query language.

A�Framework�to�Support�Business�Process�Analytics

329

The initial analysis is focused on the expressive
scope of BPEQL in relation to a business process
domain. Namely, a scope has been defined in order
to identify the level of detail of business processes
that the language is able to retrieve information for.

Table 3: Expressiveness scope of BPEQL.

Expressive Scope
Cross-organizational process (Map)
Model
Process
Activity
Sub-activity
Event

The BPEQL language has the capabilities of
retrieving behavioural and structural information
from any level of a business process, except from
the event and sub-activity levels.

For instance, the language can construct queries
such as “What is the average execution time taken
for the process ‘X’?” or “What is the suspending
time for the activity ‘Y’?”, but it cannot answer
questions such as “At what time the activity ‘Y’
failed for the last time?” or “What is the rate failure
for the process ‘Z’?” These last questions imply to
drill down to the event level to identify a failed state.

In spite of not providing this functionality in the
language, it can be easily extended to support this
feature since this information is stored and managed
by the framework.

The measurable properties of business processes
are also essential for identifying exceptional
situations, detecting bottlenecks and discovering
business opportunities.

The proposed query language may retrieve any
metric presented in this paper, and also aggregate
metrics over an evaluation function. This enables the
framework to retrieve the average execution time of
a determined process, activity or map.

The next figures are screenshots taken from the
framework that illustrates how a BPEQL statement
retrieves the average times for a particular process.

SELECT AGGREGATE *
 FROM PROCESS
 WHERE NAME = ‘ProcessTripOrder’

The usability of the language is pretty simple
since it can query any nested level of a business
process by just specifying the desired level on the
FROM clause. Furthermore, it can also refer to a
specific process or activity instance by filtering by
an instance ID, or even grouping similar instances of
a determined model in a simple manner by
specifying the process name. In this regard, the

Figure 15: Screenshot of the BPEQL statement querying a
particular process.

Figure 16: Screenshot of the BPEQL query result.

payload data play an important role in fetching a
determined process. This would enable end-users to
determine a specific instance by providing such data
instead of dealing directly with instance identifiers
which are complex to deal with. For example, from
a business analyst perspective, it is more adequate to
formulate questions such as “What is the execution
time of instance which order number is equal to
‘A525’?” rather than “What is the execution time of
instance which identifier is ‘2834768’?”. In terms of
usability, these features will be added in future
versions.

4 CONCLUSIONS AND FUTURE
WORK

A proposed framework for monitoring and analysing
business process performance has been presented in
this paper. An event-based model was devised for
supporting the data required for analysing business
processes. The framework has adopted a centralized
approach for monitoring the operational activities,
collecting the business events and inferring
knowledge from the gathered information. The
system provides significant capabilities for analysing
business process performance through the use of a
query language developed for this purpose.

The framework, which was prototyped using an
event-driven architecture, set out to tackle two main
issues. First, to collect and integrate data originating
from distributed heterogeneous enterprises systems.
Secondly, to interpret and process event streams that
are part of a cross-functional business process.

KMIS�2012�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

330

To overcome these issues, this work proposes a
combination of event models that takes advantage of
two complementary approaches. The iWISE
(Costello, 2008) event model features cross-
functional event sequences and permits the
framework to be a non-BPEL exclusive dependent
system. The BPAF model (WfMC, 2009), in
contrast, provides powerful capabilities for enabling
the analysis of business processes behaviour.

In the absence of standards for querying business
processes, a query language has been proposed. The
successful implementation and evaluation of the
prototype has demonstrated that it is possible to
monitor and query the structural and behavioural
properties of business processes through the
construct of a general purpose event model.
Moreover, the business data can be unified and
centralized seamlessly regardless of the underlying
source systems.

In future works, the BPEQL grammar will be
extended to improve its expressive power.
Additionally, its usability will also be improved by
incorporating references to business data without
using identifiers, so that query construction will be
significantly eased.

The framework is sufficiently flexible to
incorporate easily the extensions mentioned above.
There are plenty of possibilities for incorporating
metrics and key performance indicators (KPI)
without affecting the normal functionality of the
existing system. Consequently, the BPEQL grammar
can also be improved by incorporating these new
elements gradually, thus improving the power and
expressiveness of the language.

Other potential further research using the
framework includes support for predictive analysis
and integration with simulation and optimisation
techniques and systems. This would pave the way
for enabling the user to augment existing data with
hypothetical information in order to perform what-if
analysis over simulated scenarios.

Behavioural patterns recognition is another
technique that could be leveraged by the proposed
system in order to detect undesirable business
process behaviours that are experienced frequently
or on a continuous basis.

On a final note, it worth noting that event data
centralization is not the only option to store and
analyse distributed business data. Handling
collaborative analytics on a fully distributed BI
environment is a challenging task. Nonetheless, this
work could be complemented with the federative
approach, presented in (Rizzi, 2012), in terms of
data warehousing and distributed query processing.

The BI subsystem component presented in this paper
could be attached to every operational business
system along with their own local event repository.
The event-based model presented herein represents
the global schema proposed by Rizzi’s approach.
Thus, business process analytics could be carried out
collaboratively in each organization independently
by performing distributed queries along the
collaborative network.

REFERENCES

Anicic, D., Fodor, P., Stojanovic, N., and Rudolph,
S. (2011). EP-SPARQL: A Unified Language for
Event Processing and Stream Reasoning. WWW
'11 Proceedings of the 20th international
conference on World wide web.

Balan, E., Milo, T., and Sterenzy, T. (2010). BP-Ex:
A uniform query engine for Business Process.
EDBT '10 Proceedings of the 13th International
Conference on Extending Database Technology.

Behesti, S., Benatallah, S., Motahari-Nezhad, H.,
and Shakr, S. (2011). FPSPARQL: A Language
for Querying Semi-Structured Business Process
Execution Data. UNSW-CSE-TR-1103, School of
Computer Science and Engineering, University
of New South Wales, Australia.

Costello, C. (2008). Incorporating Performance into
Process Models to Support Business Activity
Monitoring. National Universisty of Ireland,
Galway.

Kang, J., and Han, K. (2008). A Business Activity
Monitoring System Supporting Real-Time
Business Performance Management.
Convergence and Hybrid Information
Technology, 2008. ICCIT '08., 473-478.

Parr, T. (n.d.). ANTLR Parse Generator. Retrieved 6
11, 2012, from http://www.antlr.org

Rizzi, S. (2012). Collaborative Business
Intelligence. In M. Afaure, and E. Zimanyi (Ed.),
First European Summer School (eBISS 2011)
(pp. 186-205). Paris: Springer.

Rozsnyai, S., Schiefer, J., and Roth, H. (2009).
SARI-SQL: Event Query Language for Event
Analysis. Proceedings of the 2009 IEEE
Conference on Commerce and Enterprise
Computing .

Seufert, A., and Schiefer, J. (2005). Enhanced
Business Intelligence - Supporting Business
Processes with Real-Time Business Analytics.
Database and Expert Systems Applications, (pp.
919 - 925). Copenhagen.

A�Framework�to�Support�Business�Process�Analytics

331

WfMC. (2009). Workflow Management Coalition -
Business Process Analytics Format
Specification. Retrieved February 8, 2012, from
Workflow Management Coalition - Business
Process Analytics Format Specification:
http://www.wfmc.org/Download-
document/Business-Process-Analytics-Format-
R1.html

Zur Muehlen, M., and Shapiro, R. (2009). Business
Process Analytics. Handbook on Business
Process Management, Vol. 2, Springer Verlag.

KMIS�2012�-�International�Conference�on�Knowledge�Management�and�Information�Sharing

332

