
ONTOTracED: A Framework to Capture and Trace Ontology
Development Processes

Marcela Vegetti1, Luciana Roldán1, Silvio Gonnet1, Gabriela Henning2 and Horacio Leone1
1Ingar (CONICET/UTN), Avellaneda 3657, Santa Fe, Argentina

2Intec (CONICET/UNL), Güemes 3450, Santa Fe, Argentina

Keywords: Ontology Development Processes, Ontology Engineering, Support Tools, Design Processes, Design
Rationale.

Abstract: In the last two decades several methodologies to assist the ontology development process have been
reported in the literature. However, despite important advances, there are no computational tools supporting
them yet. Thus, when an ontology development process ends, the things that remain are just design products
(e.g., competency questions, class diagrams, implementations, etc.), without an explicit representation of
how they were obtained. This paper presents a framework meant to explicitly capture and trace ontology
development processes (the activities carried out, the actors executing them, etc.), along with their
associated products.

1 INTRODUCTION

In the last decade, many ontology development
processes have changed from the traditional ones,
performed by isolated knowledge engineers or
domain experts, into collaborative processes
executed by mixed teams. In such teams, experts in
knowledge acquisition and modeling, domain
specialists, and experts in the ontology
implementation languages collaborate to build
ontologies, according to well-established
methodologies. The expertise and background of
each team member, as well as the executed
activities, and the decisions made during the
development process might be of great importance
in future ontology development processes. However,
current tools supporting ontology development
processes do not capture such information; thus, the
process trace is lost, and any new ontology
development process would start from scratch. In
fact, once a given ontology development process is
finished, the things that remain are mainly design
products (e.g., requirement specifications,
competency questions, ontology class diagrams,
implementations in specific languages, etc.), without
an explicit representation of how these products
were obtained, and with no capture of the rationale
behind the process. In addition, ontology building is
turning into a more professional engineering process

that needs to be managed and measured in order to
obtain high quality results. All these characteristics
constitute essential challenges that require to be
addressed by the ontology engineering field.

In order to tackle these issues, this contribution
proposes ONTOTracED, a framework to represent,
capture and trace ontology development processes.
The following section presents the framework
components. Finally, Section 3 concludes the paper
and offers paths to future work.

2 ONTOTracED

Once an ontology development process is
concluded, those things that remain are mainly
design products (e.g. the requirements specification,
competency questions, ontology class diagrams, the
ontology implementation in an specific language,
etc.) without an explicit representation of how these
products were obtained, and lacking the capture of
the history and rationale behind the development
process. More specifically, there is no trace of the
activities that have originated any of the products,
the requirements that have been imposed, the actors
that have performed each of the activities, and the
underlying rationale behind each decision that was
made. In order to overcome these drawbacks, this
contribution proposes a comprehensive framework

419Vegetti M., Roldán L., Gonnet S., Henning G. and Leone H..
ONTOTracED: A Framework to Capture and Trace Ontology Development Processes.
DOI: 10.5220/0004173304190422
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2012), pages 419-422
ISBN: 978-989-8565-30-3
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

to represent, capture and trace the ontology
development process.

Fig. 1 shows the main components of the
proposed framework, including: (i) a Conceptual
Model that is able to represent generic design
processes; (ii) an Ontological Engineering Domain
Model (OEDM), which specifies the concepts that
are required to describe ontology development
processes, and (iii) a support computational
environment, named TracOED (Tracking Ontology
Engineering Designs), that implements both the
conceptual model and the OEDM to enable the
capture of specific ontology design processes, along
with their associated products.

Ontological
Engineering

Domain Model
(OEDM)

ONTOTracED framework
TracOED

Version Manager Domain Editor

Product Representation Space

implements

Conceptual Model
Process Representation Space Specification Space

Activity Version Repository Domain Operation

specifiedBy

Ontology Development Process

capture and tracing

Figure 1: Components of the proposed framework.

The supporting Conceptual Model is based on an
operational-oriented approach that envisions the
ontology development process – as any engineering
design process – as a sequence of activities that
operates on the products of the development process.
The proposal defines two representation spaces to
model generic design process concepts: the Process
and Product spaces. In addition, a third component
(the Specification Space in Fig. 1) is included to
fully specify a flexible model that is able to
represent and capture design processes pertaining to
specific engineering fields.

The Process representation space models the
activities being performed during an ontology
development process. Each basic activity performed
by an actor during an ontology development process
is represented by the execution of a sequence of
operations, which transforms the design objects
causing their evolution. In order to represent this
evolution, each design object is specified at two
levels: the Repository and the Version ones, which
constitute the Product Representation Space.

The operations that can be applied are domain

dependent. Therefore, the Specification Space allows
specifying the building blocks and operations of
particular engineering design domains. In the
context of the OntoTracED framework, this space
has allowed specifying the ontological engineering
domain model.

The Ontological Engineering Domain Model
component can represent and capture particular
ontology development projects, based on building-
blocks that define the products obtained, as well as
the activities carried out during such process. This
representation includes those modeling elements that
are most commonly used in the methodologies that
nowadays guide ontology development projects.

There are several methodologies for building
ontologies and no one is yet emerging as a clear
reference. In spite of their diversity, most
methodologies share structural similarities and have
comparable modeling elements. In this proposal, the
components that are considered to be part of the
proposed domain model are shown in Table 1.

Additionally, in order to show how this proposal
may be applied when ontologists want to stick to
specific methodologies and/or approaches, the
ontological categories proposed by the Unified
Foundational Ontology (UFO) (Guizzardi, 2005)
have been added to the Ontological Engineering
Domain Model. UFO is a language to build domain
ontologies that preserves the ontological
commitment of the domain being modeled. It
distinguishes between conceptual entities called
universals and individuals. In particular, due to
space limitations, this work focuses on the
subsumption hierarchy of sortal universals. Table 1
presents the meanings of the concrete object types
Kind, SubKind, Phase and Role, which are the leave
classes of the mentioned hierarchy. UFO is
considered as a Pattern Language; i.e., in this
language the choice of a particular design object
type causes a whole pattern to be manifested
(Guizzardi y colab., 2011). For example, a phase is
always defined as part of a partition; a role is always
played in relation to another sortal. So, the adopted
domain model also includes the following design
patterns proposed by UFO: SubKind Partition,
PhasePartition and RolePattern (Guizzardi y colab.,
2011).

The OEDM also defines the operations required
to capture and manage the included design objects.
Some of these operations are shown in Table 1.

TracOED is the computational environment that
implements the conceptual model and incorporates
the OEDM. It is based on TracED (Roldán y colab.,
2010), which was conceived for capturing and

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

420

Table 1: Ontological Engineering Design Domain.

Design objects

Competency
question

A Competency question plays the role of a type of requirement specification against which a given ontology can
be evaluated.

Concept A Concept represents a collection of entities that share a common set of characteristics.

Relation A Relation symbolizes interrelations between concepts.

Individual An Individual is an entity that belongs to a particular concept.

Assumption and
Constraint

They represent natural language expressions that restrict the interpretation of concepts and relationships.

Formal
Competency
Question

A Formal Competency Question is a specification in a formal language of an informal competency question that
was initially identified.

Axiom and rule
They represent formal expressions that allow ontologists to (i) explicitly define the semantics of an ontological
concept by imposing constraints on its value and/or its interactions with other concepts; (ii) verify the consistency
of the knowledge represented in the ontology, and/or (iii) infer new knowledge from the explicitly stated facts

UFO Ontological Categories (Adapted from (Guizzardi, 2005)

Kind
A Kind represents rigid, relationally independent object universals that supply a principle of identity for their
instances. Examples include instances of Natural Kinds (such as Person, Dog, Tree) and of artifacts (Chair, Car,
Television).

SubKind
A SubKind is a rigid, relationally independent restriction of a substance sortal that carries the principle of identity
supplied by it. An example could be the SubKind MalePerson of the Kind Person.

Phase
A Phase represents anti-rigid and relationally independent universals defined as part of a partition of a sortal. For
instance, [Child, Teenager, Adult] is a partition of the kind Person. A Phase is always defined as part of a partition.

Role
A Role represents an anti-rigid and relationally dependent universal. For instance, the role student is played by an
instance of the kind Person.

Proposed Operations

Basic Pattern related
addKind
addSubKind
addPhase
addRole
toKind
toSubKind

toRole
toPhase
remKind
remSubKind
remPhase
remRole

addConcept
addRelation
addIndividual
addICQ
addFCQ
formalizeICQ

addConstraint
addAssumption
remConcept
remRelation
remFCQ
remICQ

addPhasePartition
addRolePattern
addSubkindPartition
remPhasePartition
remRolePattern
remSubkindPartition

addPhase2Partition
addSubkind2Partition
remPhaseFromPartition
remRoleFromPartition
remSubkindFromPartition

tracing engineering designs.
The major components of TracOED are the

Domain Editor and Versions Manager. By using the
Domain Editor, the OEDM has been specified in
TracOED. Furthermore, the editor allows this model
to be further specialized, if required. On the other
hand, the Versions Manager enables the execution
of each ontology development project, and captures
its evolution based on operations that are
accomplished and the instantiation of those design
object types that have been specified in the
Ontological Engineering Domain Model by means
of the Domain Editor tool.

The Versions Manager enables the execution of
a design project. When a new design project is
created, an existing design domain has to be
selected. Therefore, the evolution of a project is
based on the execution of domain-specific
operations and the instantiation of the design object

types pertaining to the selected design domain.
Additionally, TracOED includes in its Versions
Manager features that allow to keep information
about: (i) predecessor and successor model versions
(if any exists) of each model version; (ii) history
links which save traces of the applied operation
sequences (basic activities), which have originated
new model versions; (iii) references to the set of
object versions that arose as the result of each
operation execution. Thus, it is possible to
reconstruct the history of a given model version by
beginning the trace from the initial operation. Fig. 2
presents the Version Manager History Window,
which depicts all the operations that have been
applied to evolve from an initial model version to
the current one. It is possible to see detailed data
about each applied operation. For instance, this
panel presents information about the time point at
which a given operation was applied, who the

ONTOTracED:�A�Framework�to�Capture�and�Trace�Ontology�Development�Processes

421

TracOED - Version Manager

Figure 2: TracOED history window.

involved actor was, and the identification of the
successor object versions. In this example, the
history window shows that an applyRolePattern
operation was executed at ModelVersion2 by
mvegetti at time 11:40 -14/03/2012.

It is important to remark that TracOED was
developed with the aim of proving the proposed
ideas and materializing the ONTOTracED
framework. Therefore, this tool is not meant to
replace traditional support environments currently
used in the ontology domain. On the contrary, in the
future TracOED should be integrated with existing
ontology development tools, such as the OntoUML
editor. In this way, TracOED would perform the
capture of all the applied operations by working in a
background mode, without being noticed by
ontologists.

3 CONCLUSIONS

This contribution presents ONTOTracED, which is a
framework aimed at capturing and tracing ontology
development processes. The framework is based on
a conceptual model of generic engineering design
projects, an Ontological Engineering Domain
Model, which specifies design objects and
operations that are specific to ontology development
processes, and a computational environment, named
TracOED, which implements these models. The
capabilities of TracOED allow the ontologist to keep
track of the ontology development process along
with its associated products, to store its history,
allowing for the future retrieval of knowledge and
experience. The proposal is flexible enough to be
used in the development of ontologies that rely on

particular methodologies and/or approaches, or that
address particular fields. If needed, the TracOED
domain editor can be used to extend the proposed
Ontological Engineering Domain Model or to create
a new one.

To further validate the proposal, future work will
be oriented to integrate TracOED with existing
ontology development tools, like Protégé, the Neon
Toolkit or the ontoUML editor, in such a way that it
execution takes place in a background mode.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial
support received from ANPCyT (PAE-PICT-2315
and PAE-PICT-51), CONICET (PIP 2754), UTN
(PID 25-O117 and PID 25-0118), and UNL (CAI+D
R4 N12).

REFERENCES

Guizzardi, G. 2005. Ontological Foundations for
Structural Conceptual Models. PhD with Cum Laude,
Telematica Instituut Fundamental Research Series,
015, Enschede, the Netherlands.

Guizzardi, G., Pinheiro das Graça, A., Guizzardi, R. 2011.
Design Patterns and Inductive Modelling Rules to
Support the Construction of Ontologically Well-
Founded Conceptual Models in OntoUML. In: 3rd In-
ternational Workshop on Ontology-Driven Informa-
tion Systems (ODISE 2011).

Roldán M. L., Gonnet S., Leone H. 2010. TracED: A Tool
for Capturing and Tracing Engineering Design
Processes. Advances in Engineering Software. 41,
1087-1109.

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

422

