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Abstract: The highly variable nature of neural firing has been recognized by diverse empirical and analytic findings. 
Here, the underlying morphology of neural firing is shown to be governed by a bilinear map, prescribing 
eight types of neuronal global attractors and their points of local bifurcation. While synaptic learning gives 
rise to irregular firing, membrane memory is shown to guarantee that, under the same external activation, 
learning and retrieval end at the same global attractor. Forced and spontaneous changes in membrane 
conductance are shown to cause sliding of the global attractors, switching them from passive to active state 
and vice versa, and creating secondary firing modes. Selective activation of interacting neurons is shown to 
create a shunting effect, yielding combinatorial retrieval, concealment and revelation of stored global 
attractors. The utility of the global attractors is explained not only by their individual dynamic 
characteristics, but also by their high power of combinatorial expression. 

1 INTRODUCTION 

Empirical and analytic evidence show high dynamic 
variability of neuronal firing. Individual neurons of 
the same type are often capable of producing 
different firing modes, switching from one to 
another in a seemingly unpredictable manner. The 
transition from one dynamic mode to another has 
been called local bifurcation when caused by a 
change in parameter values, and global bifurcation 
when caused by the landscape of the underlying map 
under fixed parameter values (Blanchard et al., 
2006). Variation in synaptic efficacy, widely 
associated with learning and memory (Dudai, 1989), 
has been shown to play a key role in the disorderly 
dynamics of neural firing (Baram, 2012). While 
almost all theoretical and experimental studies make 
the implicit assumption that synaptic efficacy is both 
necessary and sufficient to account for learning and 
memory, it has been suggested that learning and 
memory in neural networks result from an ongoing 
interplay between changes in synaptic efficacy and 
intrinsic membrane properties (Marder et al., 1996). 
It seems equally plausible that changes in membrane 
efficacy play a role in shaping the firing dynamics.  

Employing widely accepted models of neuronal 
firing arising from the conductance paradigm 
(Hodgkin and Huxley, 1952), we show that the 
firing rate process is governed by a bilinear discrete 

iteration map. The map is shown to have a singular 
value that defines the local bifurcation points 
between eight global attractor types, comprising the 
variable landscape of neural firing activity. The 
global attractor types are grouped by elementary 
firing modes into six classes, divided into two 
categories: chaotic attractor (mixed), square attractor 
(periodic), point attractor (constant) and attractor at 
infinity (saturated), associated with positive 
activation, form the active attractor category, while 
attractor at zero (silent), and bipolar attractor at zero 
and infinity (binary), associated with positive 
activation, form the passive attractor category. 
Changes in membrane conductance are shown to 
cause sliding of the global attractors, modifying their 
dynamic properties. In particular, sliding may 
transform active attractors into passive ones 
(concealment), and passive attractors into active 
ones (revelation), and vice versa. In the case of time-
dependent conductance variation (Connor and 
Stevens, 1971), such transformation may in itself 
become a secondary dynamic mode. Membrane 
memory, manifested by invariance to changes in 
lateral feedback activity in the absence of external 
intervention, guarantees that neuronal retrieval will 
produce a stored global attractor. Selective 
activation of interacting neurons is shown to create a 
shunting effect, producing globally stable 
combinatorial patterns of stored, concealed and 
revealed neuronal global attractors. 
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2 GLOBAL ATTRACTORS OF 
NEURONAL FIRING 

The firing dynamics of interacting neurons have 
been formulated as (Gerstner, 1995) 
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where ( )i t is the membrane current, or the firing 

rate, of the i 'th of n  neurons in a neural network, 

i
 is a time constant, if is the neuronal kernel, 

iω is 

the synaptic weights vector at the input to the i ’th 
neuron, ( )i t is a function representing the membrane 

speed of response to the input current, ( )tυ is the 

vector of firing rates corresponding to the pre-
neurons, and ( )i t is the equilibrium potential, or the 

conductance threshold, which may also encompass 
external activation and may generally take positive 
or negative values (Dayan and Abbott, 2001). 
Employing the exponential kernel /( ) it

i t e   , 

which incorporates the time constant i  of the 

membrane potential response to an input pulse, a 
discrete-time version of (1) is given by 
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The conductance-based rectification neuronal 

kernel
i

f , first derived from empirical data (Granit 

et al., 1963, Connor and Stevens, 1971), then 
formulated mathematically (Carandini and Ferster, 
2000), and widely assumed in firing-rate models 
(Dayan and Abbott, 2001), is 
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As lateral feedback from other neurons can be 
expected to be slower than self-feedback, the 
ergodic nature of neural firing (Herveet al., 1990) 
implies that (2) can be written as 
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where  is the ensemble average of the neuronal 
firing rate processes. 

The map (4) divides into two parts. The first, 
corresponding to the domain 
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The second, corresponding to the 
domain
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where 
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is the total activation. Clearly, the 
line  1( ) ( 1)fi ik k    has a positive slope smaller 

than 1, hence, it intersects the diagonal 
( ) ( 1)k k   only at the origin. On the other 

hand, when the line  2( ) ( 1)fi ik k    intersects 

the diagonal, it will be at 
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The latter is, then, the only possible fixed point of 
the map beside the origin. The dynamic nature of the 
map is determined by its singular values. The 
singular value of  2 ( 1)f i k   is its slope at 
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is 
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An attractor (Abrahamet al., 1997) is a subset A of 
the state space, which has a neighborhood,  B A , 

called a basin, such that any trajectory originating 
from  B A stays in it, and no proper subset of A has 

the same property. A global attractor is an attractor 
whose basin is the entire state space. The domain of 

,i i iu  divides into eight subdomains, each defining 

a type of global attractor. Positive total activation 
( 0iu  ) defines the active global attractors: 

(a) Chaotic attractor for , 1 2
ii i    , yielding 

1i    

(b) Square attractor at for , 1 2
ii i    , yielding 

1i    
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(c) Alternate point attractor for 

,1 2 1
i ii i       , yielding 1 0i     

(d) 2f -dominated monotone point attractor for 

,1 1
i i i    , yielding 0 1i   

(e) Attractor at infinity for
, 1i i  , yielding 1i   

while non-positive total activation ( 0iu  ) 

defines the passive global attractors: 

(f) 1f -dominated attractor at zero for 0iu   and 

, 0i i    

(g) Bi-modal (piece-wise 
1f and 

2f - dominated) 

attractor at zero for 0iu   and ,0 1i i  , 

yielding  1 / 1
i i i       

(h) Bi-polar attractor at zero and infinity for 0iu   

and 
, 1i i  , yielding 1i   

A diagram of the eight attractor types is posted at 
http://www.cs.technion.ac.il/~baram/Attractors.pdf  

Case (a) represents a so-called homoclinic orbit (Ott, 
1994) which, initiating at a neighborhood of p , first 

diverges, then snaps back to p , making the latter a 

snap-back repeller (Marotto, 1978, 2005). It has 
been shown for invertible smooth maps (Marotto, 
1978, 2005) and extended to noninvertible piece-
wise smooth maps (Gardini and Tramontana, 2011), 
that the existence of a snap-back repeller is a 
sufficient condition for chaotic behavior in the Li-
Yorke sense (Li andYorke, 1975).  
Case (b) represents a period-2 oscillation. A 
trajectory initiating at any point in the state space 
will converge to such oscillation within the interior 
of a square, which is, then, an attractor (it might be 
noted that, in general, a free oscillator, such as an 
undamped pendulum, is not a cyclic attractor, as its 
limit orbits, depending on initial conditions, are not 
isolated). 
Case (c) represents a point attractor at p , resulting in 

periodic convergence (increasing ( )k step followed 

by decreasing ( )k  step).  

Case (d) also represents a point attractor at p , but 

the mode of convergence, dominated by
2f , is 

monotonic.  
Case (e) represents an attractor at infinity, which, in 
reality, will be rectified at the maximal sustainable 
physical firing limit, defining saturation.  
Case (f) represents the passive, silent versions of the 
active attractors (a-c).  

Case (g) represents the passive, silent, bimodal 
version of the active attractor (d).  
Case (h) represents a bipolar attractor at zero and 
infinity, which is the passive version of case (e). The 
final destination of a trajectory of case (h) at zero or 
infinity (or, rather, the saturation value) will be 
determined by the initial condition, with p the point 

of separation between the two basins. 

The attractors (a-h), each dominating the entire 
state space, are global. As the total activation u is 

represented by the point of contact of 2f with the 

coordinate ( )k , a change in u will have a sliding 

effect, moving 2f , and its point of intersection, p , 

with the diagonal ( ) ( 1)k k   , up or down in 

parallel to the coordinate ( )k . This will change the 

parameters of the global attractor, but, as long as 
u does not change in sign, not its dynamic nature. 
As u is changed from positive to non-positive value, 
the corresponding active attractor will turn into a 
passive attractor, and, in the case of attractor at zero, 
may be regarded as concealed in this state. 
Conversely, as u is changed from non-positive to 
positive value, the active state of the attractor is 
revealed as one of the active attractor types. 
Moreover, the sliding effect of time-dependence 
conductance (Connor and Stevens, 1971), such as 
post-inhibitory rebound (Perkel and Mulloney, 
1974), can produce secondary firing modes, such as 
oscillatory bursting, by switching elementary firing 
modes, such as saturation, from passive to active 
state and vice versa. 

Combining the point attractor types, (c,d), into 
one, and the attractor at zero types, (f,g), into one, 
the group of eight global attractor types may be 
rearranged into a group of six global attractor 
classes, associated with different dynamic modes: 
chaotic attractor (mixed), square attractor 
(oscillatory), point attractor (constant), attractor at 
zero (silent), attractor at infinity (saturated) and 
bipolar attractor at zero and infinity (binary). We 
call it the elementary code of global attractors.  

Our analysis shows that the domain of the 
singular value

i is divided into subdomains 

corresponding to different global attractor types. As 
the analysis involves statistical averaging 
(manifested by

i , representing the ensemble 

average of lateral activity), the boundaries between 
the

i - subdomains may not precisely match the 

empirical transition (or local bifurcation) points 
between the firing modes. Yet, these analytic 
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bifurcation points seem to be highly valuable. For 
instance, as our analysis implies the arousal of a 
snap-back repeler when 1i   , the latter may be 

regarded as an analytic indicator of chaos. Such an 
indicator seems highly desirable, in view of the often 
reported inadequacy (Sprott, 2003) of empirical 
measure of chaos, such as the first Lyapunov 
exponent (Wright, 1984). In neighborhoods of the 

i -bifurcation points one might expect to find 

combined, mixed and transient modes. It has been 
suggested that chaotic neural firing gives rise to 
multiplexed oscillatory modes (Baram, 2012).  

3 COMBINATORIAL 
RETRIEVAL BY 
INTERACTING NEURONS 

The learning process is characterized by variation of 
the synaptic weights. Mathematical manifestations 
of the Hebbian learning paradigm introduce products 
of firing rates into the dynamic equations involved, 
turning them into essentially polynomial maps, 
prone to noninvertibility and chaos (Baram, 2012). 
While such properties represent a high degree of 
irregularity, it has been shown that the behavior of 
the synaptic weights in certain manifestations of 
Hebbian learning (Oja, 1982; Bienenstocket al., 
1982) is highly regular. In particular, it has been 
shown that, under bounding conditions on the inputs, 
the synaptic weights under the BCM rule converge 
to final values (Cooper et al., 2004). Moreover, it 
has been shown that, in the BCM framework, the 
neuronal fixed points are not altered by lateral 
connectivity if the neuronal kernel is invertible and 
differentiable (Castellani et al., 1999). These 
properties are shared by linear and sigmoidal kernels 
but not by the rectification kernel (4). Yet, the bi-
linear map associated with the rectification kernel 
implies that the fixed point p associated with 

2f is 

not altered by lateral connectivity, as long as the 
nature of the map is not changed (a change may 
eliminate p altogether). This property may be 

defined as local invariance of the global attractor to 
lateral activity. Employing the index  to denote 
conductance and activation values during learning 
and the index r to denote conductance and 
activation values during retrieval, the equality 

, ,i r i  
 

coupled with the local invariance of the global 
attractor to lateral activity, will guarantee that, 

without external intervention, the retrieved global 
attractor will be the same as the stored one. As the 

equilibrium threshold, i , is widely assumed to be 

constant (Dayan and Abbott, 2001), the local 
invariance of the global attractor to lateral activity 
may be viewed as membrane memory. 

The nature of the map, hence, the global 
attractor, can only change if the sign of 

iu changes. 

It follows that changing the lateral activity, 
i , has 

the same effect on the nature of the map as changing 
the conductance equilibrium threshold, 

i . As noted 

before, the definition of 
i can be changed to include 

external activation. The nature of the map, or the 
global attractor, can be controlled, then, by external 
activation, or by some internal mechanism, 
enforcing 

i i   for a positive total activation, 

hence, an active attractor, or 
i i   for a negative 

total activation, hence, a passive attractor. In 
particular, the state

i i   will enforce a strict 

attractor at zero (case f), hence, silence, which may 
be regarded as the ground state of the neuron.  

External activation of the neuron at hand, or of 
laterally connected neurons, can, by the sliding 
effect, change the nature of the map, and, with it, the 
very existence of the fixed point p . Specifically, the 

transition of any of the active attractors (a-c) to the 
passive attractor (f) and of the active attractor (d) to 
the passive attractor (g) will eliminate the fixed 
point associated with the respective attractor of any 
of the types (a-d). The transition of the active 
attractor (e) to the passive attractor (h) will give rise 
to the fixed point p in (h). On the other hand, the 

transition from the passive attractor (f) to any of the 
active attractors (a-c) will give rise to the 
corresponding fixed point p , as will the transition 

from the passive attractor (g) to the active attractor 
(e), while the transition from the passive attractor (g) 
to the active attractor (e) will eliminate the fixed 
point p in (h). The result will be concealment of a 

stored active global attractor (if , 0iu   

and , 0i ru  ), or revelation of the active state of a 

stored passive global attractor (if 

, 0iu  and , 0i ru  ). 

Applying a network-wide activation pattern, by 
which some of the neurons receive positive external 
activation and the others non-positive external 
activation, will produce retrieval and concealment of 
stored active global attractors, and revelation of the 
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active state of stored passive global attractors. For 
instance, in learning, a neuron i may store a global 
attractor of one of the active types (a-c), which, due 
to the activation level, may slide and become a 
passive global attractor of type (f), concealing the 
nature of the active state of the stored attractor. On 
the other hand, in selective retrieval, inhibitory 
effects of the lateral feedback activity may be 
eliminated by negative activation of an interacting 
neuron j , causing an upward slide and revelation of 

the active state of the global attractor stored in 
neuron i . This shunting effect allows for the creation 
of a large variety of network-wide patterns from the 
stored active and passive neuronal patterns. A group 
of n  neurons can retrieve, by choice of neuron 
activations, any permutation of neuronal stored 
pattern, and their complimentary active or passive 
states. Assuming that neural information is 
represented by firing mode, the expressive power of 
a group of n  neurons employing the elementary 
code of global attractors alone is the retrieval 
capacity of 6n globally stable patterns, which may 
be written as the set 

nM A (11)

where A is the set of firing modes associated with the 
global attractor types and 1n nA A A  , with   the 
Cartesian product. In general, A includes not only the 
elementary firing modes but also the secondary 
modes comprising combination, mixture and 
multiplexity of elementary modes. 

4 CONCLUSIONS 

The neuronal global attractors can be directly related 
to empirically observed firing modes. For instance, 
seemingly random spiking can be represented by a 
chaotic attractor, tonic spiking by a point attractor, 
oscillatory spiking by a square attractor, and 
bursting by saturation, representing an attractor at 

infinity. The singularity parameter i defining local 

bifurcation points between global attractors and their 
corresponding firing modes, constitutes a valuable 
tool for dynamic analysis of neural firing. For 
instance, the arousal of chaos does not appear to 
have been analytically identified with specific 
parameter values. The empirical manifestation of the 
first Lyapunov exponential (Wright, 1984) has been 
known to produce highly unreliable results, even 
when applied to data generated by simulating low 
dimensional models (Sprott, 2003). We have shown 

that, for bilinear maps, and, specifically, the 
important class of such maps associated with 

neuronal firing, the singular value 1i    provides, 

in some statistical sense, an analytic characterization 
of chaotic arousal. We have seen that the 
neighborhoods of points of local bifurcation, 
represented by certain values of the singularity 

parameter i , define regions of secondary firing 

modes, comprising combination, mixture and 
temporal multiplexing of elementary modes. 
Secondary modes, such as periodic bursting, may 
also arise from the sliding effect caused by time-
dependent conductance (Connor and Stevens, 1971), 
such as post-inhibitory rebound (Perkel and 
Mulloney, 1974), switching elementary firing 
modes, such as saturation, from passive to active 
state and vice versa. While there seems to be a clear 
relationship between certain firing modes and neural 
functions (e.g., oscillation, or periodic bursting, 
seem related to heartbeat, walking and chewing) the 
utility of others is not as commonly recognized or 
understood. The chaotic trajectories of learning 
(Baram, 2012), wandering over a wide range in the 
state space, may serve the purpose of rapid search, 
or formation, of a global attractor of memory. A 
chaotic global attractor, mixing different firing rates 
in a single sequence, may provide temporal 
multiplexing for inter-neural communication 
purposes. The maximum-energy response of a 
neuron storing a bi-polar attractor, aroused by initial 
condition at a threshold determined by memory, may 
represent instinct. A global attractor at zero, 
representing silence, may serve the purpose not only 
of neural rest, but also a common initial condition 
for combinatorial learning and retrieval. The 
combinatorial emergence of active and passive 
global attractors may give rise not only to stored 
subpatterns, but also to previously un-aroused 
patterns, representing innovation.  
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