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Abstract: Adjustment of geometry and material parameters is an important step in the design of microwave devices 

and circuits. Nowadays, it is typically performed using high-fidelity electromagnetic (EM) simulations, 

which might be a challenging and time consuming process because accurate EM simulations are 

computationally expensive. In particular, design automation by employing an EM solver in an numerical 

optimization algorithm may be prohibitive. Recently, adjoint sensitivity techniques become available in 

commercial EM simulation software packages. This makes it possible to speed up the EM-driven design 

optimization process either by utilizing the sensitivity information in conventional, gradient-based 

algorithms or by combining it with surrogate-based approaches. In this paper, we review several recent 

methods and algorithms for microwave design optimization using adjoint sensitivity. We discuss advantages 

and disadvantages of these techniques and illustrate them through numerical examples. 

1 INTRODUCTION 

Contemporary microwave engineering heavily relies on 

electromagnetic (EM) simulation. EM simulation is not 

only used for design verification but in the design 

process itself, i.e., to adjust geometry and/or material 

parameters of the structure under consideration. 

Unfortunately, accurate EM simulation is CPU 

intensive. A way to speed it up is parallelization 

(OpenMP, MPI, GPU) or distributed computing. 

However, the bottleneck in EM-simulation-based 

optimization remains to be the large number of EM 

simulations required by conventional optimization 

algorithms. Another problem is related to the numerical 

noise present in EM-based objective functions, due to 

which local search methods often fail to find the 

optimal design. While many commercial EM 

simulation packages have implemented basic design 

automation methods (mostly conventional gradient-

based and derivative-free approaches such as Quasi-

Newton or Nelder-Mead algorithms, or population-

based algorithms such as genetic algorithms), a 

common practice is still to obtain satisfactory design 

using tedious and time-consuming parameter sweeps 

involving numerous full-wave EM simulations 

combined with engineering experience. 

Efficient simulation-driven design can be 

performed using surrogate based optimization 

(SBO). The most successful SBO techniques in 

microwave engineering include space mapping (SM) 

(Bandler et al., 2004); (Koziel et al., 2008a); (Amari 

et al., 2006), simulation-based tuning (Swanson and 

Macchiarella, 2007); (Rautio, 2008), manifold 

mapping (MM) (Echeverria and Hemker, 2005), as 

well as shape-preserving response prediction 

(Koziel, 2010). While the SBO techniques can be 

extremely efficient, they are not straightforward to 

automate to make them reliable “push-button”-like 

approaches that could work for a variety of 

microwave problems. Their use typically requires 

some experience (Koziel et al., 2008a) and most of 

them are not globally convergent so that whether a 

satisfactory design is obtained or not may depend on 

a proper implementation, some parameter tuning, as 

well as certain knowledge particularly while 

constructing the surrogate model. 

Another approach to improve efficiency of 

simulation-driven design is by using adjoint sensitivity 

that allows obtaining derivative information of the 

system of interest with little or no extra computational 

cost (Nair and Webb, 2003); (El Sabbagh et al., 2006); 

(Kiziltas et al., 2003); (Uchida et al., 2009); (Bakr et 

al., 2011). However, until recently, adjoint sensitivities 

were not commercially available, which means that 

they were not available for most engineers and 

designers. Situation changed a few years ago when 
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adjoint sensitivities were implemented for instance in 

CST Microwave Studio (CST, 2011). 

In this paper, we review several recent 

techniques that exploit adjoint sensivity in order to 

speed up the EM-simulation-driven microwave 

design process. These techniques include gradient-

based search methods embedded in trust region 

framework, as well as surrogate-based methods, 

specifically space mapping (Koziel et al., 2008a) and 

manifold mapping (Echeverria and Hemker, 2005), 

enhanced by adjoint sensitivity in order to improve 

their convergence properties and reduce the 

computational cost of surrogate model optimization 

step. The efficiency of the presented approaches is 

demonstrated using several microwave design cases. 

A performance comparison with other optimization 

techniques, including Matlab’s fminimax (Matlab, 

2008) and a Quasi-Newton type of algorithm 

(Nocedal and Wright, 2000) is also provided. 

2 DESIGN OPTIMIZATION WITH 

TRUST-REGION AND ADJOINT 

SENSITIVITIES 

2.1 Design Problem Formulation 

The microwave design task can be formulated as a 

nonlinear minimization problem 
 

 * arg min ( )f fU
x

x R x
 

(1) 

 

where Rf  R
m
 denotes the response vector of a high-

fidelity (or fine) model of the microwave structure 

of interest evaluated through expensive high-fidelity 

EM simulation; x  R
n
 is a vector of designable 

variables. Typically, these are geometry and/or 

material parameters. The response Rf(x) might be, 

e.g., the modulus of the transmission coefficient |S21| 

evaluated at m different frequencies. In some cases, 

Rf may consists of several vectors representing, e.g., 

filter reflection and transmission coefficients, or an 

antenna reflection, gain, etc. U is a given scalar 

merit function, e.g., a norm, or a minimax function 

with upper and lower specifications. U is formulated 

so that a better design corresponds to a smaller value 

of U. xf
*
 is the optimal design to be determined. 

Direct solution of (1) using conventional 

algorithm may be prohibitive because it usually 

requires a large number of fine model evaluations, 

each being computationally expensive by itself. For 

many structures, the evaluation time may be as long 

as a few hours. 

2.2 Trust-Region-Based Optimization 
with Adjoint Sensitivity 

The algorithm proposed in (Koziel et al., 2012a) 

uses the 1st-order model (or the surrogate) S(x) of 

the high-fidelity model Rf. S(i)(x) is nothing else but 

a linear function being a first-order Taylor expansion 

of Rf at x(i) of the form: 

( ) ( ) ( ) ( )

( ) ( ) ( )

( , , ( ), ( ))

( ) ( ) ( )

f

f

i i i i

f

i i i

f

J

J



   

R

R

S x x R x x

R x x x x
 

(2) 

 

JRf(x) is an estimated Jacobian of Rf at x, 

JRf(x) = [∂Rfi/∂xj]i=1,…,m; j=1,…,n, obtained using adjoint 

sensitivity (if available) or finite differentiation 

∂Rfi/∂xj [Rfi([x1 … xj+dj … xn]
T
) – Rfi(x)]/dj  for all 

the other parameters. 

The optimization algorithm framework is the 

following (r0 is the initial trust region radius) 

1. i = 0; r = r0; 

2. Optimize a linear model: xtmp = argmin{||x – x
(i)

|| 

≤ r : S
(i)

(x,x
(i)

,Rf(x
(i)

),JF(x
(i)

))}; 

3. Calculate gain ratio:  = [U(Rf(x
(i)

) – 

U(Rf(xtmp))]/[U(Rf(x
(i)

) – U(S(xtmp))]; 

4. If U(Rf(xtmp)) < U(Rf(x
(i)

)) then x
(i+1)

 = xtmp;  

i = i + 1; 

5. Update r:  < rdecr then r = r/mdecr; else if  > rincr 

then r = r·mincr; 

6. If termination condition is not satisfied, go to 2; 

else, END. 

Here, rdecr and rincr denote threshold values for 

decreasing or increasing the trust region radius by 

the corresponding factors mdecr and mincr. The 

algorithm is terminated if either of the following 

conditions is satisfied: r < r, nF < nFmax, ||x
(i)

 – x
(i–1)

|| 

< x, or ||U(Rf(x
(i)

)) – U(Rf(x
(i–1)

))|| < F, where r, x, 

F, nFmax, are user defined parameters, whereas nF is 

the number of high-fidelity model evaluations.  

The response Jacobian is recalculated after each 

successful iteration (i.e., when U(Rf(xtmp)) < 

U(Rf(x
(i)

))) for those variables where adjoint 

sensitivity is available. The finite-difference 

sensitivity is not recalculated as long as the new 

iteration is successful in order to reduce the number 

of high fidelity function evaluations. 

The above algorithm is a local-search method. 

Assuming that the exact sensitivity of Rf at x(i) is 

used to define the first-order model S(i), S(i) 

satisfies both zero- and first-order consistency 

conditions with the high-fidelity model Rf, i.e., 

S(i)(x(i)) = Rf(x(i)) and JS(x(i)) = JRf(x(i)). This is 

sufficient for the global convergence of the 
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algorithm at least to a local optimum of the high-

fidelity model, provided that Rf is sufficiently 

smooth (Alexandrov et al., 1998). In practice, the 

high-fidelity model is noisy, nevertheless, the 

performance of the algorithm is quite remarkable 

(Koziel et al., 2012a). 

Responses obtained using EM solvers are 

inherently noisy (except, perhaps, when the mesh 

topology is fixed). The major reason is that the mesh 

topology is a discontinuous function of the design 

variables (or, more general, of geometry of the 

structure under considerations). The minor reason is 

that the evaluation process itself is noisy (e.g., due to 

finite tolerances used to terminate the EM 

simulation). This poses some problems for the 

optimization process. In particular, finite 

differentiation with conventional small increments 

(e.g., 10
–8

) will not work: the value of the derivative 

obtained this way will be completely unreliable, 

regardless of the model discretization density. The 

reason is that the change of the response due to the 

small perturbation of any given design variable will 

be, most likely, much smaller than the amplitude of 

the numerical noise. For noisy functions, better and 

more consistent gradient estimation can be obtained 

using larger finite differentiation step sizes. Based 

on the above considerations, our algorithm uses 

relatively large steps for finite differentiation, 

typically, 10
–3

 or larger (depending on the absolute 

values of the design variables). 

2.3 Example: Design of a Waveguide 
Bandpass Filter 

Consider the waveguide filter shown in Fig. 1. 

Design variables are [h1 h2 h3 s1 s2 s3 s4 w1 w2 w3 

w4]
T
. Design specifications are |S11|  –20 dB for 

667.5 MHz    675 MHz. The initial design is x
(0)

 

= [163.5 172 165.3 160.5 160.5 160.5 130.5 –60.5 –

29.5 –28.5 –27.5]
T
 (minimax specification error 

+19.2 dB). Optimization results are shown in Table 

1. Figure 2 shows the filter responses at the initial 

design and at the optimized design found by the 

algorithm of Section 2.2. In this case, the proposed 

algorithm performs substantially better than the 

methods used for comparison both with respect to 

the computational cost of the design process and the 

quality of the final design. It should be noted that the 

computational complexity of our algorithm using 

finite-differences derivatives is comparable to that of 

Matlab’s fminimax, even though the latter exploits 

adjoint sensitivity. 

3 SURROGATE-BASED 

OPTIMIZATION WITH 

ADJOINT SENSITIVITY 

3.1 Surrogate-based Optimization 

A generic surrogate-based optimization (SBO) 

algorithm (Koziel and Yang, 2011); (Forrester and 

Keane, 2009) generates a sequence of approximate 

solutions to (1), x
(i)

, as follows 
 

 ( 1) ( )arg min ( )i i

sU 
x

x R x  (3) 

 

 

Figure 1: Geometry of a waveguide bandpass filter. 

(a)  
 

(b)  

Figure 2: Waveguide bandpass filter: (a) responses at the 

initial design x(0); (b) responses at the optimized design 

found by the proposed algorithm using mixed adjoint and 

finite-difference sensitivities. 
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Table 1: Optimization results for the waveguide bandpass 

filter. 

Optimization Algorithm 

Final 

Specification 

Error 

Number of 

Function 

Evaluations 

Quasi-Newton optimizer +5.3 dB 1454 

Matlab’s fminimax +1.2 dB 88 

This work 

(Algorithm of 

Section 2) 

Adjoint sensitivity –2.2 dB 16 

Mixed adjoint / 

finite-difference 

sensitivity* 

–1.3 dB 46 

Finite-difference 

sensitivity 
–0.4 dB 107 

* Adjoint sensitivity for the first seven variables, finite-

differences for the remaining four variables. 

 

where Rs
(i)

 is the surrogate model at iteration i. Here, 

x
(0)

 is the initial design. Rs
(i)

 is assumed to be a 

computationally cheap and sufficiently reliable 

representation of Rf, particularly in the neighborhood 

of x
(i)

. Under these assumptions, the algorithm (3) is 

likely to produce a sequence of designs that quickly 

approach xf
*
. Usually, Rf is only evaluated once per 

iteration (at every new design x
(i+1)

) for verification 

purposes and to obtain the data necessary to update 

the surrogate model. Because of the low 

computational cost of the surrogate model, its 

optimization cost can usually be neglected and the 

total optimization cost is determined by the 

evaluation of Rf. The key point here is that the 

number of evaluations of Rf for a well performing 

surrogate-based algorithm is substantially smaller 

than for most conventional optimization methods. 

3.2 Robustness of SBO Algorithms 

Robustness of the surrogate-based optimization 

process (3) depends on the quality of the surrogate 

model Rs
(i)

. In general, in order to ensure 

convergence of the algorithm (3) to at least local 

optimum of the high-fidelity model, the first-order 

consistency conditions have to be met (Alexandrov 

and Lewis, 2001), i.e., one has to have Rs
(i)

(x
(i)

) = 

Rf(x
(i)

) and JRs
(i)(x

(i)
) = JRf(x

(i)
), where J stands for the 

Jacobian of the respective model. Also, the process (3) 

has to be embedded in the trust-region (TR) 

framework (Conn et al., 2000), i.e., we have  
 

( ) ( )

( 1) ( )

:|| ||
arg min ( ( ))

i i

i i

sU




 


x x x
x R x

 
(4) 

 

where the TR radius (i)
 is updated using classical 

rules (Conn et al., 2000). In general, the SBO 

algorithm (4) can be successfully utilized without 

satisfying the aforementioned conditions, see, e.g. 

(Bandler et al., 2004); (Koziel et al., 2008a). 

However, in these cases, the quality of the 

underlying low-fidelity model may be critical for 

performance (including the algorithm convergence) 

(Koziel et al., 2008b) and accurate location of the 

optimum design may not be possible. 

Availability of cheap adjoint sensitivity (Nair 

and Webb, 2003); (CST, 2011) makes it possible to 

satisfy consistency conditions in a easy way (without 

excessive computational cost by using, e.g., finite 

differentiation). A few options exploiting this 

possibility are discussed in the next section. 

3.3 SBO with First-order Taylor Model 
and Trust Regions 

The simplest way of exploring adjoint sensitivity for 

antenna optimization is to use the following 

surrogate model for the SBO scheme (4): 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
f

i i i i

s f   
R

R x R x J x x x
 

(5) 
 

where JRf is the Jacobian of Rf obtained using 

adjoint sensitivity technique. The key point of the 

algorithm is finding the new design x
(i)

 and the 

updating process for the search radius (i)
. Here, 

instead of the standard rules, we use the following 

strategy (x
(i–1)

 and (i–1)
 are the previous design and  

the search radius, respectively): 

1. For k = k (i–1)
, k = 0, 1, 2, solve: 

( )

( )

:|| ||
arg min ( ( ))

i
k

k i

sU
 


x x x

x R x . Note that x
0
 = x

(i–1)
. The 

values of k and Uk = U(Rs
(i)

(x
k
)) are interpolated 

using 2
nd

-order polynomial to find  
*
 that gives the 

smallest (estimated) value of the specification error 

( 
*
 is limited to 3 (i–1)

). Set  (i)
 =  *

. 

2. Find a new design x
(i)

 by solving (4) with the 

current  
(i)

. 

3. Calculate the gain ratio  = [U(Rf(x
(i)

)) – U0]/ 

[U(Rs
(i)

(x
(i)

)) – U0]; If  < 0.25 then  
(i)

 =  
(i)

/3; else 

if  > 0.75 then  
(i)

 = 2 
(i)

; 

4. If  < 0 go to 2; 

5. Return x
(i)

 and  
(i)

; 
 

The trial points x
k
 are used to find the best value of 

the search radius, which is further updated based on 

the gain ratio  (actual versus expected objective 

function improvement). If the new design is worse 

than the previous one, the search radius is reduced to 

find x
(i)

 again, which eventually will bring the 

improvement of U as Rs
(i)

 and Rf are first-order 
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consistent (Alexandrov and Lewis, 2001). This 

precaution is necessary because the procedure in 

Step 1 only gives an estimation of the search radius. 

As an example, consider a wideband hybrid 

antenna (Petosa, 2007) shown in Fig. 3, a quarter-

wavelength monopole loaded by dielectric ring 

resonator. The design goal is to have |S11| ≤ −20 dB 

for 8-to-13 GHz. The design variables are x = [h1 h2 

r1 r2 g]
T
. The initial design is x

(0)
 = [2.5 9.4 2.3 3.0 

0.5]
T
 mm. Other parameters are fixed. The final 

design with the proposed algorithm is x
(0)

 = [3.94 

10.01 2.23 3.68 0.0]
T
 mm. Table 2 and Fig. 4 

compare the design cost and quality of the final 

design found by the algorithm described above and 

Matlab’s fminimax. It can be observed that our 

algorithm yields better design at significantly 

smaller computational cost (75 percent design time 

reduction). 

3.4 Space Mapping and Manifold 
Mapping 

Construction of the surrogate model can also be 

based on the underlying low-fidelity (or coarse) 

model Rc, e.g., obtained from coarse-discretization 

EM simulation data. The two methods considered 

here that use this approach are space mapping (SM) 

(Koziel et al., 2008a) and manifold mapping (MM) 

(Echeverria and Hemker, 2005). Usually, the 

knowledge about the system embedded in the low-

fidelity model allows us to reduce the number of 

high-fidelity model evaluations necessary to find an 

optimum design. 

The SM surrogate considered here is constructed 

using input and output SM (Bandler et al., 2004) of 

the form: 
 

( ) ( ) ( ) ( ) ( )( ) ( ) ( )i i i i i

s c    R x R x c d E x x  (6) 
 

Here, only the input SM vector c
(i)

 is obtained 

through the nonlinear parameter extraction process 
 

( ) ( ) ( )arg min || ( ) ( ) ||i i i

f c  
c

c R x R x c  (7) 
 

Output SM parameters are calculated as 
 

( ) ( ) ( ) ( )( ) ( )i i i i

f c  d R x R x c  (8) 
 

and 

( ) ( ) ( ) ( )( ) ( )
f c

i i i i  
R R

E J x J x c
 

(9) 
 

Formulation (6)-(9) ensures zero- and first-order 

consistency (Alexandrov and Lewis, 2001) between the 

surrogate and the fine model. 

The manifold mapping (MM) surrogate model is 

defined as (Echeverria and Hemker, 2005) 
 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )i i i i

s f c c  R x R x S R x R x
 

(10) 
 

where S
(i)

 is the mm correction matrix defined as 

( ) ( ) ( ) †( ) ( )
f c

i i i 
R R

S J x J x  (11) 

 

 

Figure 3: Wideband hybrid antenna: geometry. 

 

Figure 4: Wideband hybrid antenna: reflection response at 

the initial design (  ), at the final design by Matlab’s 

fminimax (- - -), and by the proposed algorithm (—). 

Table 2: Wideband hybrid antenna: design results. 

Algorithm 
max|S11| for 8 to 13 GHz        

at Final Design 

Design Cost 

(Number of EM 

Analyses) 

Matlab’s 

fminimax 
–22.6 dB 98 

This work –24.6 dB 24 

 

The pseudoinverse, denoted by † , is defined as 
 

† †

c c c c

T
R R RR J J JJ V Σ U

 
(12) 

 

where UJRc, JRc, and VJRc are the factors in the 

singular value decomposition of JRc. The matrix JRc
†  is the result of inverting the nonzero entries in 

JRc, leaving the zeroes invariant (Echeverria and 

Hemker, 2005). Using the sensitivity data as in (12) 
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ensures that the surrogate model (10) is first-order 

consistent with the fine model. In our 

implementation, the coarse model is preconditioned 

using input space mapping of the form (7) in order 

to improve its initial alignment with the fine model. 

Both the parameter extraction (7) and surrogate 

model optimization processes (4) are implemented 

by exploiting adjoint sensitivity data of the low-

fidelity model, which allows for further cost savings. 

The details of these implementations can be found in 

(Koziel et al., 2012b). 

In order to illustrate the operation and 

performance of the SM and MM algorithms, let us 

consider an UWB antenna shown in Fig. 5. The 

antenna and its models include: a microstrip 

monopole, housing, edge mount SMA connector, 

section of the feeding coax. The design variables are 

x = [l1 l2 l3 w1]
T
. Simulation time of the low-fidelity 

model Rc (156,000 mesh cells) is 1 min, and that of 

the high-fidelity model Rf (1,992,060 mesh cells) is 

40 min (both at the initial design). Both models are 

simulated with the transient solver of CST 

Microwave Studio (CST, 2011). The design 

specifications for reflection are |S11| ≤ –12 dB for 3.1 

GHz to 10.6 GHz. The initial design is x
init

 = [20 2 0 

25]
T
 mm. 

The antenna was optimized using the SBO 

algorithm (4) with both the SM and MM surrogate 

models. Fig. 6(a) shows the responses of Rf and Rc at 

x
init

. Fig. 6(b) shows the response of the high-fidelity 

model at the final design x
(2)

 = [20.22 2.43 0.128 

19.48]
T 

(|S11| ≤ –12.5 dB for 3.1 to 10.6 GHz) obtained 

after only two SBO iterations with MM surrogate, i.e. 

only 4 evaluations of the high-fidelity model (Table 

3). The number of function evaluations is larger than 

the number of MM iterations because some designs 

can be rejected by the TR mechanism. The algorithm 

using SM surrogate required three iterations and the 

final design is x
(3)

 = [20.29 2.27 0.058 19.63]
T  

(|S11| ≤ 

–12.8 dB for 3.1 to 10.6 GHz) obtained after three 

SM iterations. The total optimization cost (Table 4) is 

equivalent to around 6 evaluations of the fine model. 

Figure 7 shows the evolution of the specification 

algorithm for the manifold mapping algorithm. 

As another example, consider the third-order 

Chebyshev bandpass filter (Kuo et al., 2003) shown in 

Fig. 8. The design variables are x = [L1 L2 S1 S2]
T
 mm. 

Other parameters are: W1 = W2 = 0.4 mm. Both fine 

(396,550 mesh cells, evaluation time 45 min) and 

coarse (82,350 mesh cells, evaluation time 1 min) 

models are evaluated by the CST MWS transient solver 

(CST, 2011). 

The design specifications are |S21|  –3 dB for 

1.8 GHz    2.2 GHz, and |S21|  –20 dB for 1.0 GHz 

   1.55GHz and 2.45 GHz    3.0 GHz. The 

initial design is the coarse model optimal solution 

x
init

 = [16 16 1 1]
T
 mm. 

 

(a)  
 

(b)  

Figure 5: UWB monopole: (a) 3D view; (b) top view. The 

housing is shown transparent. 

(a)  

(b)  

Figure 6: UWB monopole optimized using manifold 

mapping algorithm: (a) responses of Rf (—) and Rc (- - -) 

at the initial design xinit; (b) response of Rf (—) at the 

final design. 

The filter was optimized using the SM algorithm. 

Optimization results are shown in Fig. 9 and Table 

5. The final design x
(5)

 = [14.58 14.57 0.93 0.56]
T
 is 

obtained after five SM iterations. As before, 

optimization cost is very low. Also, thanks to 

sensitivity information as well as trust region, the 

algorithm improves the specification error at each 

iteration, see Fig. 10. This is not the case for 
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conventional space mapping (Bandler et al., 2004). 
 

 

Figure 7: UWB monopole: Minimax specification error 

versus manifold mapping algorithm iteration index. 

Table 3: UWB monopole antenna: optimization results 

using manifold mapping. 

Algorithm 
Component 

Number of Model 
Evaluations* 

CPU Time 

Absolute 
Relative to 

Rf 

Evaluation of Rc 31 31 min 0.8 

Evaluation of Rf 4 120 min 4.0 

Total cost* N/A 151 min 4.8 

* Includes R
f
 evaluation at the initial design. 

Table 4: UWB monopole antenna: optimization results 

using space mapping. 

Algorithm 

Component 

Number of Model 

Evaluations* 

CPU Time 

Absolute Relative to Rf 

Evaluation of Rc 45 45 min 1.1 

Evaluation of Rf 5 200 min 5.0 

Total cost* N/A 205 min 6.1 

* Includes R
f
 evaluation at the initial design. 

 

 

Figure 8: Third-order Chebyshev bandpass filter: geometry. 

4 CONCLUSIONS 

A review of recent microwave design optimization 

techniques exploiting adjoint sensitivity has been 

presented. We have demonstrated that by exploiting 

cheap derivative information, the EM-simulation-

driven design process can be performed efficiently 

and in a robust way. Adjoint sensitivity can also be 

used to improve performance of the surrogate-based 

optimization algorithm as illustrated on the example 

of space mapping and manifold mapping techniques. 

(a)  
 

(b)  

Figure 9: Third-order Chebyshev filter: (a) responses of Rf 

(—) and Rc (- - -) at the initial design xinit; (b) response of 

Rf (—) at the final design. 

 

Figure 10: Third-order Chebyshev filter: minimax 

specification error versus SM iteration index. 

Table 5: Third-order Chebyshev filter: optimization 

results using space mapping. 

Algorithm 

Component 

Number of 

Model 

Evaluations* 

CPU Time 

Absolute Relative to Rf 

Evaluation of Rc 67 67 min 1.5 

Evaluation of Rf 6 270 min 6.0 

Total cost* N/A 337 min 7.5 

* Includes R
f
 evaluation at the initial design. 
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