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Abstract: A model for a Magneto-RheologicaMR) damper based on Atrtifical Neural Network&NN) is proposed.
The ANN model does not require regressors in the input and output vector, i.e. is considered static. Only one
sensor is used to achieve a reliaM® damper model which is compared with experimental data provided
from two MR dampers with different properties. TRMSof the error is used to measure the model accuracy;
from bothMR dampers, an average value 01% of total error in the force signal is obtained by taking into
account 5 different experiments. TA&IN model, which represents the nonlinear behavior didamper,
is used in a suspension control system of a Quarter of Vehi@®/) in order to evaluate the comfort of
passengers maintaining the road holding. A control technique witMieamper model is compared with
a passive suspension system. Simulation results show the effectiveness of a semiactive suspension versus the
passive one. ThRMSof the comfort signal improves 7.4% with théR damper while the road holding gain
in the frequency response shows that the safety in the vehicle can be increased until 40.4% with the semiactive
suspension system. The accursie damper model validates a realisfoV response compliance.

1 INTRODUCTION several needs. Figure 1 shows the highly nonlinear
behavior of an industriaMR damper under various

A Magneto-RheologicaNIR) damper is an hydraulic ~ constant electric current inputs, its accurate modeling
damper whose oil contains metallic particles that is a non-trivial task.

change the rheological properties (i.e. viscosity) of
the fluid when a magnetic field is applied; an electric
current supplied through the damper coil is used to
manipulate the magnetic phenomenon. The variation
of the oil viscosity allows to modify the damping ra- ‘
tio in the shock absorber, this property is narsethi- 0+
activity. The oil viscosity is proportional to the elec- 2 5540 ‘
tric current as well as to theIR damper force; how- ‘

Damping Force (N)

ever, the join of these mechanisms creates an highly [ -4000
nonlinear behavior in the damping force. TR o .
damper has been mainly applied in vibration control B g 2 :
because it has low power requirement, fast response, Relative LY =,

p q p Ve|ocity (me) -1 0.5 Electric

simple structure and continuous adjustable damping
force over a large span.

The main function of théIR damper in an auto-
motive suspension is to absorb energy in order to get
low accelerations of the sprung mass (i.e. automo-
tive chassis) and low deflections in the wheel; thus,
an accuratdViR damper model is required to design
the control system. Even there are important contri-
butions in this field (Guo et al., 2006); there are still

current (A)

Figure 1: Nonlinear behavior of th&R damper force re-
spect to the control current and relative velocity.

Several mathematical models are available for
modeling the nonlinear behavior IR dampers;
generally, they can be grouped as parametric and
non-parametric models.  Parametric models in-
clude the Bingham model (Stanway et al., 1987),
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the viscoelastic-plastic model (Gamota and Filisko, sensor, i.e. its structure has low complexity for prac-
1991), the phenomenological model (Wang and tical implementations of suspension control systems.
Kamath, 2006), the semi-phenomenological model The MR damper model is validated with experimen-
based on the BoucWen model (Spencer et al., 1996),tal data of twoMR dampers for analyzing its reliabil-
the improved BoucWen model (Yang et al., 2002), ity and it is used in a suspension control system of a
the hyperbolic tangent function model (Kwok et al., Quarter of VehicleQoV), this is an example of an ap-
2006), (Guo et al., 2006), the inverse tangent func- plication problem where the accurate modeling of the
tion model (Cesmeci and Engin, 2010) and many oth- actuation device is one of the most crucial part of the
ers. The Bingham and the viscoelastic-plastic model whole control design problem.
can not reproduce the nonlinear behavior of MR The outline of this paper is as follows: in the next
damper with high accuracy, while the other models section, theANNdesign is described. Section 3 shows
can; however, they have many parameters to identify. the experimental system and section 4 presents the
On the other hand, some of these physical models usemodeling results. Section 5 presents the effectiveness
parameters of the internal structure of the shock ab- of anMR damper versus a passive damper in compli-
sorber resulting a particular model case. ance of a suspension control system. Conclusions are
In the non-parametric models, the coefficients do presented in section 6.
not have a physical meaning. Models based on look-

up table, fuzzy logic and Artificial Neural Networks Table 1: Definition of variables.
(ANN) are the representative non-parametric models Variable Description
for a MR damper. Polynomial models [(Choi et al., Fvr MR damper force
2001), (Hong etal., 2002), (Du et al., 2005), (Poussot- Zget Damper piston position
Vassal et al., 2008)] require. many parameters to ex- Ze Damper piston velocity
press the nonlinear and semiactive behavior of the ' Electric current
damping force; while the fuzzy models [(Atray and ki lime delays
Roschke, 2003), (Ahn et al., 2008)] need a priori Ms Sprung mass in th@ov

. ) . Mys Unsprung mass in th@oV
knowledge in the frequency and time domain of the Z Road profile
MR damper. FOANN models, the knowledge of the Zs Vertical position ofmg
dynamic relationships between the variables is not re- Zus Vertical position ofimus
quired, only a well training step is needed; in addi- Zs Vertical velocity ofmg
tion, the number of parameters depends on the struc- Zus Vertical velocity ofmyg
ture size and commonly th&NN design is based on % Vertical acceleration ofng
the minimal dimensions criterion (Freeman and Ska- Zus Vertical acceleration offus
pura, 1991), which selects the possible lowest number Ks Spring stifiness coefficient
of hidden layers with the possible lowest number of ke Wheel stiffness coefficient
neurons.

The major effort in theVIR damper modeling, by
using ANN, is focused on reproduce the inverse dy-
namics (force-electric current) of the shock absorber 2 ANN REVIEW
(Chang and Zhou, 2002), (Zapateiro et al., 2009), . )
(Metered et al., 2010); however, a recurrent neural A0 ANN is a computational model capable to learn
network is required for achieving an optimal damping Pehavior patterns of a process, it can be used to model
force signal, and normally the input vector is based on nonlinear, complex and unknown dynamic systems,
two or more sensor measurements: force, displace-(Korbicz et al., 2004). Based on the flow of signals,
ment and/or velocity. This type kNN model in- the ANN architecture can be classified into two major
creases the architecture size and the instrumentatior@roups: feedforwardand recurrent networkskeed-
cost in a suspension control system. On the other forward networks project the flow of information only
hand, commonly the modeling of the forward dynam- in one way, i.e. the output of a neuron feeds to all
ics usingANN requires two ore more time delays of heurons of the following layer (Hagan et al., 1996);
each input by increasing the\N architecture and its while, the recurrent networks have an output feedback
computing time (Savaresi et al., 2005), (Chen et al., Signal. . _ .
2009), (Boada et al., 2011). In MR damper modeling usind\NN, typically
This paper proposes a non_parametric model of anrecurrent neural networks based on Nonlinear-ARX
MRdamper based oANN, the model does not require (NARX structures, i.e. regressors in the input and/or

regressors in the input vector and demands only one0utput vector, have been proposed with high accuracy
(Chang and Zhou, 2002), (Savaresi et al., 2005), (Zap-
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ateiro etal., 2009), (Chen et al., 2009), (Metered et al.,
2010), (Boada et al., 2011). THdARX structure is
defined as,

Fur= NL(Zdet(t), Zdef(t —1),. .., Zdet(t —ka),
Zge(t) Zaef(t—1),.... Zger(t —k2),
1(t),1(t—1),...,1(t—ks),

FM R(t - 1) ’ (1)

wherek; represents a specific number of time de-
lays for each signakye s andzye f are the displacement
and velocity of the damper rod provided from sensor
measurements,is the actuation signal arf§r is the
damper forceANN output).

In this paper, a comparison betweefieadforward
and recurrent neural network is considered for deter-
mining the accuracy degree in the damper force by
adding the output feedback in tRéNN structure. In
addition, different arrays in the input vector are used
to evaluate theANN performance with time delays;
the arrays with one, two and three regressors in the
input vector are compared with the modeling perfor-
mance of arANN that does not have delays. Finally,
theANN performance is analyzed when one (velocity)
or two (displacement and velocity) signals are used in
the input vector.

TheANNtraining is defined as the adaptation pro-
cess of the synaptic connections under external stim-
ulations. Thebackpropagatioralgorithm is the most
used training method since it allows to solve prob-
lems with complex net connections; its formulation
can be reviewed in detail in (Freeman and Skapura,
1991). The proposeANN model was trained with
backpropagatiorand crossed validation was used to
validate the results.

3 EXPERIMENTAL SYSTEM

Two differentMR dampers have been used to perform
a total of 5 tests. One damper, callstR; damper,
is designed by Delphi MagneRit¥; it has continu-

electric current ranges werg:25 mm and 0 - 2.5 A,
respectively.

Figure 2 also shows the used sensor (VP510-10
of UniMeasuréM), which provides the velocityzgs )
and position 3¢ 1) measurements of the damper pis-
ton. In this case, a self-generating tachometer gener-
ates the velocity measurement; however, it is possible
to use another linear velocity transducer.

MTS System

Position and
velocity sensor

MR damper

Figure 2: Experimental system.

A series of training sequences have been proposed
in (Lozoya-Santos et al., 2009), the position emulates
the suspension deflection and the electric current is
the actuation signal. Table 2 shows the design of ex-
periments used to identify the nonlinear behavior of
both MR dampers under different sequences of posi-
tion and actuation.

For displacement sequences, Amplitude-
Modulated AM), Frequency-Modulated FM)
and Stepped Frequency SinusoidaF§ were used
to analyze theMR damper dynamics in the transient
response under changes in magnitude and frequency
of the suspension deflection; Triangular wave with
Positive and Negative Variable Slope3PNVS
sequence allows to know the dynamic behavior under
constant velocity; and Road Profil&P) represents

ous actuation and considerable hysteresis at high fre-the suspension deflection move when the vehicle

guencies with high deflections. The otiR damper,
namedMR, damper, is manufactured by BW: it
has only two levels of actuation and its hysteretic be-
havior is minimal.

An MTS-407'"M controller has been used to con-
trol the position of the damper piston, Figure 2. An
NI-9172™ data acquisition system commands the
controller and records the position, velocity and force
from theMR damper. A sampling frequency of 1650
Hz was used. The bandwidth of displacement was
0.5- 15 Hz, which lies within comfort and road hold-
ing automotive applications. The displacement and

passes under a specific surface. Figure 3 presents
some of the different displacement sequences used
in the experimental stage in order to identify the
nonlinear behavior of botMR dampers.

For electric current sequences, Stepped inCre-
ments 6O are used to study the effect of the current
in the jounce and rebound of ti@R damper under
different displacements, since th&éR, damper has
not a continuous actuation only two levels of current
were designed; Increased Clock Period SighalPQ
and Pseudo Random Binary SignBIRBS allow to
analyze the transient response of the damping force
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Table 2: Design of experiments for identifying &R

EZO damper.
g 0 Experiment|| Displacement | Current sequence
g sequence MRz MRy
820 1 TPNVS SC(10) | SC(2)

2 4 6 8101214161820 40 44 48 2 SFS SC(10) | SC(2)
z o 3 RP(rough way)| ICPS | PRBS
£ 20 4 AM ICPS | PRBS
s . 5 FM ICPS | PRBS
22—20 . . . .

R Cam index of the error, which is defined as,
2 10 0 Time (s)
A~ . L\ 2

Figure 3: Displacement sequences in the piston used in the RMS— Zle (FMR(I) - FMR(I)) 2
experimental stage. - n 2)

when the current changes at different frequencies, theWhere.Fur andFur represent the estimated and ex-
ICPS signal includes random changes in the ampli- Perimental damping force respectively ands the

tude andPRBSonly switches between two electric - NUmber of total samples in the experiment. The per-
current values. Figure 4 shows the behavior of the Centage of error represents tR&1Sof the error nor-
actuation sequences used in the experiments, for theMalized by the span of the damping force.

MR, damper, thé&SCsequence only has two states; 0 First, the design issues for tA&NN model are dis-
and 2.5 A. cussed: the network structure, the required sensors in

the input vector, the regressor choice and the selection
of the number of parameters of tA&N

Remark: ANN architecture. A Multilayer Percep-
tron (MLP) network, which corresponds tofeedfor-
ward system, is compared with a recurrent network.
The input vector of theMLP network is composed

by z4et, Zget, |; While the recurrent network adds the
ANN output (damping force). Table 3 presents the
modeling error of both structures by using the exper-
iment 2 in theMR; damper as example. The error
percentage represents the average deviation between
the modeled damping force and the real measurement
based on th&MSvalue of the error. When the feed-
back of theMR damper force is considered, the mod-
eling error decreases slightly; however, thieN ar-
chitecture and its computing time increase.

(A)

Electric Current
S

1%}

LHIL'T |

25

£06

15
PRBS
2.5 | W
0 WM
7

1 12 13 14Time(s

Electric Current (A)

[ee]
el

Table 3: Performance comparison betweenféeelforward
and recurrent neural networks.

ANN Structure Error (%)

MLP (feedforward 4.38
Recurrent 3.80

Electric Current (A)

0
)

Figure 4: Electric current sequences used in the experimen-

tal stage. Remark: Sensors in the Input Vector. Taking into

account arMLP network, two different input vectors
have been compared. The former input vector uses
the zget, Z4et andl; while the second one only in-
4 MODELING RESULTS cludeszges andl. Table 4 indicates that the model-
ing error decreases 46.7 % by considering two sensor
The ANN model obtained from the different experi- measurements in addition to the electric current sig-
ments, presented in Table 2, is used to characterizenal; however, the instrumentation cost can increase
the dynamical behavior of thRIR damper and eval-  and theANN structure is more complex for the train-
uated by the Root Mean SquaieNS performance  ing and testing step.
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Table 4: Modeling error (%) in thBILP network using dif- Input Hidden layer =~ Output

ferent input vectors. layer layer
Sensor Measurements Error (%)
1 (Zder) 8.22
2 (Zdef andz'def) 4.38 Displacement or

velocity sensor

Remark: Regressor Choice.Once theANN archi-
tecture and the input vector are defined, different ar-
rays in the input vector of thANN model have been
evaluated, in this case the experiment 2 oveitiy
damper is used as example. Table 5 shows the model-
ing error of theANN when the number of regressors. Figure 5: FeedforwardNN of the MR damper model.
in the 2 input signals varies; in this analysis, the ve-
locity and electric current have the same number of
regressors in each test. According to the modeling er-
ror, it is not significant to incorporate time delays in
the input vector of th&ANN

Electric Current

Table 6: Modeling error in different experimental tests.

MR Experiment

damper 1 2 3 4 5
MRy 5.9% | 8.2% | 3.1% | 4.1% | 14.95%
MR, 6.9% | 6.8% | 7.2% | 8.0% | 6.2%

Table 5: Modeling error (%) in th&NNwith different num-
ber of regressors in the input vector.

Regressorsg| Error (%) — &
0 822 147 |
- L
3 8.79 = 100 |
(0]
& 8l .
Remark: ANN-size SelectionFinally, the choice of S %‘
the number of parameters (hidden layers and neurons § 6
in these layers) of the non-linear parametric function % al
can be easily made using a cross-validation approach. L
A 1-hidden-layer structure has been chosen by sim- 2t
ulation tests, this structure guarantees the universal- VR, VR,

approximation property (Sjoberg, 1995). For deter-
mining the number of neurons in the hidden layer, the Figure 6: Variability of the error in th&1R damper models.
minimal dimensions criterion is used (Freeman and
Skapura, 1991); the best choice is with 10 neurons. N approximately for theViR; damper and{6000 to
According to the above design issues, AN ar- 11000] N for theMR, damper, the obtaine@MSav-
chitecture used to model thdR damper dynamicsis  erage represents the26% and 702% of punctual er-
(2,10,1), Figure 5. ThANN input vector includes the  ror in the force signal, respectively. Figure 7 presents
signal of the relative velocity and the excitation sig- a qualitative comparison in the transient response of
nal (electric current) without considering regressors, the force obtained from experimental data and from
while the damping force corresponds to &N out- ANN model; in this case, theIR; andMR, dampers
put. Modeling results of the proposé&dN model, are subject to the experiment 5. According to Table
considering the 5 experiments, is shown in the Table 6, theMR; damper has greater modeling error in the
6. Figure 6 shows the variability of the modeling re- experiment 2 and 5, and viceversa.
sults. Clearly, the variance of the error is greaterinthe  In order to test the capability of th&NN for
model of theMR; damper since its continuous actu- modeling the nonlinear and hysteretic behavior of the
ation adds more nonlinearities, which complicate the MR damper, experimental data are compared with the
modeling task; while, th&IR, damper model shows ANN model in the characteristic diagram of Force-
better modeling performance with lower error stan- Velocity (FV); this diagram explains the effect of
dard deviation of the error. jounce and rebound of the damper and it is a tool for
The RMSaverage, considering all experiments, is the engineers of automotive design in order to define
291.4 N for theMR; damper and 598 N for the the suspension capability for improving the confort
MR, damper. Since the span of the forceti¢000 and road holding. Figure 8 shows thR¥ diagram of
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Figure 7: Comparison between the real and modeled force %% =7 05 o o3 ] s
using theMR; damper (up) an®1R, damper (bottom). Deflection velocity (M /%)

) . Figure 8:FV diagram for the real and modeled force using
both dampers using the experiment 2. Bottom plot the MR, damper (up) an#1R, damper (bottom).
in Figure 8 shows that th&NN can model the non-

linear behavior of theMiR, damper with acceptable
accuracy, only outliers are not included. Notice in the
FV diagram that théMR, damper has minimal hys-
teresis and it is composed by two damping leves: 1)
high damping force at current greater than 2.5 A and
2) low damping force at 0 A. On the other hand, the
MR; damper has a continuous actuation between 0
and 2.5 A. TheANN correctly models the nonlinear
behavior at each current step; however, the hystere-
sis can not be modeled at low deflection velocities
(+£0.5 m/s) using only one sensor, up plot in Figure

8. This hysteretic behavior occurs at high frequencies .. 2000
(greater than 10 Hz) with high amplitudes in the sus- 20w 1000
pension deflection, and the velocity sensor does nots **
contain the required information for representing the 2 .
force dynamics at these frequencies; thus, an accel- -2w
eration sensor could complement this missing force ..

1 -15 ;1 *b.s 0 0.5 1 15 1.5 -0.75 0 0.75 15
dynamlCS. Deflection velocity (m/s) Deflection velocity (m/s)

Although the hysteresis can not be modeled at Figure 9: FV diagram for theMR; damper using experi-
high frequencies with high displacements, in general, mental data from experiment 2 (left) and 4 (right).
the proposed®NN can be used to represent thiR
damper dynamics since the hysteretic behavior ap-  Another form of getting th& NN model of theMR
pears at not typical deflection amplitudes in an auto- damper is by using the estimated deflection velocity
motive suspension and the frequencies out of the de-through a displacement sensor. Figure 10 shows that
sired span for passengers comfort, i.e. the positionthe measurement of the deflection velocity is prac-

pattern is out of the automotive operational zone of
the damper. Figure 9 shows the comparison of the
FV diagram using experimental data provided from
the experiment 2 (left plot) and 4 (right plot). Since
the experiment 4 contains data at high frequencies but
low amplitudes on the displacement, the hysteresis
phenomenon is minimal; while, the experiment 2 has
high displacements at high frequencies that cause too
much hysteresis.

Force (N)

-1000+ £

-2000
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tically similar to the estimated signal, in this case
the central differentiation algorithm over the displace-
ment measurement is considered. Therefore, it can
be used a displacement or velocity sensor, additional
to the actuation signal, for achieving a relialifiR
damper model based &NN

‘ ‘— MeaS\‘Jremem
0.6/ : (i)
— n A Iy
204t flank M
.g. ’ A mEa s ||| I
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Figure 10: Comparison between the real and estimated de-
flection velocity for the experiment 3in thdR, damper.

5 MR DAMPER USED IN
AUTOMOTIVE SUSPENSIONS

In order to analyze the effectiveness of tMR
damper model based oANN, a semiactive suspen-
sion control system of oV model is used as test-
bed; theANN model is included for increasing the
comfort of passengers maintaining the road holding.

TheQoV model considers a sprung massg)and
an unsprung massn(s). A spring with stiffness co-
efficient ks and aMR damper represent the suspen-
sion between both masses. The stiffness coeffikient
models the wheel tire. The vertical position of the
massms (myg) is defined byzs (z,s), while z cor-
responds to the road profile. It is assumed that the
wheel-road contact is ensured.

The system dynamics is given by,

®3)

MysZys = Ks(Zs — Zus) —ke(us—z) +Fur ~ (4)

where,Fyr is theMR damping force obtained by the
ANN model, which is based on thdR, damper dy-
namics. TheQoV model parameters described in 3
and 4 have been identified on a commercial vehicle,
Table 7.

The MR force depends on the deflection velocity
Zyet = Zs — Zys and electric current, this later signal

MsZs = —Ks(Zs — 2us) — FvRr

Table 7:QoV model parameters of a commercial vehicle.

Parameter] Value
ms 387 (Kg)
Mys 139.5 (KQg)
ks 37,300 (N/m)
ke 295,200 (N/m)

in control of semiactive suspensions have been pro-
posed (Dong et al., 2010), (Spelta et al., 2010), etc.
The comfort performance of a semiactive sus-
pension, using the Mix 1-sensd¥lix1) control law,
is compared with a commercial vehicle suspension
which uses a passive damper. Experimental data
of the passive damper were modeled by the same
ANN technique as the semiactive dampers. Figure 11
shows a conceptual diagram of the semiactive suspen-
sion control system; thANN model, which has been
trained off-line, only requires the deflection velocity
and the electric current for generating & force in
a forward way. The block of processing of signals in-
cludes filters, estimators and/or observers in order to
achieve the control law. Details on tihix1 control
law can be reviewed in (Spelta et al., 2010).

Z(ﬂ#

Processing of signals

ecessssses

=
20 Hz

7Z"peak i

0.5 Hz

Figure 11: General structure of semiactive suspension con-
trol system.

In order to analyze the passengers comfort and
road holding in the frequency and time domain, two
road disturbance inputs have been simulated: 1) in the
frequency domain, a signal chirp of 2 cm with span
of [0.5-20]Hz and 2) in the time domain, a step of 3
cm. Figure 12 shows th@oV performance in the fre-
quency domain; the Power Spectral DensRgD is
used as performance index, i.e. the maximum gain of
a signal is plotted at any specific frequency. The fre-
quency response of thHgoV model with the passive
damper is considered as benchmark.

According to (Poussot-Vassal et al., 2008), Fig-

represents the controller output. Several approachesure 12 shows that the controller fulfills with the per-
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Figure 12: Frequency response of eV model in closed-
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4000

loop using a semiactive and passive suspension, the span of ] :
frequencies of interest for each objective is bounded by the Figure 13: Transient response of tQeV model in closed-
vertical discontinuous lines. loop using different automotive suspension schemes.

Table 8: Performance in the transient response of the sus-

formance specification for comfort: at low frequen- -
pension control system.

cies [0-2]Hz, the maximum gain af fespect to the

surface is lower than the passive suspension. In this Suspension Performance Index
range of frequencies, a human can feel dizziness and (S:onttrol _?ettlmg %e‘i?‘y I\Sax!mt_um
sickness caused by sudden motions. On the other oystem ime (s) | Ratio | Deviation
hand, a good road holding is considered when the Semi- | Comort 0.3 0.07 e

> . L active | Holding 0.6 0 -3.8cm
maximum gain ofzs — zr respect taz is limited to Passive| Comfort 08 015 Z 50
2.5 for low disturbancesz( < 3cm) between 0 to 20 Holding 17 023 _4_5§2m

Hz, specially close to the resonance frequenaygaf
Bottom plot in Figure 12 indicates that the semiac-
tive suspension control system has good road hold-
ing performance in all span of frequencies, th&D
reduces until 2 units in the resonance frequency of
the unsprung mass. Thus, the road holding increasesA Magneto-RheologicalNIR) damper model based
40.4% by using a semiactive suspension system.  on Artificial Neural Networks ANN) is proposed.

For the time domain, the effectiveness of the semi- The ANN structure does not require regressors in the
active suspension versus the passive suspension isnput vector and only one sensor (displacement or ve-
clear. Figure 13 displays the transient response of |ocity) is demanded to get a reliable model. In addi-
the acceleration of the sprung mass (up plot) and of tion, it has been proved that the output feedback in the
the wheel deflection (bottom plot). In both transient input vector of theANN model only improves slightly
responses, the semiactive control system can reduceghe modeling performance; however, the computing
more of 50% in the settling time and decay ratio and time in the training and testing step increases because
approximately a 10% of the the maximum deviation, theANN architecture requires more model parameters
Table 8. Taking into account tHRMSof the Z; signal, when the output feedback is included.
the comfort increases 7.4% with thix1 controller. Experimental data provided from twdVR
For road holding, th#lix1 controllerimproves 64.9%  dampers (Delpfi™ namedVIR; damper, and BWIM
respect to he passive suspension. namedMR, damper) with different properties have

been used to verify the accuracy of the proposil
damper model based kNN The average modeling
error in the force signal is lower than 7.25% by con-
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