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Abstract: Social insects and stigmergy have been inspiring several significant artworks and artistic concepts that 
question the borders and nature of creativity. Such artworks, which are usually based on emergent properties 
of autonomous systems and go beyond a centralized human authorship, are a part of a contemporary trend 
known as generative art. This paper addresses generative art and presents a set of images generated by an 
ant-based clustering algorithm that uses data samples as artificial ants. These ants interact via the 
environment and generate abstract paintings. The algorithm, called KANTS, consists in a simple set of 
equations that model the local behavior of the ants (data samples) in a way that, when travelling on a 
heterogeneous 2-dimensional lattice of vectors, they tend to form clusters according to the class of each 
sample. The algorithm was previously proposed for clustering and classification. In this paper, KANTS is 
used outside a purely scientific framework and it is applied to data extracted from sleep-
Electroencephalogram (EEG) signals. With such data sets, the lattice vectors have three variables, which are 
used for generating the RGB values of a colored image. Therefore, from the actions of the swarm on the 
environment, we get 2-dimensional colored abstract sketches of human sleep. We call these images 
pherogenic drawings, since the data used for creating the images are actually the pheromone maps of the ant 
algorithm. As a creative tool, the method is contextualized within the swarm art field. 

1 INTRODUCTION 

Generative art is a contemporary trend that uses 
autonomous systems for generating artworks or 
ornamental objects. There may be more or less 
human interaction with the process, but, in general, 
the core of a generative artwork is the result of a 
computational and sometimes emergent procedure. 
Swarm Intelligence (SI) (Bonabeau et al., 1999) is 
one of the techniques used in this field, whether as 
computational simulations for creating digital art 
that can be later translated to a physical medium, or 
as guiding rules for groups of agents (robots, for 
instance) that act directly (i.e., physically) on a 
canvas. Within SI, social insects and the concept of 
stigmergy have inspired significant artworks that 
question the borders and nature of creativity. This 

paper focuses on a digital approach and describes a 
SI algorithm called KohonAnts (or simply KANTS), 
used here for generating 2-dimensional non-
figurative images of correlated data sets of human 
sleep. 

KANTS is an ant-based algorithm proposed by 
Mora et al. (2008) for data clustering and 
classification. The method is loosely inspired by 
Chialvo and Millonas’ Ant System (AS) (Chialvo 
and Millonas, 1995), which is modeled by a set 
equations and parameters that, when properly tuned, 
guide the swarm to a self-organized state in which 
complex patterns of global behavior emerge. Instead 
of the 2-dimensional homogeneous lattice used in 
(Chialvo and Milonas, 1995) as a habitat for the 
swarm, KANTS evolve on a 2-dimensional lattice 
with one vector of real-valued variables mapped to 
each cell. The agents also differ from Chialvo and 
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Millonas model, since KANTS uses data samples 
(with the same size as the environmental vectors) of 
different classes as artificial ants. These ants travel 
trough the grid, changing the values of the variables 
so that they tend to be closer to their own values. At 
the same time, the ants are attracted to the sections 
of the habitat where the Euclidean distance between 
the ant’s vector and the sections’ vectors is 
minimized, i.e, the ants communicate via the 
environment, an ability that is a fundamental part of 
a process known as stigmergy (Grassé, 1959): 
communication via the environment, with 
modification of that same environment. The model’s 
simple set of rules leads to a global behavior in 
which clusters of ants/samples belonging to the same 
class tend to emerge.  

As stated above, the ants act upon the 
environmental lattice, changing the vectors’ values. 
Therefore, this array of vectors acts as a kind of 
pheromone map that is shaped by the ants. The maps 
are used in this paper for generating 2-dimensional 
RGB colored images. The vectors’ values are 
directly translated into the R, G, and B values (three-
variable sleep data set with is used here). Since the 
ants tend to cluster, thus changing the values in that 
region, it is expected that the pheromone map, after 
a certain number of iterations, shows non-random 
patterns, like a kind of a fuzzy patchwork. In 
addition, the stochastic nature of the process and the 
size and range of the data samples, make these sleep 
signatures unique, not only for each patient, but also 
for each night’s sleep. We believe that these 
pherogenic drawings not only represent an 
interesting imagery related to human sleep, but 
could also be a basis for a conceptual framework for 
artists and scientists to work with. 

The paper is organized as follows. Section 2 
discusses generative art and swarm art. Section 3 
describes the KANTS algorithm used for generating 
the EEG sleep images. In Section 4 the signals and 
the sleep staging problem is introduced. Section 5 
shows the images generated by the algorithm with a 
set of sleep data recorded from sane adults. Finally, 
Section 6 concludes the paper and outlines future 
lines of work. 

2 SWARM ART 

Generative art is a term used to classify artistic 
creations that, with more or less human intervention, 
are mainly generated by artificial intelligence 
systems or other computational models. There is an 
enormous amount of work in the area, and 

generative art is even gradually dividing itself into 
subfields, such as artificial music, and evolutionary 
art. From the large number of work created in the 
last decades, we will describe just a few, more 
related to the pherogenic drawings, technically or 
metaphorically. 

Like KANTS, Leonel Moura’s swarm paintings 
(Moura, 2001) are also based on Chialvo and 
Millona’s swarm model. The author started by 
experimenting on-screen computer drawings, using 
the ant system described in (Chialvo and Millonas, 
1995). However, the results were disappointing until 
he used a CAD machine and a brush to create 
physical objects. Since then, Moura has been 
experimenting with swarms, self-organization and 
robotics (Moura, 2009). 

Like Moura, Monmarché et al. (2007) also use 
ants for their research on the potentialities of swarms 
as “non-human artists”. The authors discuss the ant 
paradigm as a tool for generating music and 
painting.  

Using a common terminology in the History of 
Art, Moura and Monmarché’s swarm paintings may 
be categorized as abstract, while the proposal by 
Collomosse (2007), for instance, which uses 
Evolutionary Computation to evolve aesthetically 
appealing techniques for photo rendering, is more 
related to figurative art. Semet et al. (2004) also 
investigated the automatic generation of rendering. 
The authors propose a method for non-photorealistic 
rendering based on artificial ants. The ants move and 
sense the environment (image) and deposit “ink” on 
an output image, according to their location and the 
state of a short term memory. The user interacts with 
the ant colony, by choosing the parameters, defining 
“importance maps” and deciding when the rendering 
is finished.  

In 2001, Ramos and Almeida (2001) proposed a 
modification of the Chialvo and Millonas ant 
systems in which the ants evolve on a grayscale 
image (i.e., the 2-dimensional lattice stores the 
pixels’ values of the picture) and detect the edges of 
that image, generating pheromone maps that are 
sketches of the environmental grayscale images.  

Later, Fernandes et al. (2005) described an 
evolutionary extension to the model that radically 
changes the aspect of the pheromone maps. In 2010, 
Fernandes (2010) proposed the term pherographia 
(meaning drawing with pheromones) as a 
designation for the resulting pheromone maps of the 
system, and projected a line of creative work based 
on pherographia that resulted in several artworks. 
These artworks have been exhibited to an 
heterogeneous audience — see (Moura, 2009) and 
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(Courchesne et al., 2009). In a sense, the pherogenic 
drawings described in this paper are also 
pherographs, since KANTS comes from the same 
base-system, and the images are actually the 
pheromone maps of the algorithm. However, we use 
here the term pherogenic drawings in order to 
differentiate from the images in (Ramos &Almeida, 
2001) and (Fernandes et al., 2005), which are closely 
related to photographia, the inspiration of the term 
pherographia.  

In fact, pherographia, as used by Fernandes, 
results in typical figurative artworks, while the 
swarm paintings presented in this paper are purely 
abstract. The pherographs are created using a 
photograph as a base-image; KANTS uses correlatd 
data, which interacts in a heterogeneous 
environment, “shaping” that same environment. Of 
course, pherographia, since it imitates the base-
image, may also be used for creating non-figurative 
works, as long as such kind of image is chosen as a 
base-image. That is, pherographia relies much more 
on the human decision, while the results given by 
KANTS, as shown in Section 5, are more 
unpredictable, since they depend on large quantities 
of data, gathered from natural phenomena.  

Pherographia and the above referred works do 
not rely on an explicit objective function to guide the 
exploration of the environment, but other approaches 
require a fitness functions that must be optimized. 
These approaches, usually termed as evolutionary 
art, may be divided in two classes: automated and 
interactive evolutionary art. Interactive evolutionary 
art is based on interactive Evolutionary Algorithms 
(EA) (Takagi, 2001). Interactive EAs use human 
evaluation for determining the quality of the 
solutions described by the population: i.e., one or 
more humans evaluate the solution and provide the 
algorithm with some measure of quality of the 
individual or guide the search by interacting with the 
reproduction process (human-guided EAs).  

Interactive evolutionary art is based on 
interactive and human-guided EAs. Karl Sims 
(1991), for instance, used a human-guided EA for 
generating 2-dimensional abstract forms. Sims has 
an extensive body-of-work on artificial and 
evolutionary art that has been exhibited in art 
galleries and art festivals. Another important author 
in this field is William Latham. Like Sims, he used 
evolutionary algorithms and computer graphics in 
the early 1990s to generate digital images (Todd and 
Latham, 1992). Since then, several researchers and 
artists have been working on interactive 
evolutionary art, which has also been used in 
combination with swarm art. 

Aupetit et al. (2003), for instance, use an 
interactive EA for evolving the parameters of a 
swarm of artificial ants that interacts with the 
environment (canvas). Each ant competes with the 
other ants for color placement. Given a set of 
parameters, the ants are able to draw complex 
images, and they can even paint for several hours, 
giving a different painting in each moment. The 
sensory mechanism of the ants in (Aupetit et al., 
2003) was modeled in such a way that they are 
responsive only to the luminance values of the 
colors. 

Greenfield (2005) follows a different approach 
and uses ants that are responsive to tristimulus color 
values. Furthermore, he uses a non-interactive EA 
by designing fitness functions for evolving ant 
behavior. Later, the author increased the complexity 
of his model and designed ants that are responsive to 
both environmental stimulus and other ants’ direct 
stimulus, thus increasing the role of stigmergy in the 
model (Greenfield, 2006). 

These are just a few examples of swarm and 
evolutionary art, more related to the work described 
in this paper. There are many variants of generative 
art and other authors have been providing interesting 
compilations and state-of-the art reviews. Romero 
and Machado (2007), for instance, edited a book on 
evolutionary and artificial art that gathers some of 
the most relevant proposals in the field. Lewis 
(2007) gives an exhaustive review on the state of the 
art, not only on interactive and human-guided 
evolutionary art, but also on other types of artificial 
art. In this paper, we aim at contributing to a 
motivating field that blends art and science by using 
the KANTS clustering algorithm as a swarm-art 
creative tool. For that purpose, we use a simplified 
version of the algorithm that is described in the 
following section. 

3 KANTS 

The KANTS algorithm is an ant-based method for 
data clustering and classification. The term KANTS 
derives from Kohonen Ants, since the algorithm was 
partially inspired by Kohonen’s Self-Organizing 
Maps (Kohonen, 2001). However, KANTS is also 
based on AS and its working mechanisms are very 
similar to the algorithms in (Chialvo and Millonas, 
1995) and (Ramos and Almeida, 2001). The way the 
concept of pheromone is implemented is the main 
difference when comparing KANTS with AS. 

In this section, a simplified version of KANTS is 
described. Since performance is not an issue here, 
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the algorithm has been deprived of some parameters 
that can be useful for fine-tuning its behaviour, but 
are not fundamental for swarm art. The reader is 
referred to (Mora et al., 2008) for a detailed 
description of the original KANTS. Please note that 
although KANTS is different from traditional Ant 
Algorithms, it is stigmergic, and directly inspired by 
AS: its working mechanisms are simple extensions 
of the model’s set of equations. Therefore we use 
here the metaphor and the terminology associated 
with this kind of algorithms and models: ants, 
pheromone, reinforcement and evaporation. 

KANTS is based on the emergent properties of a 
set of simple units that travel through a 2-
dimensional grid. In KANTS, this habitat is mapped 
to an array with size ܰ ൈ ܰ ൈ ݀, in which ݀ is the 
dimension of the data vectors of the target-problem, 
and ܰ ൈ ܰ is the dimension of the grid. That is, each 
cell in the habitat is mapped to a ݀-dimensional 
vector. In addition, the ants also “carry” a ݀-
dimensional vector that corresponds to a data 
sample: each ant is in fact one data sample of the 
data set. The main idea of the algorithm is having 
data samples (ants) moving on (and updating a) an 
array of real-valued vectors with the same size of the 
samples. The dimension of the habitat affects the 
performance. In general, a ratio between the number 
of data samples and the size of the habitat (measured 
in number of cells) in the range ሾ1 3ൗ , 1 2ൗ ሿ provides 
a good basis for KANTS clustering abbility. 

The values of the grid’s vectors are initially set 
to a random value with uniform distribution in the 
range ሾ0, 1.0ሿ. Then, the ants are randomly placed in 
the grid (after the vectors they “carry” are also 
normalized within the range ሾ0, 1.0ሿ). In each 
iteration, each ant is allowed to move to a different 
cell of the habitat and modify that cell’s vector 
values. The ants move to neighboring cells using 
equations 1 and 2, taken from AS. 

ሺ݆ሻݓ ൌ ቀ1 ൅
ߪ

1 ൅ ߪߜ
ቁ
ఉ

 (1)

௜ܲ→௝ ൌ
.ሺjሻݓ rሺjሻ

∑ ሺjሻ௟∈ெ௢௢௥௘ݓ ௡௘௜௚.
 (2)

Equation 1 measures the relative probability of 
moving to a cell ݆ with pheromone density ߪ. The 
parameter ߚ) ߚ ൒ 0ሻ is associated with the 
osmotropotaxic sensitivity. Osmotropotaxis has been 
recognized by Wilson (1971) as one of two 
fundamental types of an ant’s sensing and 
processing of pheromone, and it is related to 
instantaneous pheromone gradient following. In 
other words, parameter ߚ controls the degree of 

randomness with which the ants follow the gradient 
of pheromone. The parameter ߜ) ߜ ൒ 0ሻ	defines the 
sensory capacity (1 ⁄ߜ ), which describes the fact that 
each ant’s ability to sense pheromone decreases 
somewhat at high concentrations. This means that an 
ant will eventually tend to move away from a trail 
when the pheromone reaches a high concentration, 
leading to a peaked function for the average time an 
ant will stay on a trail, as the concentration of 
pheromone is varied.  

Equation 2, which models the probability of an 
ant moving to a specific cell in the habitat ݆ 
belonging to the current cell’s Moore neighborhood, 
is defined after a discretization of time and space: 
௜ܲ→௝	is the probability of moving from cell ݅ to ݆, 
 ሺ݆ሻ is set to 1 if theݎ ሺ݆ሻ is given by equation 1 andݓ
cell ݆ is within a user-defined radius centered on the 
cell ݅ (or any other type of permitted target-region 
defined by the user) and 0 otherwise. The 
pheromone density ߪ in equation 1 is defined as the 
inverse of the Euclidean distance ݀ሺݒԦ௔,  Ԧ௖ሻ betweenݒ
the vector carried by ant ݊ ݒԦ௔௡ and the vector in cell 
ሺ݅, ݆ሻ at time-step t, ݒԦ௖௜௝ሺݐሻ: 

ߪ ൌ
1

݀ሺݒԦ௔௡, ሻሻݐԦ௖௜௝ሺݒ
 (3)

This way, an ant tends to travel to cells that are 
mapped to vectors which are “closer” to its own 
vector. (Please note that ݒԦ௔௡ is a data sample and 
therefore constant, while the vectors mapped by the 
grid are modified by the ants). The ants update the 
cell’s vector where they are currently on, according 
to equation 4, where ߙ ∈ ሾ0,1.0ሿ is a learning rate 
that controls how fast the cells’ vectors acquire the 
information carried by the ants. This is the equation 
that modifies the environment and shapes the images 
given in Section 5. Please note that this 
reinforcement action is proportional to the Euclidean 
distance between the ant’s vector and the cell’s 
vector: an ant tends to travel to cells with vectors 
more “similar” to its own, and, at the same time, 
they change that cell’s values, approximating them 
to their own values, at a rate that is proportional to 
the distance between the vectors.  

ሻݐ௖ሬሬሬԦሺݒ ൌ ݐ௖ሬሬሬԦሺݒ െ 1ሻ ൅ ߙ ቂ1 െ ݀ ቀݒ௔ሬሬሬሬԦ, ሻቁቃݐ௖పఫሬሬሬሬሬሬԦሺݒ . ሺݒ௔ሬሬሬሬԦ

െ ݐ௖పఫሬሬሬሬሬሬԦሺݒ െ 1ሻሻ 
(4)

ሻݐ௖ሬሬሬԦሺݒ ൌ ሻݐ௖ሬሬሬԦሺݒ െ ݇. ሺݒ௖ሬሬሬԦሺݐሻ െ ప௖ሬሬሬሬԦሻ (5)ݒ

Finally, the grid vectors are all evaporated in each 
time step. Evaporation, in KANTS, is done by 
updating the values according to Equation 5, where 
݇ ∈ ሾ0,1.0ሿ (usually a small value, in the range 
ሾ0.001, 0.1ሿ) is the evaporation rate and ݒప௖ሬሬሬሬԦ is the 
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vector’s initial state (at ݐ ൌ 0). Basically, the 
evaporation step pushes the vectors’ values towards 
their initial values. 

With this set of equations, the ants shape the 
environment, communicate via that environment, 
self-organize, and, after a certain number of 
iterations, congregate in clusters that more or less 
represent each class in the data set. Figure 1 
exemplifies the outcome of KANTS’ stigmergic 
behavior when applied to the iris flower data set 
(Fischer, 1936). The iris dataset consists of 150 
samples of vectors, 50 of each of three classes of iris 
flowers. Each vector has 4 variables, representing 
the 4 features from each sample. Therefore, KANTS 
works with a population of 150 ants in a 20 ൈ 20 
habitat. Parameters ߚ and ߜ are set to 32 and 0.2 
respectively, while ߙ is set to 0.5 and evaporation 
rate ݇ is set to 0.01. Figure 1 shows the state of the 
swarm at different time-steps. Each color represents 
a class. After 50 iterations the ants start to cluster. At 
	ݐ ൌ 	100, the Setosa cluster (red) is defined and 
separated. Versicolor and Viriginica are not 
separable but the algorithm has an interesting 
capacity of congregating Virginica samples (blue) in 
a region of the habitat. The stochastic nature of the 
algorithm and the lack of any local refinement 
mechanism makes that sometimes the clusters tend 
to break (see ݐ ൌ 150). However, these results and 
others (Mora et al., 2008) validate the algorithm as a 
non-supervised clustering algorithm.  

 

 
ݐ ൌ ݐ 0 ൌ 50 

 
ݐ ൌ ݐ 100 ൌ 150

Figure 1: KANTS: Evolution of the position of the ants in 
the grid. Iris flower data set. Red samples: Setosa; green 
samples: Versicolor; blue samples: Virginica. 

Mora et al. (2008) also describe a classification 
tool that uses information retrieved by the state of 

swarm. However, the pheromone maps (i.e., the 
grid) are used by the algorithm only for the ants to 
communicate, being discarded by the end of the run. 
The important components of KANTS as a problem 
solver are the clusters and the classification maps. 
Section 5 shows how the grid can be visualized as a 
kind of data’s fingerprint. But first, Section 4 
introduces the sleep staging problem and the data 
used for generating the pherogenic drawings. 

4 SLEEP SIGNALS 

Sleep is a state of reduced and filtered sensory and 
motor activity, within which there are different 
stages, each one with a distinct set of associated 
physiological and neurological features. The correct 
identification of these stages is very important for 
the diagnosis and treatment of sleep disorders. 
However, sleep classification is not completely 
standardized. Usually, sleep experts make the 
classification by visual methods, i.e., they analyze 
the signal and then, according to its patterns in a 
specific time period, they decide in which stage the 
patient was in that precise period. This method is 
time-consuming and prone to errors. Therefore, it is 
very important for biomedical sleep research to 
devise methods to extract the proper information that 
is later used for classification. Then, portable 
devices may be used for monitoring sleep (Krejcar et 
al., 2011) or for detecting sleep disorders (Acharya 
et al., 2010). However, automatic sleep classification 
is a hard computational problem that requires 
efficient solutions at different levels of the process.  

After extracting the relevant information from 
the signals associated with sleep — 
electroencephalography (EEG), electromyography 
(EMG) and electrooculography (EOG) — competent 
classification tools are also required for a correct 
identification of the sleep stages. Even though 
several attempts have been made to automate the 
classification, so far no method has been published 
that has proven its validity in a study including a 
sufficiently large number of controls and patients of 
all adult age ranges. 

Usually, the classification of sleep stages is made 
under the Rechtschaffen and Kales (1968) guidelines 
(R&K classification rules), which divide sleep into 
five stages: REM, NREM1, NREM2, NREM3 and 
NREM 4, with WAKE as an additional stage. The 
complete EEG, EOG and EMG records, divided in 
epochs, usually, each one with 30 second. 
Therefore, an 8-hour night-sleep consists in 960 
samples of six possible classes.  
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An automatic tool for classifying sleep data can 
be constructed under two different principles. In the 
first approach, the manual classification is mimicked 
and translated into an automatic process. Another 
approach extracts relevant information from the 
signals, quantifies it and then use traditional 
numerical classification system. In 1975, Hjorth 
(1975) proposed a method for extracting three 
parameters from EEG. The first is a measure of the 
mean power representing the activity of the signal. 
The second, called mobility, is an estimate of the 
mean frequency. The third estimates the bandwidth 
of the signal and represents complexity. The main 
advantage of Hjorth’s method is its low 
computational cost when compared to other 
methods. Furthermore, the time-domain orientation 
of this representation may prove suitable for 
situations where ongoing EEG analysis is required. 

 

Figure 2: Hypnograms of patients 4݌ ,3݌ ,2݌ ,1݌ and 5݌ 
(top to bottom). States, y-axis: 1 (NREM1); 2 (NREM2); 3 
(NREM3); 4 (NREM4); 5 (Awake); 6 (REM). 

However, our choice of the Hjorth parameters is 
merely practical: the three variables may be directly 

translated into RGB values, generating the desired 2-
dimensional representation of sleep. Besides Hjorth 
parameters, there other feature extraction methods. 
In fact, this is still an open problem. This paper does 
not deal directly with the sleep staging classification 
problem and therefore, novel techniques for 
extracting relevant features from the sleep signals 
are not required. The following section describes the 
resulting KANTS pheromone maps when applying 
the algorithm to a set of Hjorth parameters 
describing EEG signals of five adult sane patients. 

5 EXPERIMENTS 

For testing KANTS and retrieving its pheromone 
maps as RGB images, real data from five adult sane 
patients were used. The patients are labeled 01݌, 
 The EEG signals were .05݌ and 04݌ ,03݌ ,02݌
analyzed and each epoch classified within one of the 
R&K classes by a medical expert team. Then, the 
Hjorth parameters were extracted from those EEG 
signals. Five files with the parameters corresponding 
to the EEG signals of each patient were created. The 
files contain 844,	907, 769, 685 and 865 samples, 
respectively, from 01݌ to 05݌. Each vector is 
labeled with the class assigned by the experts. Since 
there are three parameters in the data set, the ants are 
described by ݒԦ௔ ൌ ሺݒ௔ଵ, ,௔ଶݒ  ௔ଵ is theݒ ௔ଷሻ, whereݒ
Hjorth activity value in the data set, ݒ௔ଶ is the 
complexity of the same vector in the data set value 
and ݒ௔ଷ is mobility value (see equation 3).  

Figure 2 shows the hypnograms of some patients. 
A hypnogram is a graphical representation of the 
stages of person’s sleep in a time-domain that allows 
a quick observation of a night’s sleep and the 
identification of possible sleep disorders. This study 
uses data from sane adults without diagnosed sleep 
disorders, which, if present, would disturb a normal 
hypnogram, but it is possible to observe that each 
patient generates rather different hypnograms. When 
applied to a stochastic algorithm like KANTS, it is 
expected that the resulting pheromone maps are also 
very different.  
KANTS habitat size is set to 200 ൈ 200. With this 
size, the ratio between the number of ants and the 
number of environmental vectors is much smaller 
than the values suggested in (Mora et al., 2008). 
However, the objective of this work is not to 
optimize the clustering ability of KANTS, but 
instead to generate images during the process. Given 
the size of the data sets, the suggested ratio would 
generate small images that could not be properly 
visualized and valued. Therefore, input files of each 
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patient’s data with 10 copies of each sample were 
created. The results in this section are the 
pheromone maps created by these enlarged sets, 
with sizes 8440 (01݌), (03݌) 7690 ,(02݌) 9070, 
  .(05݌) and 8650 (04݌) 6850

 

 

Figure 3: Pherogenic drawing of 05݌ sleeping period. 

Figure 4: Pherographic drawing of patients 01݌ (top-left), 
 .(bottom-right) 04݌ and (bottom-left) 03݌ ,(top-right) 02݌

 

Figure 5: Pherogenic drawing mixing the pheromone maps 
generated by 02݌ ,01݌ and 03݌. 

The algorithm was tested with the following 
settings. Parameters ߩ and ߜ are set to 32 and 0.2. 

These values are in the range of the parameter space 
that in (Mora et al., 2008) puts the system in the self-
organized state. Learning rate ߙ is set to 0.2 and 
evaporation rate ݇ is set to 0.0025. The algorithm 
stops after 50 iterations and the environmental 
lattice at ݐ ൌ 50 is used to generate the images in the 
RGB format. Each set of values was stored in 
200 ൈ 200 arrays, each one being the source for 
creating an RGB image: activity related values are 
used to model R values, while G and B are defined 
by complexity and mobility, respectively. The 
resulting image of patient 05݌ is shown in Figure 3 
while Figure 4 shows the drawings of patients 01݌to 
 It is clear that each night’s data set generates .04݌
unique drawings, even if there are common features 
to all of them. However, each one shows different 
patterns and major differences are also observed, 
namely in the dominant color of the drawings: 01݌, 
for instance, has a strong presence of a pinkish color, 
that is almost absent from the other pictures (except 
  .(where light patches of rose are present ,04݌
If we abandon the project of a univocal 
representation of a night’s sleep, the possibilities are 
endless. It is possible, for instance, to combine the 
maps generated by different data sets. Figure 5 
shows the result of mixing the environmental 
vectors. The image uses for R the activity-related 
vectors generated by 01݌ data, G values are set by 
the complexity values generated by 02݌, and B is 
defined by the mobility values of the environment 
shaped by patient 03݌. With such an uncorrelated 
input, the picture is more dynamic and vivid than the 
images generated by a single night’s sleep. 

 

Figure 6: Distribution of the samples over the class-
domain (the classes are assigned by the medical experts). 
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Although the hypnograms are clearly different 
for each patient, such state-time representations of 
the sleep do not help to interpret the differences 
observed in the pherogenic drawings of each patient. 
The main characteristics of the hypnograms are 
perceived in the time-domain. However, for 
KANTS, the sequence of events is not relevant. The 
behaviour of the algorithm only depends on the 
values of the samples, not on their order. Therefore, 
for interpreting the differences between the 
drawings, it is better to analyze the distribution of 
samples in each patient, as in Figure 6.  

By comparing the distribution of 01݌ with other 
patients, the main difference is its reduced number 
of class 4 (NREM4) samples. This fact could 
explain why the pherographic drawing of 01݌ has a 
clear distinct palette of dominant colors. As for	03݌, 
which generates a picture with darker tones, its ratio 
between class 6 and other classes is clearly higher 
than in other patients. This could explain its unique 
tone in the set of pherogenic drawings. These 
hypotheses are hard to demonstrate due to the 
stochastic nature of KANTS and the high number of 
variables involved in the process. However, it is 
expected that radically different distributions 
produce different images, since the samples are the 
artists here: they act upon the environment, shaping 
it, and the result of such actions depend on the 
values of the samples. Therefore, different samples 
may create different patterns.  

Being a art project, there is an unavoidable (and 
desired) subjectivity in this work. However, for the 
authors, the results are motivating, not only 
creatively, but also as a science-art experience. For 
long, sleep was a mysterious state that science and 
philosophy tried to study and interpret. In addition, 
dreams, an inseparable feature of human sleep, 
added a mystic aura to this physiological state. 
Having the opportunity of generating representations 
of sleep with a bio-inspired and self-organized 
algorithm is surely inspiring. Furthermore, the whole 
process is based on a kind of distributed creativity, 
i.e., the drawings are in part generated by the patient, 
since the data samples shape the environment, and in 
part created by the swarm and its local rules, from 
which global and complex behaviour emerges. 

6 CONCLUSIONS 

This paper describes a swarm art experiment 
conducted with an ant-based clustering algorithm 
called KANTS. The algorithm is able to create 
clusters of data samples by letting those samples 

(ants) travel trough a heterogeneous environment. 
The ants communicate via the environment and 
modify it. This work uses the resulting environment 
(pheromone maps) to create 2-dimensional color 
representation of data sets. In this case, sleep data is 
used. The input of the algorithm is the well known 
Hjorth parameter set, which describe the EEG signal 
in the time-domain. The resulting images are 
aesthetically interesting, with dynamic patterns and 
colors that spread through the canvas in a balanced 
way. They also have the interesting characteristic of 
being unique representations of a night’s sleep. The 
pherogenic drawings of human sleep are fingerprints 
of a person’s night sleep. Furthermore, they are the 
result of a distributed creativity, in part generated by 
the person/patient (or by the data generated by the 
patient during the sleep period), and in part created 
by the swarm and its local rules, from which global 
and complex behavior emerges. 

There are still some technical issues that limit the 
size of the environment, and therefore the size of the 
images. The computational time of the KANTS 
algorithm grows at least linearly with the number of 
vectors in the habitat, which means that a 2000 ൈ
2000 size image requires a computational cost that 
is 100 times the cost of creating a 200ൈ 200 sized 
image. Since creating 200 ൈ 200 pheromone maps 
takes 10-15 minutes, experiments with much larger 
sizes may be impractical at the moment.  

Sleep data with Hjorth parameters was chosen 
because the three parameters are suited for a direct 
translation into the RGB format. However, other 
feature extraction methods of the EEG signal could 
be used, providing that strategies for translating the 
values into the RGB image are devised. In addition, 
other type of data can also be tested. There are many 
benchmark problems and real-world data sets and it 
would be interesting to observe the resulting 
pherogenic drawings after different types of data. 
Another possibility is to create 3-dimensional 
objects, in which a fourth parameter shapes the 
object in a third axis. 
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