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Abstract: Water temperature influences most physical, chemical and biological processes of the river environment. It 
plays an important role in the distribution of fishes and on the growth rates of many aquatic organisms. It is 
therefore important to develop water temperature models in order to effectively manage aquatic habitats, to 
study the thermal regime of rivers and to have effective tools for environmental impact studies. The 
objective of the present study was to develop a water temperature model based on artificial neural networks 
(ANN) for two thermally different watercourses. The ANN model performed best in summer and autumn 
and showed a poorer (but still good) performance in spring. The many advantages of ANN models are their 
simplicity, low data requirements, their capability of modelling long-term series as well as have an overall 
good performance. 

1 INTRODUCTION 

Water temperature has both economic and 
ecological significance when considering issues such 
as water quality and biotic conditions in rivers 
(Caissie, 2006). As such, fish habitat suitability is 
highly dependent on stream water temperatures. It is 
therefore important to use adequate water 
temperature modeling approaches to effectively 
predict water temperature variability. 

Since the 1990’s, artificial neural networks 
(ANN) have been widely used in the field of 
hydrology, namely in modeling of precipitation and 
runoff, water demand predictions, groundwater, and 
water quality modeling (Govindaraju, 2000). One of 
the main reasons was the fact that ANN has the 
capacity to recognize relations between input and 
output variables without necessarily requiring any 
physical explications. This approach can be very 
useful in hydrology because most relationships are 
non-linear, very complex, and sometimes unknown. 
Although ANNs have been applied in many 
hydrological studies in recent decades, very few of 
these studies have dealt with the modeling of river 
water temperatures (Risley et al., 2003); (Bélanger et 
al., 2005); (Sivri et al., 2007); (Chenard and Caissie, 
2008), especially at the hourly time step (Risley et 
al., 2003). 

Therefore, the objective of this component of the 
study was to develop an ANN model to predict 
hourly river water temperatures using minimal and 
accessible input data. This model was applied to two 
thermally different watercourses and its performance 
was compared to other water temperatures models. 

2 METHODOLOGY 

2.1 Study Area 

The two study sites were located on the Miramichi 
river system (New Brunswick, Canada), which is 
world renowned for its population of Atlantic 
salmon. The first study site was located on the Little 
Southwest Miramichi River (LSWM) at 
approximately 25 km from the river mouth. The 
drainage area of this basin is 1190 km2 (Johnston, 
1997). The LSWM has a river width of 
approximately 80 m, with a depth of 0.55 m on 
average during mean flow conditions. No lateral 
variation of water temperatures were observed due 
to the well-mixed nature of the river (Caissie et al., 
2007). The canopy closer was less than 20%. 

The second study site was located on Catamaran 
Brook (Cat Bk) approximately 8 km upstream of the 
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mouth. It is the site of a 15-year multidisciplinary 
hydrobiological research study aimed at quantifying 
stream ecosystem processes and the impact of timber 
harvesting (Cunjak, Caissie and El-Jabi, 1990). 
Catamaran Brook has a drainage area of 27 km2 at 
the study site, an average stream width of 9 m and a 
depth of 0.21 m. Catamaran Brook is well-mixed 
due to high turbulence, similar to LSWM, but the 
brook is more sheltered by streamside vegetation 
and upland slopes. The canopy closer for Catamaran 
was estimated at 55%-65%. 

2.2 Water Temperature Model 

Water temperature data for the ANN were collected 
for the period of April 15 (day 105) to October 31 
(day 304) and for years between 1998 and 2007 at 
both CatBK and LSWM. This period corresponded 
approximately to the period of the year without ice 
cover, i.e., open water condition. Some years had 
missing data for a few days and these days were not 
included in the ANN model. Data were separated 
into two samples: training data (1998-2002) and 
validation data (2003-2007). 

The developed hourly ANN model of this study 
used six input nodes: air temperature (°C) of the 
present and previous hour, time of day (hour), the 
time of year (day), daily mean water temperature 
(simulated) (°C), and the mean daily water level (m). 
The selection of air temperature, as input data, was 
based on the availability of data and their strong 
correlation to water temperatures (Cluis, 1972); 
(Song and Chien, 1977); (Stefan and Preud’Homme, 
1993); (Mohseni and Stefan, 1999); (Bélanger et al., 
2005); (Chenard and Caissie, 2008). Daily mean 
water temperatures were first predicted from a daily 
ANN model (using air temperature (°C) of the 
present and previous day (°C), daily water level (m), 
and time of year (day)). The air temperature of the 
previous day was used as input because air and 
water temperature are strongly correlated 
(Kothandaraman, 1971); (Cluis, 1972). These daily 
mean water temperatures were then used as input 
data into the hourly ANN water temperature model. 
During the training, the observed daily mean water 
temperatures were used; however during the 
validation the simulated daily mean water 
temperatures were used to simulate the hourly 
temperatures. The output of the developed ANN 
model was hourly water temperature at both Cat Bk 
and LSWM. 

The feed-forward backpropagation ANN model 
was created using Matlab Student 7.1. For the 
application within the present study, the supervised 

learning process was used. The ANN model was 
adjusted for the minimum difference between 
predicted and observed water temperatures. The 
ANN model achieved optimal six input nodes, five 
hidden nodes in one hidden layer and only one 
output node. The transfer function (f(n)) used 
between each node was the hyperbolic tangent 
sigmoid transfer function, described as follows: 
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This function also represents well the non-linear 
processes usually found in hydrology (Smith, 1993); 
(Jain et al., 1996). 

2.3 Modeling Performance Criteria 

Three criteria were used to compare modeling 
performances: the root-mean-square error (RMSE), 
the coefficient of determination (R2), and the bias 
(Bias). They were selected because they are often 
used in modeling studies and results from these 
performance criteria were also available for other 
water temperature models at Cat Bk and LSWM. 
The root-mean-square error (RMSE) represents the 
mean errors associated to the model. The coefficient 
of determination (R2) represents the percentage of 
variability that can be explained by the model. The 
bias is an indication of the overestimation or 
underestimation of the water temperature model and 
represents the mean of errors. 

3 RESULTS 

Results of the ANN models (RMSE, R2, and bias) 
are represented in Table 1. The ANN model 
generally provided the best results at Cat Bk with a 
root-mean-square error (RMSE) of 0.63°C for the 
training and 1.19°C for the validation period. At Cat 
Bk, the coefficient of determination (R2) was 0.986 
(training) and 0.948 (validation). The bias was at 
0.00°C for the training period and -0.28°C for the 
validation period. For the LSWM, the ANN model 
performed comparably well, especially during the 
training (RMSE = 0.69°C and R2 = 0.989). 
However, during the validation period, the RMSE 
was higher at 1.62°C and a correspondingly lower 
R2 at 0.930. The bias for LSWM was 0.00°C 
(training) and 0.05°C (validation). Overall (all 
years), the ANN model performed well for both 
watercourses with RMSE of 0.94°C (Cat Bk) and 
1.23°C (LSWM) and with R2 of 0.967 (Cat Bk) and 

Modeling�of�River�Water�Temperatures�using�Feed-forward�Artificial�Neural�Networks

559



 

0.962 (LSWM). Water temperatures were slightly 
underestimated at Cat Bk with bias of –0.13°C and 
the overall bias for LSWM was very low (0.02°C). 

Table 1: Results of the ANN water temperature models. 

 Training Validation All years 
 (1998- 2002) (2003-2007) (1998-2002) 
    

Cat. Bk    
RMSE 0.63 1.19 0.94 

R2 0.986 0.948 0.967 
Bias 0.00 -0.28 -0.13 

    
LSWM    

RMSE 0.69 1.62 1.23 
R2 0.989 0.930 0.962 

Bias 0.00 0.05 0.02 

Table 2: Results of the seasonal analysis. 

 Training Validation All years 
 (1998-2002) (2003-2007) (1998-2002)
    

Spring 

Cat. Bk    
RMSE 0.70 1.38 1.06 

R2 0.979 0.920 0.951 
Bias 0.01 -0.02 -0.01 

    
LSWM    

RMSE 0.85 1.76 1.38 
R2 0.979 0.922 0.947 

Bias 0.02 0.78 0.39 

Summer 

Cat. Bk    
RMSE 0.64 1.02 0.85 

R2 0.942 0.865 0.901 
Bias 0.00 -0.32 -0.16 

    
LSWM    

RMSE 0.67 1.61 1.23 
R2 0.961 0.776 0.868 

Bias -0.02 -0.20 -0.11 

Autumn 

Cat. Bk    
RMSE 0.47 1.25 0.94 

R2 0.979 0.856 0.915 
Bias 0.00 -0.53 -0.27 

    
LSWM    

RMSE 0.52 1.39 1.00 
R2 0.985 0.890 0.943 

Bias 0.02 -0.47 -0.19 
 

Table 2 shows the performance of the model on a 

seasonal basis. Spring was between April 15 and 
June 21 (day 105-171), summer between June 22 
and September 20 (day 172-263) and autumn 
between September 22 and October 31 (day 264-
305). For the training period, autumn showed the 
best performance with a RMSE of 0.47°C (Cat Bk) 
and 0.52°C (LSWM). Spring (training period) 
showed a poorer performance with RMSE of 0.70°C 
(Cat Bk) and 0.85°C (LSWM). RMSEs during the 
summer were similar at Cat Bk and LSWM with 
values of 0.64°C and 0.67°C. Coefficients of 
determination (R2) were similar in autumn and 
spring with values over 0.979; however, lower 
values were observed in summer (0.942-0.961). The 
biases were generally small for both watercourses 
for the training period with seasonal values less than 
±0.02°C. 

Seasonal results were similar during the 
validation period, although RMSEs and biases were 
generally higher with lower R2. Highest RMSEs 
were observed during the spring (1.38°C Cat Bk and 
1.76°C LSWM) and best performances were in 
summer in Cat Bk (1.02°C) and autumn in LSWM 
(1.39°C). Summer had the lowest R2 (0.776), 
whereas spring had the highest R2 (0.922). Spring 
showed a general overestimation of predicted water 
temperature in LSWM with a bias of 0.78°C. In 
general (all years), the ANN model showed similar 
seasonal performances in Cat Bk and a better 
performance in summer and autumn for LSWM. 

4 DISCUSSION 

Most ANN models have estimated daily mean water 
temperatures. The modeling of hourly stream water 
temperature in this study was found to be as good as 
the modeling of daily mean stream water 
temperatures. For example, Chenard and Caissie 
(2008), who modeled daily mean stream 
temperatures in Catamaran Brook using an ANN, 
achieved similar results with overall RMSE of 
0.96°C and R2 of 0.971. Bélanger et al. (2005) 
calculated an overall RMSE of 1.06°C when 
applying an ANN model at Catamaran Brook (daily 
mean temperatures). The study by Bélanger et al. 
(2005) used only air temperature and water level as 
input parameters. Risley et al. (2003) have 
developed a more complex ANN model for 148 sites 
in western Oregon on a short-term period (June 21 to 
September 20, 1999). Three different ANN models 
were developed to estimate hourly water 
temperatures along 1st, 2nd, and 3rd order streams 
using meteorological data (air temperature, dew-
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point temperature, short-wave solar radiation, air 
pressure, and precipitation), riparian habitat 
characteristics (stream bearing, gradients, depth, 
substrate, wetted widths, and canopy cover), and 
basins landscape characteristics (topographic and 
vegetative), acquired by using a geographic 
information system (GIS). Their results showed 
RMSEs ranging between 0.05°C and 0.59°C and 
with R2 ranging from 0.88 to 0.99. 

Comparison of seasonal performance showed 
that the ANN model performed best in summer or 
autumn, which is consistent with other temperature 
models (Caissie et al., 1998); (Caissie et al., 2005); 
(Chenard and Caissie, 2008). It could suggest the 
potential role of discharge in the modeling 
performance, as low water levels are usually 
observed in autumn and mid-summer, resulting in 
more effective thermal exchange and giving better 
performances. The poorer but still good performance 
in spring could be explained by the higher discharge 
caused by snowmelt, resulting in a poorer air to 
water temperature relationship (Caissie et al., 1998). 
The performance of the model was closely linked to 
water levels, meaning that the performance was 
better when water levels were low. At LSWM, the 
ANN model performed best in autumn for all the 
years, whereas at CatBk, some years had their best 
performance during summer. These results suggest 
that the thermal exchange is more efficient for less 
sheltered river under low flow (autumn at LSWM). 
CatBk is more sheltered and could potentially be 
influenced by other factors (ex., groundwater) 
reducing the efficiency of the thermal exchange. For 
example, Hébert, Caissie, Satish, and El-Jabi (2011) 
showed that the impact of groundwater on hourly 
water temperatures was more significant on smaller 
streams, like CatBk. 

The training period showed better results than 
the validation period, which is consistent in 
modeling. Daily water levels used in the modeling 
were estimated using power functions (Caissie, 
2004). Using hourly water levels instead of daily 
water levels could potentially improve the modeling, 
especially during days that discharge varied 
significantly. However, hourly water levels were not 
available for the present study. 

ANN models have major advantages over more 
commonly used water temperature models, as they 
do not need many input data. In this case, only air 
temperature and water level time series were used to 
achieve good predictions. For instance, deterministic 
model needs many hydrological and meteorological 
parameters that are not always readily available 
(e.g., solar radiation). Another major advantage of 

ANN is that they are easy to use and very simple in 
their application. However, ANN models cannot 
give any physical explanation of the relationship 
between the input and output data. These models 
should therefore be used with caution, especially 
when using input data that are outside the range of 
the calibration period (Risley et al., 2003). 

5 CONCLUSIONS 

This study showed that artificial neural network 
(ANN) could be an effective tool for the prediction 
of hourly stream temperatures. ANN models 
achieved comparable or better performances to other 
water temperature models reported in the literature, 
with RMSE of 0.94°C at Cat Bk and 1.23°C at 
LSWM. ANN models showed a good generalization 
capability by modeling well water temperature time-
series. ANN was effectively applied on two 
thermally different streams and provides similar 
results and performances. As such, ANN models can 
be considered as effective modeling tool in water 
resources and fisheries management. 
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