

Quality Improvement of Requirements Specification

 using Model Checking Technique

Yoshitaka Aoki1, Shinpei Ogata2, Hirotaka Okuda1 and Saeko Matsuura1
1Graduate School of Engineering and Science, Shibaura Institute of Technology,

 307 Fukasaku, Minuma-ku, Saitama-City, Saitama 337-8570, Japan
2Department of Computing, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 Japan

Keywords: Requirements Analysis, Quality Improvement, Model Checking, Model Driven Development.

Abstract: A key to success of high quality software development is to define valid and feasible requirements

specification. We have proposed a method of model-driven requirements analysis using Unified Modelling

Language (UML). The main feature of our method is to automatically generate a Web user interface

prototype from UML requirements analysis model so that we can confirm validity of input/output data for

each page and page transition on the system by directly operating the prototype. This paper proposes a data

life cycle verification method using a model checking technique UPPAAL. Exhaustive checking improves

the quality of requirements analysis model which are validated by the customers through automatically

generated prototype.

1 INTRODUCTION

Model Driven development (Paulo et al., 2005;

Monteiro et al., 2010; Forward et al., 2010; Rational

Software Modeler) is a promising approach to

develop high quality software products efficiently.

Supporting Tools such as a source code generator

and several domain specific languages have been

proposed (Rational Software Modeler). However, to

obtain high quality source codes, appropriate models

that meet customer's requirements should be well

defined at the requirements analysis phase which is a

start point of the system development. At the

requirements analysis phase, it is difficult to strictly

define requirements analysis models so that they can

be translated into the source codes. This is because

that the user requirements are often ambiguous,

imprecise, insufficient and incomplete. To make the

requirements analysis models precise, the developers

should fully understand user requirements and

define the problems that the customer is trying to

solve as precisely as possible. Moreover, the

requirements specification is the result of analysis so

that it can offer correct and sufficient information to

the following phases to generate the final product

automatically.

We have proposed a method of model-driven

requirements analysis (Ogata and Matsuura, 2008;

Ogata and Matsuura, 2010) using Unified Modelling

Language (UML). The main feature of our method is

to automatically generate a Web user interface

prototype from UML requirements analysis model

so that we can confirm validity of input/output data

for each page and page transition on the system by

directly operating the prototype.

Models are effective in specifying the target

system by the different aspects. However, the

resultant integrated model often has some defects

that are difficult to detect on each individual model

such as omissions on entity data life cycle.

This paper proposes a data life cycle verification

method using a model checking technique.

Exhaustive checking improves the quality of

requirements analysis model which are validated

through automatically generated prototype.

Based on the method and the supporting tool,

this paper discusses validation and verification

process on the requirements specifications. The rest

of the paper is organized as follows. Section 2

explains what is the goal and the requisite quality of

requirements specification. Section 3 explains the

process of our model driven requirements analysis.

Section 4 explains the verification process using

Model Checking technique.

401Aoki Y., Ogata S., Okuda H. and Matsuura S..
Quality Improvement of Requirements Specification using Model Checking Technique.
DOI: 10.5220/0004156104010406
In Proceedings of the 14th International Conference on Enterprise Information Systems (MDDIS-2012), pages 401-406
ISBN: 978-989-8565-11-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2 THE GOAL AND THE

QUALITY OF REQUIREMENTS

SPECIFICATION

One of the goals that a requirements specification

needs achieving is that the customers can validate

that the specification meets their expectations from

the viewpoint of the actual usage. Namely, they

want to confirm how to use the system to get their

desired service. The other goal is that the developer

can verify the specification so as to confirm the

feasibility of the specification. Namely, it is

important that a requirements specification has no

ambiguity for the developers at the design phase

about the terms and their relations among it, so that

all the sentences can be interpreted by them in

uniquely. All the expected responses of the system at

every effective usage of it need specifying from the

viewpoint of the input/output data. Moreover, it is

required that there is no contradiction in the relation

between behaviour and data on the requirement.

Even if a requirements specification is written in not

natural language, but such diagrams as UML and

screen images, the qualitative problems may still

remain unsolved. This is because these qualitative

problems cannot be checked by using such an

executable integrated model as program codes.

IEEEstd.830 (IEEE Computer Society, 1998) has

been known as a standard of requirements

specification construction. When most developers

specify a requirements specification according to the

standard, it is difficult for them to fully pay attention

to interrelationship between all components in the

documents so as to achieve the goal of a

requirements specification.

As our model-driven requirements analysis

method has argued, models are effective in

specifying the target system by the different aspects.

However, the resultant integrated model often has

some defects that are difficult to detect on each

model such as omissions on entity data life cycle.

Model checking is a promising approach because

it has a mechanism exhaustive checking. Several

researches (Achenbach and Ostermann, 2009; Bao

and Jones, 2009; Aoki and Matsuura, 2011) on

model checking have been proposed about detecting

defects on source codes. However, to define

application dependent formulas for checking of the

target mode, the ambiguity of the models need to be

removed.

We propose a stepwise development method of

requirements analysis models so that we can check

various application dependent formulas stepwise.

3 MODEL DRIVEN

REQUIREMENTS ANALYSIS

PROCESS

3.1 Outline

To validate and verify the requirements specification

at the requirements analysis phase, we propose the

following model driven requirements analysis

process as shown in Figure 1.

Figure 1: Validation and Verification of Requirements

Analysis Model.

At the second step, the developer refines the model

from the feasibility of the requirements for each use

case. To achieve the feasibility of the requirements

specification, the developers must confirm that a

sequence of actions and data flows within the system

partition of the activity diagrams can produce the

expected output data from the specified input data.

System side Prototype helps the developers to

confirm that input data being defined by the user can

be transformed into entity data of the system.

Moreover, actions in the system can be specified

with data life cycle functions. Data life cycle means

that every data in a system has such four functions

as create, read, update and delete. These functions

are called CRUD of data, and several general rules

are set on them for the consistecy.

After the developer has revealed the feasibility of

the required interaction, the model is translated into

the UPPAAL (UPPAAL, 2010) model which is one

of known model checking tools. He/she can

exhaustively verify whether the requirements

analysis model meets the other required conditions.

At this time, the behavioural relations between these

four CRUD functions can set several rules in the

basic system behaviour on every entity data on the

requirements specification (see Figure 5).

ICEIS 2012 - 14th International Conference on Enterprise Information Systems

%p

3.2 A Method with Automatic

Prototype Generation

At requirements analysis phase, developers extract

requirements for a system from customers and

generally specified them by defining semiformal

documents. Recently, many developers have been

getting to use UML, so that requirements

specifications can be defined more formally. We

have proposed a method of model-driven

requirements analysis using UML. We analyze

functional requirements of services as well as use

case analysis. Especially, because what customers

essentially want to do obviously appear within the

interaction between a user and a system, our method

proposes to clearly model the interaction.

To put it concretely, we specify business process

as a service from the following four viewpoints.

 Based on the business rules, what kinds of

input data and the conditions are required in

order to execute a service correctly?

 To observe the business rule, what kinds of

conditions should be required in case of not

executing the service? Moreover, how the

system should treat these exceptional cases?

 According to these conditions, what kinds of

behaviors are required in order to execute the

service?

 What kinds of data are outputted by these

behaviors?

Based on the above mentioned four viewpoints,

both business flow and business entity data which

are required to execute the target business are

defined by activity diagrams and a class diagram in

UML.

An activity diagram specifies not only normal

and exceptional action flows but also data flows

which are related with these actions. An action is

defined by an action node and data is defined by an

object node being classified by a class which is

defined in a class diagram. Accordingly, these two

kinds of diagrams enable us to specify business flow

in connection with the data. This is one of the

features of our method on how to use activity

diagram and class diagram. Especially, the

interaction between a user and a system includes

requisite various flows and data on user input,

conditions, output to execute a service correctly.

The second feature is that an activity diagram has

three kinds of partitions being named User,

Interaction, and System. This is because that these

partitions enable us to easily recognize the following

activities; user input activities, interaction activities

between a user and a system which are caused by the

Figure 2: UI Prototype.

conditions to execute a service, and the resulted

output.

The third feature is that we use an object diagram

to define concrete data for each activity, because

concrete valid data make it easy for us to confirm

business process.

The fourth feature is that a prototype which

consists of Web pages written in HTML is

automatically generated from these three kinds of

diagrams. The prototype which is a kind of final

product model enables the customers to confirm

plainly and easily the requisite business flows in

connection with the data. The generated prototype

describes the required target system except user

interface appearance and internal business logic

processing. Moreover, the prototype enables the

developer to confirm and understand the

correspondence between his/her models and the final

system. The developer defines three kinds of

diagrams along requirements analysis from such

different viewpoints as action flows, data flows and

the structure, and the concrete values. The

automatically generated prototype enables him/her

to easily understand the consistency between his/her

models and the target system. To be able to fully

understand the correspondence between each

diagram and the target system, a prototype can be

Quality Improvement of Requirements Specification using Model Checking Technique

%p

generated whenever the developer want to confirm

at the requirement analysis phase. The requirement

analysis model is defined by using the astah* (astah)

of a modeling tool.

3.3 Scenario-based Prototype

At the stage where almost business flows and data

structure have been defined from the above

mentioned viewpoints, we define scenarios in which

each flow has valid concrete data. We can get

scenario-based prototypes to confirm that every flow

correctly processes appropriate concrete data as a

service. From another viewpoint, this work can be

regarded as a work of defining integrated test cases.

We can automatically generated integrated test cases

from the requirement analysis model. The generated

test cases can be tested by Selenium IDE (Slenium

IDE).

Figure 3: Scenario based Prototype.

3.4 System-side Prototype

At the stage where the customers have confirmed

that the prototype satisfactorily represents their

requirements, we can say that the first goal of the

requirements specification have achieved. To

achieve the second goal of the requirements

specification, the developers must confirm that a

sequence of actions and data flows within the system

partition of the activity diagrams can produce the

expected output data from the specified input data.

The system side prototype helps the developers

to confirm the following facts.

 Input data being defined by the user can be

transformed into entity data of the system.

The existent entity data that should be generated

via the other use cases and the above mentioned

entity data can generate the target output data

following the specified action sequence.

Figure 4: System-side Prototype.

4 VERIFICATION OF

REQUIREMENTS

SPECIFICATION USING

MODEL CHECKING

TECHNIQUE

4.1 Model Checking Technique

Model checking has been favored as a technique that

helps improve reliability in the upper process of

software. The model-checking tool uses temporal

logic. It is inspected whether to fill a property in

which a model is demanded from a system. When

the specified state is not filled, the tool presents a

counterexample. The process can be confirmed by

the simulation facility. There are several model-

checking tools, including UPPAAL, SPIN and

PathFinder. Although model checking technique is a

promising approach, it is generally difficult to

specify an appropriate formula so that the system

meets the property at the early stage of requirements

analysis because of the ambiguity. However, if the

requirements specification is defined as specifically

as the above mentioned, we can verify the data life

cycle of every entity data in the system.

4.2 Verification Process

We can verify that each entity class data is

guaranteed the life cycle during all action flows in

the whole activity diagrams as follows.

ICEIS 2012 - 14th International Conference on Enterprise Information Systems

%p

1. Each activity diagram of the validated

requirements analysis model is automatically

translated into a UPPAAL model.

2. Generate concrete lifecycle model for each

extracted entity class from the CRUD

behavioral model as shown in Figure 5. These

models can be synchronized by the common

CRUD actions

3. Several rules on execution order of CRUD

functions are checked on UPPAAL model.

Define a path formula :

A[] (Object null(1,1).Pre Read imply

Create(1).EXECUTED)

This formula means that an entity object must be

created before it is read.

4. When the result of UPPAAL simulation shows

"Property is not satisfied", the counterexample

is required to be investigated. In this case, we

can detect the location in which the entity

object will be read though it has not yet been

created. The red location on Figure 5 denotes

an occurrence of deadlock. The support tool

shows the correspondence action in the activity

diagram to the location in which the object will

be read.

The path to the detected action is investigated so

as to detect the cause. The model is modified and we

can try to recheck on UPPAAL model.

Figure 5: Behaviour of CRUD Functions in UPPAAL

Model.

5 RELATED WORKS

Several researchers have proposed respective formal

approach to verification of some specified features at

the upper process of software development. Yatake

(Yakate et al., 2005) verified that all object states

satisfy the invariant conditions between

collaborative object behaviors by using a theorem

proving system. However, it takes a large quantity of

strict definitions to clarify all the actions and data

related to the invariant. Generally it is difficult to

carry out such strict works at the changeable phase

such as requirements analysis.

It is important to do stepwise refinement of the

specification by checking several verifiable features

at the early stage of software development. Choi

(Choi et al., 2005) proposed a verification method of

the consistency between the page transition

specification on a Web-based system and the flow

chart defining the process flows. We also proposed a

common verifiable feature in enterprise systems

such as the rules on CRUD of entity data. Moreover

we can automatically generate some path formulas.

Achenbach (Achenbach and Ostermann, 2009)

compared the abstraction techniques in various

model-checking tools and applied these tools to real

world problems. For example, the open/close

behavior of the File IO stream was modeled using

the transition between states such as open, close, and

error. This approach is very similar to ours.

However, unlike our approach, this paper did not

discuss the method on the assumption that the

requirements specification has been validated by the

customers.

6 CONCLUSIONS

We could detect several inconsistencies among

entity class data life cycle through some experiments.

This made it clear that some action flows in a use

case were oversight.

 Model Driven development is a promising

approach to develop high quality software products

efficiently. However, to obtain high quality source

codes, appropriate models that meet customer's

requirements should be well defined at the

requirements analysis phase which is a start point of

the system development. This paper proposed a

verification method with UPPAAL to improve the

feasibility of requirements specification. Although

detectable property is related to general data life

cycle at present, we will apply this method to the

relation between the attributes of data.

REFERENCES

Paulo, Rogerio; Carvalho, Adriano,Towards model-driven

design of substation automation systems, 8th

Quality Improvement of Requirements Specification using Model Checking Technique

%p

International Conference and Exhibition on CIRED,

pp.1 – 5, 2005.

Monteiro, R.; , Mdgore:

Towards Model-Driven and Goal-Oriented

Requirements Engineering, 18th IEEE International

Requirements Engineering Conference, pp. 405 – 406,

2010.

Forward, A.; Badreddin, O.; Lethbridge, T.C. Towards

combining model driven with prototype driven system

development, 21st IEEE International Symposium on

Rapid System Prototyping (RSP), pp.1 – 7,2010.

Rational Software Modeler, http://www.06.ibm.com/

software/jp/rational/products/design/rsm/.

S. Ogata, and S. Matsuura, “A UML-based Requirements

Analysis with Automatic Prototype System

Generation,” Communication of SIWN, Vol.3, Jun.

2008, pp.166-172.

S. Ogata. and S. Matsuura, “A Method of Automatic

Integration Test Case Generation from UML-based

Scenario,” Wseas Transactions on Information

Science and Applications, Issue 4, Vol.7, Apr 2010,

pp.598-607 .

UML, http://www.uml.org/

IEEE Computer Society, IEEE Recommended Practice for

Software Requirements Specifications, IEEE Std 830

(1998).

Achenbach, M., Ostermann, K “Eng nee ng bs ns

 n M de Che k ng nd Tes ng” S u e C de

Analysis and Manipulation, Proc. of .SCAM ’09., pp.

Bao, T., Jones, M.D. 2009. Test Case Generation Using

Model Checking for Software Components Deployed

into New Environments. Proc.of ICSTW ’09, pp. 57–

66,2009.

Y. Aoki and S. Matsuura, A Method for Detecting

Unusual Defects in Enterprise System Using Model

Checking Techniques, Proc of The 10th WSEAS

International Conference on Software Engineering,

Parallel and Distributed Systems, pp., 2011.

UPPAAL, http://www.uppaal.com/, 2010.

astah*, http://www.change-vision.com/

Slenium IDE, http://seleniumhq.org/

Kenro Yatake, Toshiaki Aoki, Takuya Katayama,

Collaboration-based verification of Object-Oriented

Models, Computer Software, Vol.22, No.1, pp.58-76,

2005. (in japanese)

Eun-Hye Choi, Takanori Kawamoto, Hiroshi Watanabe,

Model Checking of Page Flow Specification,

Computer Software, Vol.22, No.3, pp.146-153, 2005.

(in japanese)

 henb h M Os e nn K ”Engineering Abstractions

 n M de Che k ng nd Tes ng” S u e C de

 n ys s nd M n pu n f SC M ’09

pp.137-146

ICEIS 2012 - 14th International Conference on Enterprise Information Systems

%p

https://www.jstage.jst.go.jp/AF06S010ShsiKskGmnHyj?chshnmHkwtsh=Eun-Hye+CHOI
https://www.jstage.jst.go.jp/AF06S010ShsiKskGmnHyj?chshnmHkwtsh=Takanori+KAWAMOTO
https://www.jstage.jst.go.jp/AF06S010ShsiKskGmnHyj?chshnmHkwtsh=Hiroshi+WATANABE

