
Agile Models Need to be Bottom-up
Adding Productivity to a Late Project Makes it Later

Pietu Pohjalainen
Department of Computer Science, University of Helsinki, Helsinki, Finland

Keywords: Agile Modeling, Bottom-up Modeling, Productivity.

Abstract: Model-driven architecture is a top-down approach to software engineering. Due to its heavy emphasis on
tools and process, it has not been considered to be not a good fit for agile time-boxed iterations. Light-
weight models are often a better alternative in agile development. However, we argue that in order to realize
productivity gains, these models can and should be brought as software architecture level entities.

1 INTRODUCTION

Productivity is a key issue in professional software
engineering. In many software businesses, being able
to produce more functionality in a given timeframe is
advantageous: in a productive environment customers
gain more value from software projects, and project
professionals have higher job satisfaction.

Agile process methods currently help projects to
avoid big mistakes of producing the wrong prod-
uct to the wrong customer at wrong time. Im-
proved communication with the customer, learning
effect within agile iterations and time-boxed devel-
opment all contribute as process-level reinforcements
to project work. However, relatively little attention
is given to actual productivity improvements in agile
projects. This is surprising, given the fundamental na-
ture of productivity and productivity improvement in
history of industrialized world.

Model-driven engineering is a recent movement
with an attached promise for improved productivity.
Productivity gains in limited domains, such as com-
piler construction makes the idea of raising the level
of abstraction appealing. However, combining agile
process with engineering approaches that include any
significant investment, or up-front planning, before
the engineering discipline can be employed can turn
out to be problematic.

To fix these problems, we propose a flavor of
model-driven engineering that accounts the restric-
tions imposed by agile software development process
models. This bottom-up agile model-driven develop-
ment recognizes smaller sub domains within the soft-
ware that are amenable for lightweight modeling. Th-

ese small models can be used in traditional source-to-
target generative programming or in some cases the
source code itself can be treated as the source model,
thus reducing redundancy. The bottom-up model-
ing approach entails lighter initial investment than
domain-specific modeling, and thus allows fast ex-
perimentation cycle within the limits of tightly time-
boxed agile iterations.

Tools with higher investment costs, or steeper
learning curve are problematic in the time-boxed de-
velopment models. This causes a paradox: produc-
tivity is defined by the rate of output to effort. When
investing to better productivity, the investment can eat
up all the expected gains, due to the short visibility
time in a cycle-driven process. In the conclusion of
the mythical man month (Brooks, 1995) it was found
out that adding more people to a late project makes
the project later. A similar effect can be seen here:
adding productivity at a late stage of a project makes
the overall effort higher.

The rest of the paper is structured as follows.
Section 2 introduces the basic equations of process
improvement for software development and explains
how they relate to agile processes. Section 3 reviews
modeling related disciplines, namely model-driven
architecture (MDA) and agile model-driven develop-
ment (AMDD) and in the context of agile software
development. In section 4 we propose a lighter ap-
proach, called bottom-up modeling. Bottom-up mod-
eling takes the special characteristics of agile methods
into account, and makes it feasible to realize produc-
tivity gains associated with generative programming
in agile projects. Section 5 shows an example case on
how different modeling formalisms can be combined

395Pohjalainen P..
Agile Models Need to be Bottom-up - Adding Productivity to a Late Project Makes it Later.
DOI: 10.5220/0004155903950400
In Proceedings of the 14th International Conference on Enterprise Information Systems (MDDIS-2012), pages 395-400
ISBN: 978-989-8565-11-2
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

to produce meaningful systems. Section 6 sets out the
summarizing words and casts out the future work.

2 ECONOMIC MODEL

When investing in process improvement in software
development, the obvious question is how to esti-
mate the return-on-investment. Return-on-investment
is calculated by dividing the difference of benefits and
costs of a change by the costs of the change, as shown
in formula (1).

(1)ROI =
Gain�Cost

Cost
Being an abstract activity, it is very hard to esti-

mate causes and effects in software development. For
this reason, also giving exact figures for estimating
whether process improvement is justifiable, is prob-
lematic in many cases. However, the general princi-
ples of economic thinking can be used to guide in de-
cision making, although the exact numbers for a given
decision might be impossible to calculate.

When a software development team is given a task
to implement a software product, the total cost for the
project can be calculated to be

(2)OC �OT

Where OC stands for operational cost and OT
stands for operational time.

For example, if the average cost of one man-
month, including the salaries, office spaces, cost of
computers and so on, in the project is 10 units, oper-
ating a software development team of ten people costs
100 units per month. If the software development
project takes five months, the total cost for the devel-
opment project is 500 units. Economic decision cri-
terion for improving total cost, using any given tech-
nology or managerial decision can be expressed as:

(3)OC �OT >Cost +OC �OT 0

In other words, the initial investment to implement
new practice or employ new techniques within the
project can be justified if the reduced costs with new
operations amortized over total operational time are
smaller than the alternative of running the operations
without changes.

Let us have a hypothetical development practice
that gives 25% improvement on productivity with no
consequences on schedule or personnel wages. Im-
plementing this practice has a fixed cost of 50 units
and it is immediately implementable whenever the
project chooses to. If available at the beginning of the

project, it clearly should be employed, as the improve-
ment on productivity shortens the required time to im-
plement the project from five months to four months,
thus enabling a faster time-to-market opportunity and
clear savings on overall expenses.

However, with agile sprints, the productivity im-
provement should return its investment within an on-
going sprint. This is because there is no guarantee that
the project continues after the current iteration. To be
able to justify this investment with a one-month sprint
length, the promised productivity gain should shorten
the required operational time from one month to half,
which equals a productivity gain of 100%. Improve-
ments of this magnitude are likely to be available only
for very poorly performing teams.

In reality, this kind of reasoning for real software
projects is very hard, maybe impossible. The exam-
ple assumes a fixed amount of work, which seldom
is the case. Productivity rates vary between individ-
uals and team mix-up in orders of magnitude, and
the hypothetical instant productivity boon option is
just a project manager’s daydream. However, the ba-
sic principle behind equation (3) is often encountered
in software development organizations: new prac-
tices and technologies are discovered, and a return-
on-investment justification needs to be found for em-
ploying the practice in question.

3 MODELING AND AGILITY

Agile process improvement literature focuses mainly
on process-level practices. Less emphasis is given
to the actual software structures that are designable
in an agile process. This section reviews techniques
that have an attached productivity promise: the Ob-
ject Management Group’s Model-Driven Architecture
(Miller and Mukerji, 2003) and the Agile Model-
Driven Development (Ambler, 2004).

We argue that the classical model-driven architec-
ture’s approach is not very suitable for agile process
due to its heavy emphasis on tools and model trans-
formations. Then we propose that agile model-driven
development cannot be justified from productivity an-
gle, as the lack of formality in agile models prevents
the usage of automated handling. Domain-specific
modeling is seen as a good trade-off between formal-
ity and agility, but is still staying short of good agility
due to its emphasis on specific tool usage.

3.1 Model-driven Architecture

Model-driven architecture approaches re-usability by
separating concepts into three layers: platform inde-

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

396

Figure 1: A UML model with transformations to Java and
SQL.

pendent model (PIM), platform-specific model (PSM)
and program code. Traversal between these layers
is done via transformers: a platform independent
model is translated to a platform-specific model by
using a transformer, which augments the model with
platform-specific attributes. A similar transformation
is applied when translating the PSM into program
code.

A typical platform independent model is ex-
pressed as a UML class diagram, which contains only
class attributes, maybe with programming language-
level visibility information and data type annotations.
A transformation creates corresponding programming
language, e.g. Java classes, with accessing methods
for each of the public attributes; or data-definition
statements for a relational database.

Figure 1 represents a typical case, in which a class
model expressed in UML is transformed to program-
ming language code by one transformation. Another
transformation generates the corresponding database
definition. These transformations contain platform-
specific parametrization, as the transformation con-
tains information about the target platform. In the
UML-to-Java transformation, UML standard visibil-
ity rules are followed; but a data type transforma-
tion from UML integer to Java int is performed. In
the UML-to-SQL transformation, similar platform-
specific knowledge is being encoded. Most notably,
the transformations contain also information about
the system that are not shown in the source model.
For example, the knowledge about different field sizes
for Name and Address fields that have the same data
type in the source model is encoded into the transfor-
mation.

A notable shortcoming in the agile mindset of us-
ing UML class diagrams to express the platform inde-
pendent models is the lack of extensibility. The class
diagram can directly express only a limited set of pa-
rameters, such as visibility, data types, and default
values. Further extensions require using UML pro-
files, which may or may not be supported by the used
toolset. This is a heavyweight way of producing pro-
ductivity: toolset evaluation takes time. Even through

the after the most rigorous evaluation, a toolset’s suit-
ability to project needs are known up to a certain limit.
Only practice will reveal whether the toolset actually
delivers its promised functionality, as any seasoned
professional can witness.

Another problem is that given the current fast
rate of change in technology choices and architectural
evolution in software engineering, the model transfor-
mations provided by the chosen toolset probably do
not match the current architectural needs of the de-
veloped software. When this occurs, the development
team has two choices: try to find an alternative, better
suiting toolset or try to improve the existing toolset.
The first option basically stalls development work, as
the focus has changed to finding the right tool for the
job instead of actually doing the job. The second al-
ternative, if viable at all due to copyright reasons, re-
quires specialized personnel who have the ability to
modify the transformations used by the toolset. Since
the development of the actual software cannot be de-
layed, the software’s architecture evolves in parallel
to transformation development. For this reason there
is a good chance that any given set of model transfor-
mations is already obsolete its completion time.

For these reasons, unconstrained usage of model-
driven architecture cannot be considered to be a good
match for current agile development environment.
However, we do not propose to canonically reject
model-driven architecture. Our critique primarily
bases on the combination of short-lived sprints of ag-
ile development and the uncertainty of toolsets and
practices promised by MDA tool vendors. In cases
where a toolsets abilities and limits are well known
in advance, using the toolset-driven approach can be
beneficial even in tightly time-framed situations.

3.2 Agile Model-driven Development

Agile model-driven development (Ambler, 2004) at-
tacks the problems in model-driven architecture by
relaxing the strong formality and tool support require-
ments. Instead of using complex and extensive mod-
els, the approach emphasizes models that are ”barely
good enough” for a given task. Modeling is mostly
done top-down, although the approach does not dis-
courage a bottom-up approach.

Figure 2: A hand-drawn sketch in agile UML modeling.

Agile�Models�Need�to�be�Bottom-up�-�Adding�Productivity�to�a�Late�Project�Makes�it�Later

397

According to this philosophy, created models
should not affect the agility principles of a given pro-
cess. As long as a model can be created and exploited
within a production cycle (usually 1-3 weeks), it is
suitable for agile modeling. This is a promising ap-
proach, but it does not state much about the possible
modeling tools - actually, the approach de-emphasizes
the need for tools, and focuses on people. A model is
suitable for the approach as long as it can be exploited
within a production cycle.

Due to this requirement, most modeling is based
on high-level abstract modeling languages with little
formalism. They are easy to learn, simple to use and
fit well within a given time period. However, they of-
fer more to easier problem domain abstraction than
to automatic productivity increase. Under our best
knowledge, no productivity-related empirical valida-
tion has been done for agile model-driven develop-
ment.

4 BOTTOM-UP MODELING

We argue that productivity gains chased with model-
driven engineering should be combined with agile
development models by examining the productivity
problems that are encountered on project level. If
a given productivity problem gives a feeling that its
root cause is associated with the problem of lack of
abstraction, or incorrect level of abstraction, then it
could be a possible candidate for building a higher
level model for that particular part of the software.

We call this approach as bottom-up agile model-
driven development. In this approach bottom-up
models are a way to introduce light-weight modeling
to agile development process.

Instead of applying top-down methods, which re-
cursively decomposes the problem to smaller pieces,
we can alternate to a bottom-up approach. This ap-
proach identifies smaller problems and develops solu-
tions to these. When this bottom-up cycle is repeated,
gradually the solution for the whole emerges. Given a
program domain, a bottom-up approach identifies sub
domains that are amenable to modeling

Agile bottom-up modeling constraints the identi-
fication process to such tools and techniques that can
be applied in an agile process model. Its application is
thereby limited to a small number of tools, which can
be evaluated and applied within a tightly time-boxed
iteration. Yet, although this search and discover ap-
proach theoretically produces non-optimal solutions,
it guarantees that progress is not stalled while search-
ing for the optimal solution. This way, a bottom-up
approach to modeling dodges the heavy up-front plan-

ning phase.
An essential property of bottom-up modeling in

agile process is that the building of model languages
and models can be decomposed into sprintable form.
We mention both model languages and models be-
cause the essence of bottom-up modeling is to find
suitable abstractions to the problem at hand, and of-
ten this means inventing a new language or reusing an
existing language for modeling. This notion is con-
tradictory to common wisdom of using the best exist-
ing tool for the job at hand. However, given the large
number of different tools and techniques available on
the market, it is not possible to do a throughout tool
evaluation within the time frame of an iteration. For
this reason, agile teams often need to build their own
abstractions for modeling.

These abstractions or languages are not neces-
sarily complex, meaning that there is no mandatory
need to building complex modeling languages with
associated tool support. Instead, existing languages
can be piggy-backed and reused as is common with
domain-specific languages (Mernik et al., 2005). Also
a domain-specific modeling tool can be employed,
once an initial understanding of the problem at hand
has emerged. However, the obvious downside of this
approach is that repetitive application of ad hoc mod-
eling constructs might gradually erode the overall ar-
chitecture of the software.

Bottom-up modeling does not limit the format of
source models, as long as the model is expressible in
machine-readable form. This means that the model-
ing language does not need to be a graphical boxes-
and-arrows -type tool. Actually, although the tradi-
tional boxes-and-arrows kind of modeling can be ben-
eficial in the drafting board, the lack of exact inter-
pretation for the used symbols hinders productivity
when forwarding these models to any type of auto-
matic code generation or runtime interpretation. Of-
ten used alternatives are external domain-specific lan-
guages, but an interesting choice is to use the source
code as the source model. This option is interest-
ing for practical programming, as using the source
code as the source model for further transformations
builds increased robustness against modifications into
the software.

5 A CASE STUDY

In order to illustrate the idea of using the bottom-
up approach to modeling, we show a case of using
bottom-up modeling for implementing a feature mod-
eling (Kang et al., 1990) environment in a bottom-up
way. Feature modeling is a formalized way of build-

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

398

ing option spaces. The formalism allows to define
structures with mandatory features, optional features
and combinations of them.

An example presented in (Czarnecki and Eise-
necker, 2000) models an option space for a car is
shown in Figure 3. The car needs to have the body,
the transmission, and the engine. The transmisison
can alternatively be automatic or manual. The engine
can be electric or gasoline driven, or both. Optionally,
there can be a trailer pulling hook. Given this option
space, there is 12 distinct configurations that satisfy
this model.

Figure 3: A feature model of a car.

For our discussion, the interest lies in how to im-
plement functionality to handle these kinds of models.
In model-driven architecture, the standard approach is
to use transformations to bring the source model into
the streamline of standard modeling languages. Thus,
a transformation for translating the feature model into
an UML model is needed. Literature presents vari-
ous ways for doing this. Many researchers (Clau and
Jena, 2001; Griss et al., 1998) have presented differ-
ent flavours of using stereotypes for representing vari-
ability in UML.

These studies contain many fine points for imple-
menting beautiful models of variability using the stan-
dard technologies. However, for practical software
development cases, the variability is just one of the
dozens, hundreds or thousands aspects that a devel-
opment team needs to tackle. It can be impractical to
start discussing about the academically correct way of
implementing this variability, since it can be hard to
demonstrate how this discussion brings value to the
end customer. Due to the economic reasons discussed
in Section 2, it probably never will.

An alternative is to work with this specific prob-
lem, using the standard tools offered by the imple-
mentation environment. For the variability example,
(Pohjalainen, 2011) have documented a way of us-
ing standard regular expressions for modeling vari-
ability. This approach combines good parts from both
of formal modeling and agile product development.
The approach has the benefit that the customer can
be shown steady progress, since modeling is concen-
trated on small subdomains that are suitable for mod-

eling. On the other hand, since the models are im-
plemented by using the standard implementation en-
vironment structures, the mismatch between model-
ing environments and implementation is kept at mini-
mum.

For the feature model in Figure 3, the bottom-up
modelled definition could be implemented using reg-
ular expressions as follows:

car body
transmission (automatic | manual)
engine (electric | gasoline)+
pullsTrailer?

This is a very concise way of using higher level
abstraction to bring benefits of modeling into imple-
mentation level.

However, using this kind of modeling language-
specific translation to the implementation language
raises some questions. Using UML models gives the
possibility to scale the scope of modeling to include
also attributes of modeled entities. For example, if
there is a need to specify the size or power of the en-
gine being modeled. In a class diagram, it is very
straightforward to add the attribute in question to the
class model. But using regular expressions to model
even three to five different engines would soon prove
to be cumbersome.

Our approach to this problem is to exploit the na-
ture of bottom-up problem solving. The chosen mod-
eling implementation was fine for that specific prob-
lem, and when given a new problem, we look for
a suitable solution. Re-using the notion of piggy-
backing existing languages, we can choose to use e.g.
XML Schema (Biron and Malhotra, 2004) for data
modeling. For example, a data model for defining
1.4 liter or 1.6 liter gasoline engines in XMLSchema
could be as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<schema>
<simpleType name="enginesize">
<restriction base="string">
<pattern value="1,[4|6] liter" />

</restriction>
</simpleType>

<element name="gasoline"
type="enginesize" />

</schema>

With this approach, the data modeling is done by
defining XML Schema models. The expressive power
of the schema language greatly overpasses the one
offered by standard UML class diagrams (Martens
et al., 2006). Another benefit is that standard XML
tools can be used to validate data transmissions and its

Agile�Models�Need�to�be�Bottom-up�-�Adding�Productivity�to�a�Late�Project�Makes�it�Later

399

car body transmission
(automatic | manual) engine
(electric | gasoline)+
pullsTrailer?

<?xml version="1.0" encoding="UTF-8" ?>
<element name="gasoline"
type="enginesize" />
</schema>

Variability +
data modeling

Figure 4: Combining two modeling languages.

semantics is well understood. As a formal language,
the source documents can also be used for further
model transformations; the schema language contains
a well-defined variation point holder for defining new
features for the data modeling tool.

This way, bottom-up modeling can use a mix-and-
match approach for selecting the suitable tools for sit-
uations rising in development projects. In this case
study, the developers chose to use regular expressions
to model variability and the XML schema for data
modeling. Combining these two allowed the develop-
ers to use models as first-class citizens in their prod-
uct, since both of the used modeling languages were
supported in the programming environment. Equally
important, the developers were able to show steady
progress towards the customer, since no delays were
involved in tool evaluations.

Figure 4 shows a conceptual picture of the idea of
combining two modeling languages into a meaningful
entity.

6 CONCLUSIONS

We have argued that in agile software engineering the
tight timeboxing of sprints creates problems for long-
term planning. The option to change direction after
every two weeks gives added flexibility, but deterio-
rates efficiency gains from the usage of models and
model-driven engineering.

We propose that in order to bring the benefits of
model-driven engineering to agile projects, the mod-
eling activities should be placed in bottom-up fashion.
A good choice for tackling the risks of unadequate
tool support and overly optimistic tool vendor claims,
the bottom-up models are chosen from the set of well-
known tools with known implementations at hand.

The benefits of using this kind of reusing of exist-
ing implementation tools and techniques include the
possibility of matching modeling needs with avail-
able technologies. Another benefit is that building
the modeling practices from bottom-up enables a pay-
as-you-go -type investment to modeling technologies:

there is no need to heavily invest in unknown tech-
nologies with no guarantees of payback.

In the case study we showed how to combine vari-
ability modeling, implemented using a regular lan-
guage engine, and data modeling, using the XML
Schema language. This combination of modeling lan-
guages was used in the case study company, where
the developers were able to gain a higher level under-
standing of their system via the use of these modeling
tools.

REFERENCES

Ambler, S. (2004). The Object Primer: Agile Model-Driven
Development with UML 2.0. Cambridge University
Press, 3rd edition.

Biron, P. V. and Malhotra, A., editors (2004). XML Schema
Part 2: Datatypes. W3C Recommendation. W3C,
second edition.

Brooks, Jr., F. P. (1995). The mythical man-month (anniver-
sary ed.). Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Clau, M. and Jena, I. (2001). Modeling variability with
UML. In In GCSE 2001Young Researchers Workshop.

Czarnecki, K. and Eisenecker, U. W. (2000). Gener-
ative programming: methods, tools, and applica-
tions. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA.

Griss, M. L., Favaro, J., and Alessandro, M. d. (1998). Inte-
grating feature modeling with the RSEB. In Proceed-
ings of the 5th International Conference on Software
Reuse, ICSR ’98, pages 76–, Washington, DC, USA.
IEEE Computer Society.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
and Peterson, A. S. (1990). Feature-oriented domain
analysis (foda) feasibility study. Technical report,
Carnegie-Mellon University Software Engineering In-
stitute.

Martens, W., Neven, F., Schwentick, T., and Bex, G. J.
(2006). Expressiveness and complexity of xml
schema. ACM Trans. Database Syst., 31(3):770–813.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344.

Miller, J. and Mukerji, J. (2003). MDA guide version 1.0.1.
Technical report, Object Management Group (OMG).

Pohjalainen, P. (2011). Bottom-up modeling for a software
product line: An experience report on agile modeling
of governmental mobile networks. Software Product
Line Conference, International, pages 323–332.

ICEIS�2012�-�14th�International�Conference�on�Enterprise�Information�Systems

400

