
An Evolution of a Complete Program using XML-based Grammar
Definition

Nor Zainah Siau, Christopher J. Hinde and Roger G. Stone
Department of Computer Science, Loughborough University, Loughborough, U.K.

Keywords: Genetic Programming, XML-based Grammar Definition, Complete Program Evolution.

Abstract: XML technology is a technique to describe structured data that can be manipulated by different types of
applications, especially to represent content on the Web. This paper presents a viable approach to
automatically evolve a ‘sorting program’ by applying genetic programming and full syntax XML-based
grammar definition to map the genotype to phenotype. The genotypes are composed of fixed-length blocks
of genes that are made up of a series of integer values. The paper reports that our approach improves the
structure of the grammar used in the mapping process, which guarantees that the generated program follows
the correct syntax with no repair function, in comparison to earlier work. This allows more structured
programs than earlier systems.

1 INTRODUCTION

Over the years, queries for specific information from
online sources have increased significantly.
However, not all information is well defined that
could be automatically searched and extracted. This
paper presents our initial work, contributing to a
bigger research of producing a teachable web
information extraction (TWIE) system. TWIE aims
to capture specific pieces of information on the Web
with some assistance from a human, by evolving
regular expressions. Typically the human will point
to a typical item and the system will evolve a
suitable expression to locate it and similar items.
The regular expression notations are defined as rules
in XML form to match the DOM tree structure and
the data pattern of the information.

Earlier GP, popularised by John Koza (1992),
automatically generates computer programs and
evaluates them to solve a user-defined problem.
More recently, GP has been used to solve problems
in various fields, such as: medical (Guo and Nandi
2006); (Hong and Cho, 2004), Railway platform
allocation (Clarke et al., 2010), robotics (Konig and
Schmeck, 2009), and symbolic regressions (Castillo
et al., 2005).

In this paper, we build a programming language
subset grammar defined in a XML format to guide
the creation of a ‘sorting’ program. Specifically, we
are focusing on the Genotype-Phenotype mapping,

which is part of GP. This XML-based grammar
presents the basic construct of programming syntax
arranged in a hierarchical form of rules and
elements, which ensure the translation of the
genomes into valid program codes (phenome).

The remainder of this paper focuses on
describing related research, followed by our
approach to extend and improve the work of Withall,
Hinde and Stone, (2009) and Xhemali et al., (2010).
Details of the experiment and the result are
described in section 5 and finally, conclusions are
drawn.

2 RELATED WORK

A genotype refers to the search space, which
represents a potential solution to a problem, whereas
a phenotype refers to the solution space, where the
instance is measured for fitness. The Genotype-
Phenotype mapping has been applied in various
fields of evolutionary computation such as Genetic
Algorithms (Holland, 1975), Genetic Programming
(Koza 1992) and Grammatical Evolution (Ryan et
al., 1998).

The first work to introduce the separation of
genome from phenome in the field of Genetic
Programming was by Banzhaf (1994). With this
separation, he emphasized the feasibility of the
phenotype solution while the genomes may be

214 Zainah Siau N., J. Hinde C. and G. Stone R..
An Evolution of a Complete Program using XML-based Grammar Definition.
DOI: 10.5220/0004155502140219
In Proceedings of the 4th International Joint Conference on Computational Intelligence (ECTA-2012), pages 214-219
ISBN: 978-989-8565-33-4
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

modified by the genetic operators without
constraints. However, it is important to establish a
direct and consistent mapping (Withall et al., 2009).
For these reasons, Xhemali introduced rules in XML
format to define the mapping of genotype to
phenotype.

The genotype in Banzhaf’s method is fixed in
length and represented as strings of 5-bit binary but
the resulting phenomes could vary in length.
Basically the mapping is done in two steps; raw
translation of the bit-strings to a set of functions and
terminals and applying a correction mechanism to
ensure that they are syntactically valid and any
errors are corrected. Unlike Koza’s evolution
system, which only works with the phenome,
Banzhaf evolves the genomes, which allows for
application of any kind of genetic operators.
However, there was a certain amount of redundancy
in the program.

Paterson and Livesey (1996) extend Banzhaf’s
work, introducing a different genotype
representation, that is, a linear string of integers to
map to the phenotype. Their method uses Backus
Naur Form (BNF) grammar definition to represent
rules of the programming subset and these integers
are used to decide which rule to take to make up a
complete program.

Another attempt to evolve program code was that
of Ryan et al., (1998). Their method uses a linear,
variable length genotype made up of a string of 8-bit
binary numbers. Similar to Paterson and Livesey, the
mapping is through a grammar defined in BNF
format using a rule called expr as the starting point.
The advantages of using BNF definition is that a
system may be built independently of any
programming language and a correcting mechanism
is not necessary because the binary string maps
directly onto the grammar definition. However, one
important issue that arises during the mapping
process is when the individuals run out of binary
strings to produce a complete program. Although
this is solved by binary reuse, it could result in a
lack of inheritance of characteristics. This means a
change early in the gene value of a genome (through
crossover or mutation) can change the entire
construct or type of statement following, which
results in the child having little similarity to its
parents.

Withall looked at the problem of characteristics
inheritance, which saw the introduction of fixed
length, linear block of integers to represent the
genotype. He studied software evolution and
evolved several programs including a ‘sorting
program’. Each block contains four genes, which

translates to a single statement in the resulting
phenotype. The blocks are padded with unused
genes to avoid the problem of insufficient genes as
can be seen in the work of Banzhaf and Ryan.
Withall argues that the padding is useful to preserve
characteristics of parents that can be inherited by the
offspring. Therefore, in a case where a particular
program structure or statement requires fewer genes,
these unused genes will be ignored. This should
ensure that the next statement/structure translation
would start from the first gene of the next block; its
interpretation would also be unchanged.

Xhemali later extended Withall’s work by
manipulating variable-length genotypes and
introducing XML rules, to specify the mapping of
genotype to phenotype. However this method poses
a disadvantage of inheritance of characteristics and
insufficient genes. Both authors also noted that the
generated program has the possibility of having
syntactically incorrect code segments, thus, a
‘repair’ function in the GP is included.

We have modified Withall’s system,
incorporating an improved version of Xhemali’s
XML system, greatly improving the construction of
the grammar and ensuring that syntactically valid
programs are produced without any intervention
function (the ‘repair’ function). Hereafter, this
improved grammar is referred to as ‘clean’
grammar.

3 A REPAIR FUNCTION

It is possible that the phenotype produced from the
raw mapping of the genotype contains errors or
incomplete elements to make up a valid program
statement. This happens because individuals run out
of genes required by a particular rule definition.

The repair function in both Withall’s and
Xhemali’s system was performed after all the genes
have been decoded. In Withall’s proposed work, the
grammar is coded in PERL and if we are to
represent this grammar in BNF, it would look like in
Figure 1. Note that this is not a full description of
the grammar. Withall’s grammar was inspired by
trying to keep the number of non-terminals minimal,
and this was used together with blocking to
minimise the 'damage' caused by a single mutation.

The minimised grammar has the possibility of
not mapping to the end statement to close any open
bracket used in if, for and doublefor. This will cause
imbalance ‘{}’ pair, thus, a repair function would
append any missing ‘}’ at the end of the program

An�Evolution�of�a�Complete�Program�using�XML-based�Grammar�Definition

215

and to ensure that the end statement is discarded if
there is no prior map to a terminal ‘{‘.

Moreover, in the case of Xhemali’s work, not
only it is used to do the above, but also to add the
necessary operators e.g. ‘+’ symbol indicating an
addition, to deal with insufficient genes to complete
a particular rule and to add the required variable
declaration and variable return.

This hard-wired constraints put into the program
would stop it being able to handle general grammars.
Our aim is to remove the reliance on the repairing
function while achieving a valid phenome just as
successfully with a 'clean' grammar.

statement ::=null | assignment | if | for | doublefor | end
if ::= “if” “(” rvar op rvar “)” “{“
end ::= “}”

Figure 1: Withall’s grammar in BNF notation.

statement ::= null | assignment | if | for | doublefor
statementseq ::= statement | statement statementseq
if ::= “if” “(” rvar op rvar “)” “{” statementseq “}”

Figure 2: ‘clean’ grammar in BNF notation used in our
work. By having a proper grammar description in place as
well as the introduction of statementseq and taking away
the end statement, the repair function is eliminated.

4 EVOLUTION USING GP

In this paper, the evolution technique follows the
standard GP set up (defined in Figure 3) and then
moves on to some specific requirements. These
include using the ‘clean’ grammar definition in the
XML format to guide the Genotype-Phenotype
mapping, the phenotype is translated into an
executable form for fitness evaluation, and blocks of
5 genes translates to single program statements, thus
ensuring similarity when mapped to statements.

1: Randomly create an initial population of individuals
2: Genotype-Phenotype mapping and evaluate fitness.
3: Repeat
4: Select individuals from the population and apply

genetic operations
5: genotype-phenotype mapping, evaluate fitness of the

new individuals and insert the new individuals in the
next generation

6: until an acceptable solution is found or it reaches a
maximum number of generations).

7: return the best-so-far individual.

Figure 3: Genetic programming algorithms.

The following subsections describe the GP stages
and parameters applied in this research.

4.1 Individuals Representation

We are using greedy initial population by seeding
the random number generator to bias the search
towards good solutions. The initial population
consists of 7 genomes; each made up of 50 genes.
Genes are made up of randomly created integers
between 1 and 255. A genome is constrained by
fixed-length blocks of genes, with each contains five
genes. A block translates to a single program
statement and the first gene of the block always
represents the type of statement to follow.

4.2 Fitness Function

The fitness evaluation of the solution is measured by
comparing the actual output produced by the
algorithm against the expected output, like Koza’s
(Koza, 1992). In order to ensure fair comparisons,
the fitness function proposed by Withall is used here
(the function code in Figure 4 is in PERL). It is
important to note that evaluation is based on
comparison of adjacent elements in the list rather
than all element pairs.

In contrast to the traditional fitness function
where sample inputs are selected with known output,
the fitness evaluation used here is derived from the
formal specification of the desired function (sorting).
We have had successful experiments using the
formal specifications to define the complete and
concise fitness functions, outperformed a simple
input/output pair.

$fitness++ if(bageq(\@L, \@N));
if($#N > 0){
 for my $x (0..$#N−1){

$fitness++ if($N[$x] <=
$N[($x+1)]);

 }
}

Figure 4: Fitness function.

An individual is considered useful if it achieves
100% fitness value. This measurement is to
determine the quality of individuals in the
population for reproduction or being discarded, in
comparison to other individuals in the population. In
this experiment, the seven ‘most fit’ individuals will
survive to reproduction at each cycle.

4.3 Reproduction

Reproduction creates the next generation of
solutions (genomes), which ideally share many of
the useful characteristics of their parents. During the
reproduction process, the new individuals are

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

216

generated with the aid of two genetic operators:
uniform crossover, followed by mutation. The
crossover involves all the genes of both parents’
genotypes being combined from swapping the
genotypes with a probability of 50% (Jones and
Hinde, 2007). Mutation replaces the selected gene
with a random integer between 1 and 255. Prior to
the operators, the selection of the genomes is by
Roulette Wheel Selection method.

4.4 XML-based Grammar Definition

 <main>

 <statement dtype = "selection">
 <stmOption id = "nullstatement" />

 <stmOption id = "assignstatement" />
 <stmOption id = "ifstatement" />

 <stmOption id = "forstatement" />
 <stmOption id = "nestedforstatement" />

 </statement>
 <assignstatement dtype = "sequence">
 <item id = "wvariable" />

 <item id = "tokens">=</item>
 <item id = "rvariable" />

 <item id = "tokens">;</item>
 </assignstatement>

 <ifstatement dtype = "sequence">
 <item id = "tokens">if (</item>
 <item id = "rvariable" />

 <item id = "operator" />
 <item id = "rvariable" />

 <item id = "tokens">)</item>
 <item id = "tokens">{</item>

 <item id = "statementseq" />
 <item id = "tokens">}</item>
 </ifstatement>

 <statementseq dtype = "selection">
 <item id = "statement" />

 <item id = "statements" />
 </statementseq >

 <statements dtype = "sequence">
 <item id = "statement" />

 <item id = "statementseq" />
 </statements >
...

 </main>
 <rvariable dtype = "selection">

 <item id ="tokens">$inlist[$tmp1%($#inlist+1)]</item>
 <item id ="tokens">$inlist[$tmp2%($#inlist+1)]</item>

 <item id ="tokens">$tmp1</item>
 <item id ="tokens">$tmp2</item>
 <item id ="tokens">$tmp3</item>

 <item id ="tokens">$tmp4</item>
 </rvariable>

 <operator dtype = "selection">
 <item id ="tokens"><![CDATA[==]]></item>

 <item id ="tokens"><![CDATA[!=]]></item>
 <item id ="tokens"><![CDATA[>]]></item>

 <item id ="tokens"><![CDATA[<]]></item>
 <item id ="tokens"><![CDATA[>=]]></item>
 <item id ="tokens"><![CDATA[<=]]></item>

 </operator>
...

Figure 5: Sample of our rules in XML form.

The rules are made up of unique programming

statements structures containing terminal and non-
terminal symbols. Some of them are precisely
constructed, such as, a doublefor is represented in a
form of for counter (0..length){ for counter
(N1+1..length) { statementseq }}. Notice that N1 is
included in the second for. N1 means that the
counter from the previous for is to be reused. This is
important because of the way a valid nested for
statement is constructed to compare list’s elements.
The decision for a restricted construct is to reduce
the search space and to ensure the statement’s
validity, thus speed up the fitness evaluation.

Figure 5 shows our rules coded in XML. A new
rule introduced here is the statementseq rule, which
leads to one of the two options; a single statement
(statement rule) or two or more statements
(statements rule). The dtype attribute of a rule is
either a selection or sequence. The selection
indicates the requirement of a gene to decide the rule
candidate to take whereas “sequence” indicates that
all rule components must be taken. Note that some
of the rule’s components are identified as ‘tokens’,
which is a terminal symbol. This means that the
symbol such as ‘if (’ in the ifstatement rule, is to be
taken as it is and no gene is required.

4.5 Genotype-phenotype

The algorithm in Figure 6 describes the steps of
translating the genome to the phenome.

1. Divide the genome into fixed blocks of genes. The block size
is determined by the rule with the most information.
2. Define the number of rule candidates for a ‘statement’ from
the grammar as x.
3. Take the first integer y of a block and calculate the remainder
z = y % x. Note that ‘%’ symbol indicates a modulo operator.
4. Select the corresponding zth rule from the rule candidates.
5. If a component of zth rule is a non-terminal, apply a
reminder operator to the next available gene to determine the
next rule to follow. Otherwise, if it is a terminal, take the value to
the solution. Any unused genes in the block are treated as
padding and they are skipped.
6. If the block completes, repeat step 3. If this is the last block,
the translation ends.

Figure 6: Genotype-phenotype mapping algorithm.

This process is best explained with an example.
Table 1 shows a two-block genome with each
containing 5 genes. Table 2 shows the genotype-
phenotype mapping process using the rules in Figure
5 and the phenome produced from the mapping.

The first integer of the first block always
represents a rule called statement. In this case, the
first gene (7) is an if statement. Considering there
are five rule candidates in the statement rule, so 7%5

An�Evolution�of�a�Complete�Program�using�XML-based�Grammar�Definition

217

selects the third option (ifstatement). Note that the
index of each component begins from 0 and ‘%’ is a
symbol for a modulo operator. The ifstatement,
which dtype is a sequence, has six mandatory
components. The first component is a terminal
called ‘tokens’ and does not require any gene. The
second component maps to a rvariable rule, which is
a selection. rvariable has five components, therefore
23%5 is 3, selecting the fourth component. The third
ifstatement’s component is an operator rule, which
takes the next available gene. So 11%6 is 5, which is
equivalent to ‘<=’ symbol. Next is a rvariable rule,
thus 34%5 is 4, which selects $tmp3. Following is a
‘tokens’ and a statementseq rule. The last gene (2) in
this block maps to statement rule from the
statementseq rule. This completes the translation of
the first block.

The first gene (6) of the next block is translated
as the assignstatement rule with respect to 6%5 = 1.
The assignstatement rule has three components;
wvariable , = and rvariable which is translated to
‘$tmp3 = $tmp1;’ . The extra 2 integers (21, 9) are
referred to as the padding and they are ignored.

Table 1: 2 blocks genome.

7 23 11 34 2 6 10 12 21 9

Table 2: Genotype-phenotype translation.

Blk Gene % Mapped to Translation
1 7 2 statement ifstatement
 - tokens if (
 23 3 rvariable $tmp2
 11 5 operator <=
 34 4 rvariable $tmp3
 - tokens)
 - tokens {
 2 0 statementseq statement
 - tokens }
2 6 1 statement assignstatement
 10 2 wvariable $tmp3
 - tokens =
 12 2 rvariable $tmp1
 - tokens ;
 21 - padding
 9 - padding

Phenome : if (tmp2 <= $tmp3) { $tmp3 = $tmp1; }

5 EXPERIMENT SETTING &
RESULT

The experiment used a seeded initial population,
using parameters setting as in Table 3 below.

Table 3: Parameter setting for ‘sorting program’ evolution.

Parameter Specification
Population size 7

Selection Roulette Wheel
Runs 100

Maximum Generations
in each run

50,000

Fitness score target 40
Uniform crossover

probability
50%

Mutation probability 10%

Machine
Intel 3.00GHz PC with 4GB of

RAM, running Windows7

Input lists

[4 ,3 ,2 ,1] , [1,2,55,3] ,
[1,999,2,3] , [71,1,2,3] , [1,2,33] ,
[100,88,211] , [100,1,2] , [13,7]

,[5,55] , [10]

The input lists are made up of various lengths
and orders. The termination of each run is either
when the maximum generation is reached or earlier,
if a solution is found. Table 4 shows the result of the
first 10 runs with the initial population seeded with
the first 10 prime numbers.

Table 4: Experiment result.

Seed Generation Time (hr:mm:ss)
1 9114 00:06:33
2 4407 00:03:12
3 27830 00:20:37
5 36028 00:26:01
7 24400 00:17:48
11 31384 00:22:57
13 31190 00:22:56
17 11928 00:09:00
19 35391 00:26:25
23 28154 00:20:44

The effect of moving the rules to an XML file
and modification to the grammar definition is shown
in Table 5, in comparison with the previous work of
Withall et. al. (2009).

Table 5: Comparison of result against Withall.

Generation Time

Withall Ours Withall Ours
N 100 100 100 100

Mean 15514.56 22906.53 10.50 16.55
Std. Error- Mean 1081.169 1546.987 .752 1.132

Median 12491.00 20527.50 9.00 15.50
Std. Deviation 10811.688 15469.870 7.524 11.316

Although the result shows some increase in the
number of generations and time, our approach
provides several benefits:

 The main contribution from this research was to
remove the translation process from a hard coded
system to a table driven approach.

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

218

 The ‘repair’ function that ensures the validity of
the generated program is no longer required.

 The rules resemble the full program subset
syntax, without any hidden terminal symbols.

 If the requirement is to generate blocks of a e.g.
{aaa}{aaaaaa}, our method could easily produce
this pattern as we specified the start and the stop of a
block statement within the grammar. Withall’s
method would not be possible because of the repair
function, which insert all the remaining } in the end
of the program to match the { produced earlier in the
program. Xhemali’s similarly fails in this respect.

The above experiment is set to evolve a ‘sorting
program’, however, the fitness evaluation function
needs to be changed for other computer program
problems. In addition, a domain specific grammar
definition is needed to fit other areas such as regular
expressions, Medical (e.g. DNA matching),
linguistics (Natural Language) etc. However, further
experiments are required to evaluate these
applications.

6 CONCLUSIONS

This paper presents an investigation into the effect
of full syntax XML-based grammar definitions to
the resultant program and the fitness evaluations.
Specifically, we have presented a novel approach to
effectively map the genotype to phenotype with
XML rules, demonstrated by evolving a sorting
program. The results are compared to the former
work and provide evidence of significant
improvements in terms of the construction of a
syntactically correct solution without a repair
function and without significantly compromising
performance.

In future, we will continue this investigation to
include a function declaration e.g. a swap function in
the grammar, which would speed up a sorting
program evolution, and applying a similar technique
to other domain such as regular expression, to
identify a data pattern from a HTML web page for
information extraction. This will enable our GP
system to be extended by an external process, which
can add to the XML rules without requiring a
modification to the main GP system.

REFERENCES

Banzhaf, W., 1994. Genotype-Phenotype-Mapping and
Neutral Variation: A case study in Genetic

Programming. Proceedings of the International
Conference on Evolutionary Computation. The Third
Conference on Parallel Problem Solving from Nature:
Parallel Problem Solving from Nature, pp. 322-332.

Castillo, F., Kordon, A., Sweeney, J., Zirk, W., 2005.
Using genetic programming in industrial statistical
model building. Genetic programming theory and
practice II, pp. 31-48.

Clarke, M., Hinde, C. J., Withall, M. S., Jackson, T.,
Phillips, I. W., Brown, S., Watson, R., 2010.
Allocating railway platforms using a genetic
algorithm. Research and Development in Intelligent
Systems XXVI, pp. 421-434.

Guo, H., Nandi, A. K., 2006. Breast cancer diagnosis
using genetic programming generated feature. Pattern
Recognition, 39(5), pp. 980-987.

Holland, J. H., 1975. Adaptation in natural and artificial
systems. Ann Arbor MI: University of Michigan Press.

Hong, J. H., Cho, S. B., 2004. Lymphoma cancer
classification using genetic programming with SNR
features. Genetic Programming, pp. 78-88.

Jones, S., Hinde, C., 2007. Uniform Random Crossover. In
Proceedings of the 2007 workshop on Computational
Intelligence.

Konig, L., Schmeck, H., 2009. A Completely Evolvable
Genotype-Phenotype Mapping for Evolutionary
Robotics, Third IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, SASO '09,
pp. 175-185.

Koza, J. R., 1992. Genetic Programming. Cambridge:
MA: MIT Press.

Paterson, N. R., Livesey, M., 1996. Distinguishing
genotype and phenotype in genetic programming. Late
Breaking Papers at the Genetic Programming, pp.
141-150.

Ryan, C., Collins, J., O’Neill, M., 1998. Grammatical
evolution: Evolving programs for an arbitrary
language. Genetic Programming, pp. 83-96.

Withall, M. S., Hinde, C. J., Stone, R. G., 2009. An
improved representation for evolving programs.
Genetic Programming and Evolvable Machines, 10(1),
pp. 37-70.

Xhemali, D., Hinde, C. J., Stone, R. G., 2010. Genetic
evolution of sorting programs through a novel
genotype-phenotype mapping. Proceedings of the
International Conference on Evolutionary
Computation, Valencia, Spain.

An�Evolution�of�a�Complete�Program�using�XML-based�Grammar�Definition

219

