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Abstract: XML technology is a technique to describe structured data that can be manipulated by different types of 
applications, especially to represent content on the Web. This paper presents a viable approach to 
automatically evolve a ‘sorting program’ by applying genetic programming and full syntax XML-based 
grammar definition to map the genotype to phenotype. The genotypes are composed of fixed-length blocks 
of genes that are made up of a series of integer values. The paper reports that our approach improves the 
structure of the grammar used in the mapping process, which guarantees that the generated program follows 
the correct syntax with no repair function, in comparison to earlier work. This allows more structured 
programs than earlier systems. 

1 INTRODUCTION 

Over the years, queries for specific information from 
online sources have increased significantly. 
However, not all information is well defined that 
could be automatically searched and extracted. This 
paper presents our initial work, contributing to a 
bigger research of producing a teachable web 
information extraction (TWIE) system. TWIE aims 
to capture specific pieces of information on the Web 
with some assistance from a human, by evolving 
regular expressions. Typically the human will point 
to a typical item and the system will evolve a 
suitable expression to locate it and similar items. 
The regular expression notations are defined as rules 
in XML form to match the DOM tree structure and 
the data pattern of the information. 

Earlier GP, popularised by John Koza (1992), 
automatically generates computer programs and 
evaluates them to solve a user-defined problem. 
More recently, GP has been used to solve problems 
in various fields, such as: medical (Guo and Nandi 
2006); (Hong and Cho, 2004), Railway platform 
allocation (Clarke et al., 2010), robotics (Konig and 
Schmeck, 2009), and symbolic regressions (Castillo 
et al., 2005). 

In this paper, we build a programming language 
subset grammar defined in a XML format to guide 
the creation of a ‘sorting’ program. Specifically, we 
are focusing on the Genotype-Phenotype mapping, 

which is part of GP. This XML-based grammar 
presents the basic construct of programming syntax 
arranged in a hierarchical form of rules and 
elements, which ensure the translation of the 
genomes into valid program codes (phenome). 

The remainder of this paper focuses on 
describing related research, followed by our 
approach to extend and improve the work of Withall, 
Hinde and Stone, (2009) and Xhemali et al., (2010). 
Details of the experiment and the result are 
described in section 5 and finally, conclusions are 
drawn. 

2 RELATED WORK 

A genotype refers to the search space, which 
represents a potential solution to a problem, whereas 
a phenotype refers to the solution space, where the 
instance is measured for fitness. The Genotype-
Phenotype mapping has been applied in various 
fields of evolutionary computation such as Genetic 
Algorithms (Holland, 1975), Genetic Programming 
(Koza 1992) and Grammatical Evolution (Ryan et 
al., 1998). 

The first work to introduce the separation of 
genome from phenome in the field of Genetic 
Programming was by Banzhaf (1994). With this 
separation, he emphasized the feasibility of the 
phenotype solution while the genomes may be 
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modified by the genetic operators without 
constraints. However, it is important to establish a 
direct and consistent mapping (Withall et al., 2009). 
For these reasons, Xhemali introduced rules in XML 
format to define the mapping of genotype to 
phenotype.  

The genotype in Banzhaf’s method is fixed in 
length and represented as strings of 5-bit binary but 
the resulting phenomes could vary in length. 
Basically the mapping is done in two steps; raw 
translation of the bit-strings to a set of functions and 
terminals and applying a correction mechanism to 
ensure that they are syntactically valid and any 
errors are corrected. Unlike Koza’s evolution 
system, which only works with the phenome, 
Banzhaf evolves the genomes, which allows for 
application of any kind of genetic operators. 
However, there was a certain amount of redundancy 
in the program.  

Paterson and Livesey (1996) extend Banzhaf’s 
work, introducing a different genotype 
representation, that is, a linear string of integers to 
map to the phenotype. Their method uses Backus 
Naur Form (BNF) grammar definition to represent 
rules of the programming subset and these integers 
are used to decide which rule to take to make up a 
complete program. 

Another attempt to evolve program code was that 
of Ryan et al., (1998). Their method uses a linear, 
variable length genotype made up of a string of 8-bit 
binary numbers. Similar to Paterson and Livesey, the 
mapping is through a grammar defined in BNF 
format using a rule called expr as the starting point. 
The advantages of using BNF definition is that a 
system may be built independently of any 
programming language and a correcting mechanism 
is not necessary because the binary string maps 
directly onto the grammar definition. However, one 
important issue that arises during the mapping 
process is when the individuals run out of binary 
strings to produce a complete program. Although 
this is solved by binary reuse, it could result in a 
lack of inheritance of characteristics. This means a 
change early in the gene value of a genome (through 
crossover or mutation) can change the entire 
construct or type of statement following, which 
results in the child having little similarity to its 
parents. 

Withall looked at the problem of characteristics 
inheritance, which saw the introduction of fixed 
length, linear block of integers to represent the 
genotype. He studied software evolution and 
evolved several programs including a ‘sorting 
program’. Each block contains four genes, which 

translates to a single statement in the resulting 
phenotype. The blocks are padded with unused 
genes to avoid the problem of insufficient genes as 
can be seen in the work of Banzhaf and Ryan. 
Withall argues that the padding is useful to preserve 
characteristics of parents that can be inherited by the 
offspring. Therefore, in a case where a particular 
program structure or statement requires fewer genes, 
these unused genes will be ignored. This should 
ensure that the next statement/structure translation 
would start from the first gene of the next block; its 
interpretation would also be unchanged. 

Xhemali later extended Withall’s work by 
manipulating variable-length genotypes and 
introducing XML rules, to specify the mapping of 
genotype to phenotype. However this method poses 
a disadvantage of inheritance of characteristics and 
insufficient genes. Both authors also noted that the 
generated program has the possibility of having 
syntactically incorrect code segments, thus, a 
‘repair’ function in the GP is included.  

We have modified Withall’s system, 
incorporating an improved version of Xhemali’s 
XML system, greatly improving the construction of 
the grammar and ensuring that syntactically valid 
programs are produced without any intervention 
function (the ‘repair’ function). Hereafter, this 
improved grammar is referred to as ‘clean’ 
grammar. 

3 A REPAIR FUNCTION 

It is possible that the phenotype produced from the 
raw mapping of the genotype contains errors or 
incomplete elements to make up a valid program 
statement. This happens because individuals run out 
of genes required by a particular rule definition. 

The repair function in both Withall’s and 
Xhemali’s system was performed after all the genes 
have been decoded. In Withall’s proposed work, the 
grammar is coded in PERL and if we are to 
represent this grammar in BNF, it would look like in 
Figure 1. Note that this is not a full description of 
the grammar. Withall’s grammar was inspired by 
trying to keep the number of non-terminals minimal, 
and this was used together with blocking to 
minimise the 'damage' caused by a single mutation. 

The minimised grammar has the possibility of 
not mapping to the end statement to close any open 
bracket used in if, for and doublefor. This will cause 
imbalance ‘{}’ pair, thus, a repair function would 
append any missing ‘}’ at the end of the program 
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and to ensure that the end statement is discarded if 
there is no prior map to a terminal ‘{‘.  

Moreover, in the case of Xhemali’s work, not 
only it is used to do the above, but also to add the 
necessary operators e.g. ‘+’ symbol indicating an 
addition, to deal with insufficient genes to complete 
a particular rule and to add the required variable 
declaration and variable return. 

This hard-wired constraints put into the program 
would stop it being able to handle general grammars. 
Our aim is to remove the reliance on the repairing 
function while achieving a valid phenome just as 
successfully with a 'clean' grammar. 

 

statement ::=null | assignment | if | for | doublefor | end  
if ::= “if” “(” rvar op rvar “)” “{“ 
end ::= “}” 

Figure 1: Withall’s grammar in BNF notation. 

statement ::= null | assignment | if | for | doublefor  
statementseq ::= statement | statement statementseq 
if ::= “if” “(” rvar op rvar “)” “{” statementseq “}” 

Figure 2: ‘clean’ grammar in BNF notation used in our 
work. By having a proper grammar description in place as 
well as the introduction of statementseq and taking away 
the end statement, the repair function is eliminated.  

4 EVOLUTION USING GP 

In this paper, the evolution technique follows the 
standard GP set up (defined in Figure 3) and then 
moves on to some specific requirements. These 
include using the ‘clean’ grammar definition in the 
XML format to guide the Genotype-Phenotype 
mapping, the phenotype is translated into an 
executable form for fitness evaluation, and blocks of 
5 genes translates to single program statements, thus 
ensuring similarity when mapped to statements.  

 
1: Randomly create an initial population of individuals  
2: Genotype-Phenotype mapping and evaluate fitness. 
3: Repeat  
4: Select individuals from the population and apply 

genetic operations  
5: genotype-phenotype mapping, evaluate fitness of the 

new individuals and insert the new individuals in the 
next generation  

6:   until an acceptable solution is found or it reaches a 
maximum number of generations).  

7: return the best-so-far individual. 

Figure 3: Genetic programming algorithms. 

The following subsections describe the GP stages 
and parameters applied in this research. 

4.1 Individuals Representation 

We are using greedy initial population by seeding 
the random number generator to bias the search 
towards good solutions. The initial population 
consists of 7 genomes; each made up of 50 genes. 
Genes are made up of randomly created integers 
between 1 and 255. A genome is constrained by 
fixed-length blocks of genes, with each contains five 
genes. A block translates to a single program 
statement and the first gene of the block always 
represents the type of statement to follow.  

4.2 Fitness Function 

The fitness evaluation of the solution is measured by 
comparing the actual output produced by the 
algorithm against the expected output, like Koza’s 
(Koza, 1992). In order to ensure fair comparisons, 
the fitness function proposed by Withall is used here 
(the function code in Figure 4 is in PERL). It is 
important to note that evaluation is based on 
comparison of adjacent elements in the list rather 
than all element pairs. 

In contrast to the traditional fitness function 
where sample inputs are selected with known output, 
the fitness evaluation used here is derived from the 
formal specification of the desired function (sorting). 
We have had successful experiments using the 
formal specifications to define the complete and 
concise fitness functions, outperformed a simple 
input/output pair. 
 

$fitness++ if(bageq(\@L, \@N));  
if($#N > 0){ 
 for my $x (0..$#N−1){  

$fitness++ if($N[$x] <= 
$N[($x+1)]); 

 } 
} 

Figure 4: Fitness function. 

An individual is considered useful if it achieves 
100% fitness value. This measurement is to 
determine the quality of individuals in the 
population for reproduction or being discarded, in 
comparison to other individuals in the population. In 
this experiment, the seven ‘most fit’ individuals will 
survive to reproduction at each cycle. 

4.3 Reproduction 

Reproduction creates the next generation of 
solutions (genomes), which ideally share many of 
the useful characteristics of their parents. During the 
reproduction process, the new individuals are 
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generated with the aid of two genetic operators: 
uniform crossover, followed by mutation. The 
crossover involves all the genes of both parents’ 
genotypes being combined from swapping the 
genotypes with a probability of 50% (Jones and 
Hinde, 2007). Mutation replaces the selected gene 
with a random integer between 1 and 255. Prior to 
the operators, the selection of the genomes is by 
Roulette Wheel Selection method. 

4.4 XML-based Grammar Definition 

  <main> 

     <statement dtype = "selection"> 
        <stmOption id =  "nullstatement" /> 

        <stmOption id =  "assignstatement"  /> 
        <stmOption id =  "ifstatement" />   

        <stmOption id =  "forstatement" />  
        <stmOption id =  "nestedforstatement"  /> 

     </statement>  
     <assignstatement dtype  =  "sequence"> 
        <item id =  "wvariable"  />  

        <item id =  "tokens">=</item>  
        <item id =  "rvariable" />  

        <item id =  "tokens">;</item> 
     </assignstatement> 

     <ifstatement dtype = "sequence">  
        <item id =  "tokens">if (</item>  
        <item id =  "rvariable" />  

        <item id =  "operator" />  
        <item id =  "rvariable" />  

        <item id =  "tokens">)</item>  
        <item id =  "tokens">{</item>  

        <item id =  "statementseq"  />  
        <item id =  "tokens">}</item>  
     </ifstatement>  

     <statementseq dtype  =  "selection">  
        <item id =  "statement" /> 

        <item id =  "statements" />  
     </statementseq >  

     <statements dtype  =  "sequence"> 
        <item id =  "statement" /> 

        <item id =  "statementseq"  />  
     </statements  >  
... 

  </main>  
  <rvariable  dtype = "selection"> 

     <item id ="tokens">$inlist[$tmp1%($#inlist+1)]</item>
     <item id ="tokens">$inlist[$tmp2%($#inlist+1)]</item>

     <item id ="tokens">$tmp1</item>  
     <item id ="tokens">$tmp2</item>  
     <item id ="tokens">$tmp3</item>  

     <item id ="tokens">$tmp4</item>  
  </rvariable>  

  <operator dtype = "selection"> 
     <item id ="tokens"><![CDATA[==]]></item> 

     <item id ="tokens"><![CDATA[!=]]></item> 
     <item id ="tokens"><![CDATA[>]]></item>  

     <item id ="tokens"><![CDATA[<]]></item>  
     <item id ="tokens"><![CDATA[>=]]></item> 
     <item id ="tokens"><![CDATA[<=]]></item> 

  </operator>  
...   

Figure 5: Sample of our rules in XML form. 

The rules are made up of unique programming 

statements structures containing terminal and non-
terminal symbols. Some of them are precisely 
constructed, such as, a doublefor is represented in a 
form of for counter (0..length){ for counter 
(N1+1..length) { statementseq }}. Notice that N1 is 
included in the second for. N1 means that the 
counter from the previous for is to be reused. This is 
important because of the way a valid nested for 
statement is constructed to compare list’s elements. 
The decision for a restricted construct is to reduce 
the search space and to ensure the statement’s 
validity, thus speed up the fitness evaluation.  

Figure 5 shows our rules coded in XML. A new 
rule introduced here is the statementseq rule, which 
leads to one of the two options; a single statement 
(statement rule) or two or more statements 
(statements rule). The dtype attribute of a rule is 
either a selection or sequence. The selection 
indicates the requirement of a gene to decide the rule 
candidate to take whereas “sequence” indicates that 
all rule components must be taken. Note that some 
of the rule’s components are identified as ‘tokens’, 
which is a terminal symbol. This means that the 
symbol such as ‘if (’ in the ifstatement rule, is to be 
taken as it is and no gene is required.  

4.5 Genotype-phenotype 

The algorithm in Figure 6 describes the steps of 
translating the genome to the phenome. 
 
1. Divide the genome into fixed blocks of genes. The block size 
is determined by the rule with the most information.  
2. Define the number of rule candidates for a ‘statement’ from 
the grammar as x. 
3. Take the first integer y of a block and calculate the remainder 
z = y % x. Note that ‘%’ symbol indicates a modulo operator.  
4. Select the corresponding zth rule from the rule candidates.  
5. If a component of zth rule is a non-terminal, apply a 
reminder operator to the next available gene to determine the 
next rule to follow. Otherwise, if it is a terminal, take the value to 
the solution. Any unused genes in the block are treated as 
padding and they are skipped. 
6. If the block completes, repeat step 3. If this is the last block, 
the translation ends. 

Figure 6: Genotype-phenotype mapping algorithm. 

This process is best explained with an example. 
Table 1 shows a two-block genome with each 
containing 5 genes. Table 2 shows the genotype-
phenotype mapping process using the rules in Figure 
5 and the phenome produced from the mapping. 

The first integer of the first block always 
represents a rule called statement. In this case, the 
first gene (7) is an if statement. Considering there 
are five rule candidates in the statement rule, so 7%5 
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selects the third option (ifstatement). Note that the 
index of each component begins from 0 and ‘%’ is a 
symbol for a modulo operator. The ifstatement, 
which dtype is a sequence, has six mandatory 
components. The first component is a terminal 
called ‘tokens’ and does not require any gene. The 
second component maps to a rvariable rule, which is 
a selection. rvariable has five components, therefore 
23%5 is 3, selecting the fourth component. The third 
ifstatement’s component is an operator rule, which 
takes the next available gene. So 11%6 is 5, which is 
equivalent to ‘<=’ symbol. Next is a rvariable rule, 
thus 34%5 is 4, which selects $tmp3. Following is a 
‘tokens’ and a statementseq rule. The last gene (2) in 
this block maps to statement rule from the 
statementseq rule. This completes the translation of 
the first block. 

The first gene (6) of the next block is translated 
as the assignstatement rule with respect to 6%5 = 1. 
The assignstatement rule has three components; 
wvariable , = and rvariable which is translated to 
‘$tmp3 = $tmp1;’ . The extra 2 integers (21, 9) are 
referred to as the padding and they are ignored. 

Table 1: 2 blocks genome. 

7 23 11 34 2 6 10 12 21 9 

Table 2: Genotype-phenotype translation. 

Blk Gene % Mapped to Translation  
1 7 2 statement  ifstatement 
 -  tokens if ( 
 23 3 rvariable $tmp2 
 11 5 operator <= 
 34 4 rvariable $tmp3 
 -  tokens ) 
 -  tokens { 
 2 0 statementseq statement 
 -  tokens } 
2 6 1 statement assignstatement 
 10 2 wvariable $tmp3 
 -  tokens = 
 12 2 rvariable $tmp1 
 -  tokens ; 
 21  - padding 
 9  - padding 

Phenome : if (tmp2 <= $tmp3) { $tmp3 = $tmp1; } 

5 EXPERIMENT SETTING & 
RESULT 

The experiment used a seeded initial population, 
using parameters setting as in Table 3 below. 

Table 3: Parameter setting for ‘sorting program’ evolution. 

Parameter Specification 
Population size 7 

Selection Roulette Wheel 
Runs 100 

Maximum Generations 
in each run 

50,000 

Fitness score target 40 
Uniform crossover 

probability 
50% 

Mutation probability 10% 

Machine 
Intel 3.00GHz PC with 4GB of 

RAM, running Windows7 

Input lists 

[ 4 ,3 ,2 ,1 ] , [1,2,55,3] , 
[1,999,2,3] , [71,1,2,3] , [1,2,33] , 
[100,88,211] , [100,1,2] , [13,7] 

,[5,55] , [10] 
 

The input lists are made up of various lengths 
and orders. The termination of each run is either 
when the maximum generation is reached or earlier, 
if a solution is found. Table 4 shows the result of the 
first 10 runs with the initial population seeded with 
the first 10 prime numbers. 

Table 4: Experiment result. 

Seed Generation  Time (hr:mm:ss)
1 9114 00:06:33
2 4407 00:03:12
3 27830 00:20:37
5 36028 00:26:01
7 24400 00:17:48
11 31384 00:22:57
13 31190 00:22:56
17 11928 00:09:00
19 35391 00:26:25
23 28154 00:20:44

 

The effect of moving the rules to an XML file 
and modification to the grammar definition is shown 
in Table 5, in comparison with the previous work of 
Withall et. al. (2009). 

Table 5: Comparison of result against Withall. 

 
Generation Time 

Withall Ours Withall Ours 
N 100 100 100 100 

Mean 15514.56 22906.53 10.50 16.55
Std. Error- Mean 1081.169 1546.987 .752 1.132

Median 12491.00 20527.50 9.00 15.50
Std. Deviation 10811.688 15469.870 7.524 11.316

 

Although the result shows some increase in the 
number of generations and time, our approach 
provides several benefits: 

 The main contribution from this research was to 
remove the translation process from a hard coded 
system to a table driven approach. 
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 The ‘repair’ function that ensures the validity of 
the generated program is no longer required. 

 The rules resemble the full program subset 
syntax, without any hidden terminal symbols. 

 If the requirement is to generate blocks of a e.g. 
{aaa}{aaaaaa}, our method could easily produce 
this pattern as we specified the start and the stop of a 
block statement within the grammar. Withall’s 
method would not be possible because of the repair 
function, which insert all the remaining } in the end 
of the program to match the { produced earlier in the 
program. Xhemali’s similarly fails in this respect. 

 

The above experiment is set to evolve a ‘sorting 
program’, however, the fitness evaluation function 
needs to be changed for other computer program 
problems. In addition, a domain specific grammar 
definition is needed to fit other areas such as regular 
expressions, Medical (e.g. DNA matching), 
linguistics (Natural Language) etc. However, further 
experiments are required to evaluate these 
applications. 

6 CONCLUSIONS 

This paper presents an investigation into the effect 
of full syntax XML-based grammar definitions to 
the resultant program and the fitness evaluations. 
Specifically, we have presented a novel approach to 
effectively map the genotype to phenotype with 
XML rules, demonstrated by evolving a sorting 
program. The results are compared to the former 
work and provide evidence of significant 
improvements in terms of the construction of a 
syntactically correct solution without a repair 
function and without significantly compromising 
performance.  

In future, we will continue this investigation to 
include a function declaration e.g. a swap function in 
the grammar, which would speed up a sorting 
program evolution, and applying a similar technique 
to other domain such as regular expression, to 
identify a data pattern from a HTML web page for 
information extraction. This will enable our GP 
system to be extended by an external process, which 
can add to the XML rules without requiring a 
modification to the main GP system. 
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