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Abstract: Mapping to Multidimensional Optimal Regions (M2OR) is a special purposed method for multiclass 
classification task. It reduces computational complexity in comparison to the other concepts of classifiers. In 
order to increase the accuracy of M2OR, its code assignment process is enriched using PCA. In addition to 
the increment in accuracy, corresponding enhancement eliminates the unwanted variance of the results from 
the previous version of M2OR. Another advantage is more controllability on the upper bound of V.C. 
dimension of M2OR which results in a better control on its generalization ability. Additionally, the 
computational complexity of the enhanced-optimal code assignment algorithm is reduced in training phase. 
By the other side, partitioning the feature space in M2OR is an NP hard problem. PCA plays a key role in 
the greedy feature selection presented in this paper. Similar to the new code assignment process, 
corresponding greedy strategy increases the accuracy of the enhanced M2OR. 

1 INTRODUCTION 

Classification or partitioning a dataset into a 
predefined number of classes has a long history 
(Zurada, 1992); (Vapnik, 2000); (Theodoridis and 
Koutroumbas, 2003). In the set of classification 
methods, without considering the trick which is 
applied to enhance the accuracy of a classifier, there 
are limited basic concepts by which a method 
classifies patterns (Zurada, 1992); (Vapnik, 2000); 
(Theodoridis and Koutroumbas, 2003); (Bavafaye 
Haghighi et al., XXXX); (Bavafaye Haghighi and 
Rahmati, XXXX): 

(1) Bi-classifier based methods: A bi-classifier is a 
decision hyperplane which is able to classify some 
given patterns into two groups. By combining the 
results of bi-classifiers it is possible to fulfil a multi-
classification task. 

(2) Mono-classifier (or centre) based methods: In 
Bayes decision theory or clustering methods, each 
centre of a class plays the role of a mono-classifier 
which determines how much a given pattern belongs 
to it (decision confidence). 

(3) Dynamical system based: Memories (e.g. 
Hopfield) are the examples of dynamical system 
based methods. Because of crosstalk noise and the 

correlation between attractors, the accuracy of these 
methods is not considerable. 

The complexity of a classifier is usually more 
than/ equal to the number of classes in terms of the 
required number of inner products in feature space. 
By applying back propagation method (Zurada, 
1992); (Vapnik, 2000); (Theodoridis and 
Koutroumbas, 2003) or tree (hierarchical) tricks 
(Martin et al., 2008); (Ontrup and Ritter, 2006); 
)Bavafa et al., 2009); (Ditenbach et al., 2002), it is 
possible to reduce computational complexity to a 
lower bound related to the number of classes. 
However, corresponding decrease could not reach 
the bound of one inner product in a multi-
classification task. In addition, in order to raise the 
accuracy of classification, more computational 
complexity is required in practice. Adding more 
neurons to a multilayer layer perceptron (MLP) or 
applying k-competition approach in hierarchical 
methods are such examples. 

In (Bavafaye Haghighi et al., XXXX), a new 
concept for multi-classification task is presented 
which is called Mapping to Optimal Regions 
(MOR). Compared with the concepts of bi-classifier 
and mono-classifier, MOR is a Multi-classifier 
which is a special purpose method for multi-class 
classification. MOR applies only one simple 
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mapping (an inner product) to classify patterns. In 
order to define such mapping, a code assignment 
process is applied which assigns to each cluster of 
patterns a unique code. Corresponding process 
enriches the mapping of proposed method by the 
topological information of feature space. These 
codes play the role of labels with less effect on the 
problem called bad labelling. Since there is no need 
to assign a code to each disturbed pattern, 
corresponding strategy makes the process more 
robust to noise. 

For a given pattern, mapping is defined 
theoretically from feature space to the corresponding 
code; however, in practice it maps to a region 
around it. Because of the distribution of patterns, it 
is impossible to map to the code exactly. As a result, 
it is necessary to define optimal regions around each 
code in which patterns with a same label/code are 
mapped effectively. It is the reason why the new 
method is called mapping to optimal regions. The 
optimal domain of the regions is estimated using a 
multi objective cost function (Sawaragi et al., 1985); 
(Bazaraa et al., 2006) to increase the region size and 
generalization ability (Kacprzyk, 2007); (Schoelkopf 
and Smola, 2002) of the mapping and to reduce the 
mapping error. Estimation of optimal domain 
concerns the theories of numerical analysis (Stoer 
and Bulirsch, 2002); (Heath, 1997) and 
regularization (Kacprzyk, 2007); (Schoelkopf and 
Smola, 2002). 

By taking the advantages of MOR as a multi-
classifier, it is possible to classify a considerable 
number of linearly separable classes (e.g. 39 classes) 
in high dimensional feature space using only one 
inner product (Bavafaye Haghighi et al., XXXX). In 
order to obtain better accuracy, Mapping to 
Multidimensional Optimal Regions (M2OR) and 
related theorems are presented (Bavafaye Haghighi 
and Rahmati, XXXX). In M2OR, an inner product is 
partitioned to a number of sub-mappings which are 
applied in lower dimensional spaces. As a result, it is 
possible to learn more optimal regions using 
computational complexity which is approximately 
equal to one inner product in feature space.  

In this paper, the code assignment process of 
M2OR is enriched using PCA (Izenman, 2008); 
(Jolliffe, 2002). In addition to the increment in 
accuracy, corresponding enhancement eliminates the 
unwanted variance of the results from the previous 
version of M2OR. More controllability on the upper 
bound of V.C. dimension of M2OR is another 
advantage of the enhanced version of code 
assignment process. It results in a better control on 
the generalization ability of M2OR. Additionally, it 

reduces the computational complexity of the training 
phase and guarantees optimal solution for the code 
assignment process. More increment in the accuracy 
is accomplished by a greedy feature selection using 
the most informative orthogonal directions of PCA. 

The arrangement of the sections is as follows: In 
Sec. 2, a review on MOR family is presented. The 
enhanced version of M2OR is discussed in Sec. 3. 
Some experimental results are prepared in Sec. 4 and 
finally, Sec. 5 contains conclusions and future 
works. 

2 THE FAMILY OF MAPPING TO 
OPTIMAL REGIONS 

In (Bavafaye Haghighi et al., XXXX); (Bavafaye 
Haghighi and Rahmati, XXXX), the concept and the 
theoretical aspects of MOR and M2OR are 
presented. However, Section 2 presents a review 
about MOR family and corresponding advantages. 

2.1 Challenges of Constructing MOR 

In this section, we analyse the error caused by 
applying an inner product as a multiclass classifier. 
Corresponding mapping is defined by vector ܽ, 
given by (1). 

݂ሺݔ௜ሻ ൌ 〈 ௜ݔ , ܽ〉 ൌ  ,௜ݕ
(1)

,,௜ݔ ܽ ∈ Թ௡, ௜ݕ ∈ Թ, 1 ൑ ݅ ൑ ݈. 
 

In the above relation xi is ith training sample, yi is 
corresponding label and l is the number of training 
samples. Superscript .T stands for transpose operator. 
Using each pattern xi as the ith row of matrix X and 
by defining Y=[y1,…, yl]

T, the estimation of a is 
given as: 

ොܽ ൌ ܺା. ܻ, (2)
 

where .+ is Moore-Penrose pseudo inverse operator 
(Tarantola, 2005; Meyer, 2000). The two main 
challenges which f(.) confronts as a multi-classifier, 
are summarized as follows. The first one is the result 
of bad labelling. Bad labelling occurs when close 
patterns do not have close labels. The second 
problem is due to the distribution of patterns in 
feature space. Such error is related directly to the 
radius of cluster sphere. 

To reduce the effect of bad labelling in MOR, 
closer codes are assigned to the close patterns. For 
each cluster of patterns a unique code (called raw 
code) is proposed by applying a hierarchical version 
of SOM (HSOM) (Kohonen, 1997). The transferred 
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version of these codes to the centre of optimal 
regions (optimal codes) play the role of labels with 
less effect of bad labelling. The topological 
information of patterns is included in the multi-
classifier using optimal codes. For each pattern, the 
multi-classifier is defined theoretically from feature 
space to the corresponding optimal code. However, 
because of the distribution of patterns, it maps to a 
region in vicinity in practice. By defining optimal 
regions around each code, clusterable patterns with a 
same code are mapped in the correct region 
effectively. The optimal domain of the regions is 
estimated by using a multi objective cost function 
with the concern to the theories of numerical 
analysis (Stoer and Bulirsch, 2002); (Heath, 1997) 
and regularization (Kacprzyk, 2007); (Schoelkopf 
and Smola, 2002). 

2.2 Raw Codes and Optimal Codes 

In order to increase the probability of assigning 
appropriate codes, HSOM is applied. In each level 
of HSOM, nodes are expanded with a fixed 
branching factor (bf). The hierarchy is expanded 
until reaching a specific level. Patterns accepted by 
sibling sub-clusters, are all accepted by a unique 
parent. Therefore, these patterns are topologically 
close together. Using (3), closer codes are assigned 
to the sibling sub-clusters. 

 

݁݀݋ܿ_ݎ݁ݐݏݑ݈ܾܿݑݏ ൌ ݁݀݋ܿ_ݐ݊݁ݎܽ݌ ∗ 2ቒ୪୭୥మ
್೑ቓ ൅ ݋݊_݈݄݀݅ܿ (3)

 

In (3),  .  is the ceil operator. The assigned codes to 

sub-clusters at the bottom layer of HSOM, are raw 
codes. The raw code for the ith pattern (craw_i), is the 
raw code of sub-cluster which accepts it. Similar to 
the vector Y (Sec. 2.1), Craw=[craw_1,…,craw_l]

T is 
defined using the raw codes of the training patterns. 

Before introducing the multi objective cost 
function to estimate optimal domain, the definition 
of mapping to optimal codes is required. As a result, 
in this section it is assumed that the optimal domain 
of the regions (Do) is known. Do is the distance 
between the centre of a region and its border. The 
raw codes (craw) which are transferred to the centre 
of optimal regions, are called optimal codes (co). 
Each optimal code is calculated by multiplying an 
odd integer number in Do. When optimal codes and 
raw codes are arranged in increasing order, the 
correspondences between them are determined. The 
vector Co=[co-1,…, co-l]

T includes the optimal codes 
for training patterns (similar to the vectors of Craw 
and Y). At this step, the mapping from input space to 
optimal codes is estimated using (4), 

݂:Թ௡ → Թ , ݂ሺݔሻ ൌ ,ݔ〉 ොܽ〉; 	 ොܽ ൌ ܺା. ௢. (4)ܥ
 

By considering the effect of distribution of patterns, 
the optimal code of ith pattern is given by: 

 

ܿ௢_௜ ൌ
.௢ܦ ቀቔ

௙ሺ௫೔ሻ

஽೚
ቕ ൅ 1ቁ , ݂݅ ቔ

௙ሺ௫೔ሻ

஽೚
ቕ ൌ 2݇, ݇ ∈ Գ,

.௢ܦ ቔ
௙ሺ௫೔ሻ

஽೚
ቕ , ݂݅ ቔ

௙ሺ௫೔ሻ

஽೚
ቕ ൌ 2݇ ൅ 1, ݇ ∈ Գ.

 (5)

2.3 Estimation of Optimal Domain 

In order to determine f(.), the optimal value of Do is 
required. With respect to the theorems of numerical 
analysis, increasing the value of Do leads to an 
extended domain for mapping. Therefore, it seems 
that greater values of Do are more advantageously 
(Stoer and Bulirsch, 2002; Heath, 1997). On the 
other hand, smaller values of Do have another 
benefit, while generalization ability and the error of 
the mapping f(x) are proportional to Do. The 
generalization ability of the mapping f(x) depends on 
its derivation with respect to x (i.e.	߲௫݂) (Kacprzyk, 
2007). From (4), it is known that: 

ොܽ ≅ ܺା. .௢ܦ ௥௔௪ܥ ⇒ ‖߲௫݂‖ ൌ ‖ ොܽ‖ ∝ ௢ (6)ܦ
 

Therefore, smaller values of ‖߲௫݂‖ yield less 
sensitivity of f(x) to the input variations and it results 
in more generalization ability. The dependency 
between the error of the mapping (erroro) and Do is 
given by: 

 

௢ݎ݋ݎݎ݁ ൌ෍ห݂ሺݔ௜ሻ െ ܿ௢_௜ห

௟

௜ୀଵ

≅ 

(7)

.௜்ݔ௢.෍หܦ ܺା. ௥௔௪ܥ െ ܿ௥௔௪_௜ห

௟

௜ୀଵ

ൌ .௢ܦ  .௥௔௪ݎ݋ݎݎ݁

 

In (7), errorraw is the error of the mapping to the raw 
codes. For the approximation ܥ௢ ≅ .௢ܦ  ௥௔௪ whichܥ
satisfies (6) and (7), it has shown better performance 
if both raw and optimal codes have a balance 
distribution around zero. As explained earlier on the 
importance of the value Do, its value is determined 
by a multi objective minimization cost function 
formulated in (8), 

min
஽೚

ܧ ൌ
1
௢ܦ

൅ ௢ݎ݋ݎݎ݁ ≅
1
௢ܦ

൅	ܦ௢. ௥௔௪. (8)ݎ݋ݎݎ݁
 

Minimizing E causes increasing Do as well as 
decreasing it, which results in decreasing ‖߲௫݂‖ 
indirectly. With respect to the convexity of E in Թ +, 
it is proved that it has a unique solution in 
corresponding domain (Bazaraa et al., 2006); 
Sawaragi et al., 1985); (Schoelkopf and Smola, 
2002). Since E is a multi-objective cost function, a 
weighed summation of the objective terms is 
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necessary to emphasize the importance of them. 
However, the proper adjustment for such weighs in a 
multi objective cost function is a challenging task 
(Schoelkopf and Smola, 2002); (Kacprzyk, 2007); 
(Sawaragi et al., 1985). As a result, E is 
reformulated using other forms of objectives (i.e. E2 
and E1 in (9) and (10)) (Bavafaye Haghighi et al., 
XXXX). 

 

min
஽೚

෠ଵܧ ൌ
1

ඥܦ௢
൅	ܦ௢. ௥௔௪. (9)ݎ݋ݎݎ݁

min
஽೚

෠ଶܧ ൌ
1

ඥܦ௢
൅	ඥܦ௢. ௥௔௪. (10)ݎ݋ݎݎ݁

The solution Do in all of the formulations (8), (9) 
and (10) correlates inversely with error୰ୟ୵. By 
determining the nature of Do (i.e.	1 ⁄௥௔௪ݎ݋ݎݎ݁ ), some 
finer adjustments is enough to propose the best value 
for Do. As a result, Do is estimated using the general 
form presented in (11). 

௢ܦ ൌ minሼߙ ⁄௥௔௪ݎ݋ݎݎ݁ , ௠௔௫ሽ. (11)ܦ

In (11), ߙ is a free parameter adjusted according to 
the problem. Experimental results demonstrates that 
a set contains 4 members is enough to adjust 
corresponding value (Bavafaye Haghighi et al., 
XXXX). The term Dmax is appeared in (11) to avoid 
occurrence of infinite value for Do. 

2.4 The MOR Algorithms 

The required steps for training of MOR are as 
follows: 
1- Assign raw codes by using HSOM. 
2- Estimate Do by employing (11). 
3- Assign optimal codes by using Do and Craw. 
4- Estimate f(.) by applying (4). 
5- For each training pattern find corresponding 
optimal code by using (5). 
6- The label of each optimal region is the major 
lable of accepted patterns by corresponding region. 

An important note about MOR is that HSOM is 
applied to include the topological information of 
feature space into the multi-classifier. Therefore, 
there is no need to keep its information after 
training. In order to apply MOR to find the label of 
some test patterns in practice, following steps are 
required: 
1- For each test pattern find corresponding optimal 
code using (5). 
2- Retrieve the label of optimal region. 

Using the first version of MOR, it is possible to 
classify a considerable number of linearly separable 

classes (e.g. 39 classes) using only one inner 
product. Although MOR reduces complexity in 
comparison to the traditional concepts of classifiers, 
it is not able to classify data sets with more number 
of classes (e.g. 57 classes). The problem stems from 
the fact that patterns which are in a hyper cube, are 
mapped to the same region. Corresponding 
probability increases for more number of classes or 
low dimensional datasets. 

In order to classify such patterns, a Hierarchical 
version of MOR (HMOR) is presented. In Training 
process of HMOR, each region that does not pass a 
specified threshold of accuracy, is expanded. 

2.5 Mapping to Multidimensional 
Optimal Regions 

Although the complexity of HMOR is lower than 
traditional concepts of classifiers, its accuracy for 
complex datasets is not acceptable. Unfortunately, 
applying a k-competition approach to obtain better 
accuracy is not possible. That is the effect of 
applying a multi-classifier in contrast to mono-
classifier based approaches in which each mono 
classifier has an individual decision confidence 
(Zurada, 1992); (Theodoridis and Koutroumbas, 
2003); (Martin et al., 2008). However, it is possible 
to reduce computational complexity to one inner 
product with considerable enhancement in accuracy 
using M2OR. 
 

 

Figure 1: Mapping to multidimensional regions is 
illustrated schematically. 

For each new expansion in a hierarchical 
method, a special subset of variables (or features) is 
more effective. Corresponding fact is the main idea 
behind M2OR which partitions mapping f(.) to a 
number of sub-mappings applied in lower 
dimensional spaces. Therefore, M2OR does not 
modify the complexity of the one dimensional 
version considerably. However, since the hyper 
cubes (defined by the single mapping of MOR) are 
partitioned into detailed sub-cubes, accuracy 
increases significantly. It is worth reminding that 
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estimating and applying each sub-mapping is 
independent from the others. As a result, training 
and testing process of M2OR can takes the 
advantageous of parallel computing (El-Rewini and 
Abd-El-Barr, 2005). Figure 1 illustrates mapping to 
two dimensional regions schematically. Mapping to 
m-dimensional optimal region is defined as f= 
(f1,…,fm) such that 

 

௞݂: Թ௡ೖ ⟶ Թ, ௞݂൫ݔఋೖ൯ ൌ ,ఋೖݔ〉 ොܽ௞〉; 

(12)

1	݈݈ܽ	ݎ݋݂ ൑ ݇ ൑ ,ఋೖݔ	݄ݐ݅ݓ	݉ ොܽ௞ ∈ Թ
௡ೖ, 

∑ ݊௞
௠
௞ୀଵ ൌ ݊, 

௞ߜ ൌ ሺߜ௞ଵ, ,௞ଶߜ … , ,௞௡ሻߜ

௞௝ߜ ∈ ሼ0,1ሽ,෍ ௞௝ߜ
௠

௞ୀଵ
ൌ 1 

෍ ௞௝ߜ
௡

௝ୀଵ
൐ 1, 1 ൑ ݆ ൑ ݊. 

 

The sequence of ߜ௞ determines which subset of the 
variables to be applied for the sub-mapping fk(.). 
When ߜ௞௝ ൌ 1, it means that the jth element of x is 
selected to be applied by fk(.). The condition 
∑ ௞௝ߜ
௠
௞ୀଵ ൌ 1 ensures that the feature space is 

partitioned to separated subspaces and also all of the 
features are considered for the formation of M2OR. 
The condition ∑ ௞௝ߜ

௡
௝ୀଵ ൐ 1 guarantees that the 

dimension of each subspace is more than one. 
In order to have better accuracy of M2OR during 

test phase, the probability of mapping to unlabelled 
regions should be considered. Since the neighbour 
regions accept topologically close patterns, it is 
probable that the label of an unlabelled region be 
equal to the major label of closest neighbours. K 
Nearest Neighbour (KNN) methods require to 
compute l number of distances (for l number of 
samples) to find the K nearest samples (Theodoridis 
and Koutroumbas, 2003). However, M2OR retrieves 
only the label of neighbours by modifying the index 
of an unlabelled one. If mI (݉ூ ൑ 4) indices are 
modified, the label of ܥ௠

௠಺ neighbours will be 
retrieved. It is worth reminding that corresponding 
task is an offline process at the end of training phase. 

Theoretical and experimental results showed a 
considerable enhancement in the accuracy of M2OR 
in comparison to its hierarchical version. However 
more increment in the accuracy is still required to 
obtain better results. The sensitivity of the code 
assignment process of M2OR to the initial weights of 
HSOM causes an unwanted variance in its results. 
Additionally, in (Bavafaye Haghighi et al., XXXX), 
the values of ߜ௞௝ which are applied to partition the 
feature space, is determined with respect to the 
natural correlation of the features by the expert. It is 
showed in this paper that applying a greedy feature 
selection is more advantageously. 

3 ENHANCED M2OR USING PCA 

Principle Component Analysis (PCA) is one of the 
oldest and renowned techniques for multivariate 
analysis (Izenman, 2008); (Jolliffe, 2002). It is 
mainly introduced to reduce the dimensionality of a 
dataset in such way that the variation of data be 
preserved. It is worth reminding that PCA is not a 
classifier in general. For a classification task, a 
classifier such as MLP, KNN or etc. is required to be 
applied after dimension reduction using PCA. 
However, it might be used as a mono classifier 
based method when samples with a same label are 
almost on a special direction. The limitation of 
corresponding assumption does not make PCA an 
efficient classifier (VijayaKumar and Negi, 2007).  

In this paper, the advantage of detecting the most 
informative directions of a dataset using PCA is 
applied to increase the accuracy and better 
performance of M2OR. Both of the code assignment 
and feature selection processes are enhanced using 
the major orthogonal directions returned by PCA. 
After enhancing M2OR using PCA during training 
phase, there is no need to preserve the information 
of principle components. As a result, M2OR should 
not be considered as an enhanced version of PCA.  

3.1 PCA based Code Assignment 

It is explained in Sec. 2 that the code assignment 
process of M2OR is accomplished with respect to the 
determined raw codes (Sec. 2.2) and the width of the 
optimal regions (Sec. 2.2 & 2.3). In order to estimate 
the width of optimal regions (8), one of the objective 
terms to increase the generalization ability of the 
mapping and to reduce the mapping error depends 
on the raw codes. As a result, the process of 
determining raw codes plays an important role to 
increase the accuracy of M2OR. 

Using HSOM (Sec. 2.2), the effect of bad 
labelling is reduced and the sub-mappings are 
enriched with the topological information of 
patterns. However, sensitivity of HSOM to the initial 
weights of the neurons caused an unwanted variance 
in the results of M2OR and the bad labelling effect is 
still probable. It is demonstrated in this paper that by 
applying PCA instead of HSOM the effect of bad 
labelling is reduced effectively without imposing 
any variance to the accuracy of M2OR. In addition, 
more control on the generalization ability of the 
proposed method, reducing computational 
complexity of training phase and optimal solution 
are the other advantageous of applying PCA instead 
of HSOM. 
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3.1.1 Enhanced Code Assignment  

By projecting samples of a dataset on the major 
eigenvector of PCA, the probability of overlapped 
projection for different classes is reduced for most of 
datasets (Izenman, 2008); (Jolliffe, 2002). Figure 2 
demonstrates such situation in Թଶ schematically. As 
a result, in order to find raw codes for a sub-space 
(see Sec. 2.5) using PCA, the major informative 
direction of samples (i.e. major eigenvector of 
covariance matrix) is more advantageously. By 
dividing the projection domain of the major 
eigenvector to equal parts, the set of raw codes and 
consequently Craw are determined (Figure 2).  

By applying PCA instead of HSOM, the 
computational complexity of training phase of 
M2OR is reduced.  The computational complexity of 
code assignment process using HSOM is O(T.l.n.C) 
where T is number of training steps and C is the 
number of clusters (Kohonen, 1997). In case of 
applying PCA, the computational complexity is 
O(n3+n2.l) (Sharma and Paliwal, 2007). Since the 
value of T.C is usually more than the dimensionality 
of dataset (n), the computational complexity of the 
enhanced version of code assignment process is less 
than the previous version. 

 

Figure 2: By projecting samples on the major informative 
direction of a dataset, the probability of overlapped 
projection for different classes is reduced. The set of raw 
codes is determined by dividing the projection domain to 
equal parts. 

3.1.2 Optimality of Solution 

Since PCA results in a set of orthonormal basis in 
Թ௡ (Izenman, 2008); (Jolliffe, 2002), the other 
mapping directions are the weighted summations of 
corresponding basis. By determining the least 
overlapped eigenvector of PCA, mapping to each 
weighted summation of these bases reduces the 
effect of the least overlapped direction. In most 
cases, the major eigenvector is the least overlapped 

direction. As a result, mapping to the corresponding 
direction is the optimal-less overlapped class for 
most of datasets.  

 
                        (a)                                               (b) 

Figure 3: There are some exceptional distributions in 
which (a) the other eigenvectors are advantageously or (b) 
applying a kernel PCA is necessary. 

However, there may be some exceptional 
distributions in which applying 2nd or 3rd eigenvector 
is advantageously (Figure 3.a) or applying a kernel 
PCA is necessary (Figure 3.b). In order to guarantee 
the optimality of raw codes in cases similar to Figure 
3.a, testing 1st, 2nd and 3rd major eigenvectors is 
proposed. For special distributions such as spherical 
one (Figure 3.b), with respect to the “No free lunch 
theorem” (Schoelkopf and Smola, 2002), meta-
knowledge should be provided to apply the proper 
structure of a kernel.    

3.1.3 Controllability on V.C. Dimension 

By taking the advantage of PCA based code 
assignment, the upper bound of V.C. dimension of 
M2OR and the number of raw codes is more 
controllable in comparison to its previous version. In 
(Bavafaye Haghighi and Rahmati, XXXX), it is 
explained that the upper bound of V.C. dimension of 
M2OR is equal to ሺ ஼ܰሻ௠ where ஼ܰ is the number of 
raw codes and consequently number of optimal 
regions for each sub mapping. By applying HSOM, 

஼ܰ grows exponentially equal to ܾݎௗ where d is the 
depth of hierarchy and br is the branching factor. 
However, by using PCA based code assignment, ஼ܰ 
for each sub mapping can be any arbitrary number in 
Գ. As a result, the upper bound of V.C. dimension is 
more controllable using the proposed enhanced 
version of M2OR. 

3.2 PCA Feature Selection Process 

In the first version of M2OR, feature partitioning is 
accomplished with respect to the natural correlations 
in feature space which is determined by a human 
expert (Bavafaye Haghighi and Rahmati, XXXX). 
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Corresponding feature partitioning approach is 
suggested in (Kumara and Negi, 2008) in order to 
solve sub-PCA problem before. An example 
illustrates in (Bavafaye Haghighi and Rahmati, 
XXXX) in which each two sequence of rows of the 
28*28 image of handwritten digits of MNIST 
(MNIST) is regarded as the feature of each sub-
mapping.  

The problem of feature partitioning is a kind of 
graph partitioning which is an NP hard problem. 
Instead of partitioning feature space, a greedy 
feature selection for each sub-mapping is proposed 
in this paper. It increases the accuracy in comparison 
to the former method. 

3.2.1 Greedy Feature Selection Algorithm 

In Sec. 2.5, it is explained that for each new 
expansion in a hierarchical method, a special subset 
of variables (or features) is more effective. In the 
first layers, features which are suitable for a coarse 
classification are more important. However, in the 
bottom layers, features which contain fine details 
play the main role. Finally, a combination of all of 
these features is applied for a classification or 
clustering task. Such combination is proposed in 
M2OR by selecting the fine features of the major 
principle components.  

The importance of variables in each principle 
component is different. By sorting the elements of 
an eigenvector in increasing order, the effectiveness 
of corresponding variables are determined. With 
respect to the effect of variable scales on the 
covariance matrix and consequently the principle 
components, applying PCA on the centered-
normalized version of variables (Izenman, 2008) is 
more effective to reduce the effect of variable scales. 

Since PCA results in a set of orthonormal basis, 
the importance of each variable in an eigenvector is 
different from the other eigenvectors. As a result, the 
first n/m variables of kth major eigenvector, is 
considered for fk(.). With respect to the different 
degree of importance of the selected variables in the 
other eigenvectors, it is probable that corresponding 
set of features is not selected for the other sub-
mappings. However, in order to guarantee that all of 
the features are applied in the classification process, 
after feature selection process for the first m-1 sub-
mappings, the residual-non selected variables are 
assigned to the last sub-mapping (i.e. fm(.)). 

According to the explanations about feature 
selection process, corresponding algorithm is 
summarized as follows: 

 

1- Apply PCA on the centered-normalized dataset. 

2- Select the first m-1 major eigenvectors. 
3- For 1 ൑ ݇ ൑ ݉ െ 1: Select the first n/m fine 
variables of kth eigenvector for fk(.) and set ߜ௞௝ ൌ
	1	ሺ1 ൑ ݆ ൑ ݊ሻ for the selected variables accordingly. 

4- Select the residual features for fm(.) and set 
௠௝ߜ ൌ 	1	 ሺ1 ൑ ݆ ൑ ݊ሻ for corresponding variables 
accordingly. 

 

By considering the probability of selecting a variable 
more than one time in feature selection process, the 
condition	∑ ௞௝ߜ

௠
௞ୀଵ ൌ 1 of (12) should be rewritten as 

∑ ௞௝ߜ
௠
௞ୀଵ ൒ 1. Experimental results confirm that the 

probability of selecting a variable more than one 
time is infrequent. The number of repeated features  
is less than the half of total number of variables in 
almost all cases. Applying fine variables of 
informative orthonormal directions increases the 
accuracy of M2OR considerably. 

3.3 Enhanced M2OR Algorithms 

 

Figure 4: The Algorithm of training enhanced M2OR. 
Estimating the sub-mappings can take the advantage of 
parallel computing. 

According to the enhancements in code 1 process 
and feature selection, the enhanced training process 
of M2OR is summarized in Figure 4. After 
determining the multidimensional optimal region of 
each training sample, corresponding region is 
labeled with respect to the major lable which is 
accepted by it. For unlabeled regions which have 
labeld neighbours, their label is detemined with 
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respect to the most frequent labels of the neighbours. 
By determining sub-mappings after training, they are 
applied in the test phase as illustrated in Figure 5. 

 

Figure 5: The Algorithm of testing enhanced M2OR. 
Applying sub-mappings can take the advantage of parallel 
computing. 

4 EXPERIMENTAL RESULTS 

In (Bavafaye Haghighi et al., XXXX), the concept of 
Mapping to Optimal Regions as a multi-classifier is 
presented by which a considerable number of 
linearly separable classes are classified by applying 
only one inner product in feature space. Mapping to 
Multidimensional Optimal Regions and related 
theorems about solution existence and potential 
abilities of learning in terms of V.C. dimension and 
growth function are presented in (Bavafaye 
Haghighi and Rahmati, XXXX). The focus of 
experimental result in this paper is presenting 
considerable enhancement in the accuracy of M2OR 
by applying the least expected computational 
complexity. 

4.1 Experiments Setup 

Table 1 presents the specification of datasets which 
are applied in this paper. MNIST (MNIST) is the set 
of handwritten digits. Each digit has been size-
normalized and cantered in a fixed size (28*28) 
image. COIL100 (Nene et al., 1996) contains colour 
images of 100 different objects which are turned by 
5°. As a result, there are 72 images from different 
views for each object. In COIL-A, 18 images from 
each object (which are turned 20°) are applied to 
train and the 54 remaining images are used to test. In 
COIL-B, 36 images (by turning each object 10°) are 
applied to train and the remaining 36 images are 
used to test. 

Similar to (Kietzmann et al., 2008), from each 
image of COIL100, 292 dimensional features are 
extracted. Each extracted feature contains 64*3 
dimension for the histograms of Lab channels, 64 
dimensional histogram of Discrete Cosine 
Transformation (DCT), 8 dimension for Hu 

moments in addition to the logarithm form of their 
absolute values, 10 dimensional shape information 
which contains centroid, compactness, perimeter, 
eccentricity, circularity, aspect ratio, elongation, 
maximum and minimum diameters in addition to the 
logarithm of their absolute values. 

Table 1: Specifications of the applied datasets. 

 n C l-train l-test 

MNIST 784 10 60000 10000 
Forest 54 7 290321 290321 

COIL-A 292 100 1800 5400 
COIL-B 292 100 3600 3600 
Robot 24 4 4911 546 

Segment 19 7 210 2100 
MFeat 649 10 1800 200 

* The abbreviations are given in the text. 
 

Other datasets which are Forest Cover Type 
(Forest), Wall Following Robot (Robot), 
Segmentation (Segment) and Multiple Feature Digit 
(MFeat), are downloaded from UCI repository (UCI 
repository). No feature extraction is applied on the 
UCI datasets and also on MNIST digits. 

Table 2 presents the parameter settings for the 
enhanced M2OR for different datasets. In most 
cases, applying the 1st principle component 
optimizes the set of raw codes in 66% of datasets. 

Table 2: The parameters of the enhanced M2OR. 

  

m 
 

Nc 
Principle 

Component No. 

MNIST 16 4 1st 
Forest 12 8 1st 

COIL-A 8 14 1st 
COIL-B 8 14 1st 
Robot 9 12 1st 

Segment 8 9 2nd 
MFeat 8 10 2nd 

4.2 Increasing the Accuracy of Results 

Table 3 presents the error rate and the computational 
complexity (CC) of (1) M2OR with HSOM based 
code assignment and sequential feature partitioning 
(M2OR+HSOM+SP), (2) enhanced M2OR with PCA 
based code assignment and sequential partitioning 
(M2OR+ PCA+SP), (3) enhanced M2OR with PCA 
based code assignment and the proposed feature 
selection process (M2OR+PCA+FS) and (4) other 
classifiers (Yang et al., 2002); (Fu et al., 2010); 
(Bala and Agrawal, 2009); (Sen and Erdogan, 2011); 
(Villegas and Paredes, 2011); (LeCun, et al., 1986; 
MNIST). Since HSOM is sensitive to the initial 
weights of neurons, its least, mean and variance of 
error rates are reported. According to the 
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enhancements of M2OR, the error rate of 
corresponding method is reduced considerably in 
comparison to its previous versions. It eliminates the 
unwanted variance of the results. 

According to Table 3, the error rates of enhanced 
M2OR for Forest and Robot datasets are comparable 
with the state of the art methods (Fu et al., 2010); 
(Sen and Erdogan, 2011). The accuracy of 
classification for COIL100 and Segment is not better 
than Support Vector Machine (SVM) approaches 
(Yang et al., 2002); (Bala and Agrawal, 2009); 
however, enhanced M2OR has an acceptable 
difference with corresponding methods. It seems that 
the distribution of patterns in MNIST and MFeat are 
not proper to be applied by the current version of 
M2OR (with inner product kernel) (LeCun, et al., 
1986); (MNIST); (Villegas and Paredes, 2011). 
Applying M2OR in Reproducing Kernel Hilbert 
Space (RKHS) (Hofmann et al., 2008); (Schoelkopf 
and Smola, 2002); (Ben-Hur et al., 2001) can be 
more advantageously which is recommended in Sec. 
5. 

4.3 Computational Complexity 

The main advantage of the M2OR as a multi-
classifier is reducing computational complexity 
which is outstanding in comparison to the other 
concepts of classifiers. By considering total number 
of inner products in Թ௡ as Computational 
Complexity (CC), corresponding value for M2OR is 
given as follows (Bavafaye Haghighi and Rahmati, 
XXXX): 

ܥܥ ൌ ሺ∑ ݊௄
௠
௞ୀଵ ൅ ݉ ൅ ሻ/݊. (13)ݎ

In (13), ∑ ݊௄
௠
௞ୀଵ  is total number of multiplies of 

sub-mappings and m is the number of divisions to 
find the index of optimal code. It is assumed here 
that the cost of division and multiply is the same. r is 
the cost of retrieving the label of optimal region. 

Retrieving each label requires m-1 number of 
multiplies which is a compiler task. As a result, r is 
not more than m-1. It is worth reminding that by 
applying the advantage of parallel computing (El-
Rewini and Abd-El-Barr, 2005), CC is reduced in 
comparison to (13). 

The values of CC for other methods are 
presented with respect to the number of hidden 
neurons, support vectors or the given complexities. 
If the exact number of support vectors is not given in 
a paper, the minimum and maximum number of 
support vectors for each hyperplane are considered 
as n/2 and n respectively. As a result, upper and 
lower bounds of CC are given in Table 3 for two 
datasets. In (MNIST), a complete list of the error 
rates of the previous and state of the art methods is 
presented. By applying a Multi-Layer Perceptron 
(MLP) with 1000 hidden neurons (CC>1000), the 
error rate is approximately equal to 4. Although CC 
of enhanced M2OR (i.e. CC=1.6) is considerably 
less than MLP, the importance of more increasing 
the accuracy of M2OR is not diminished for 
corresponding dataset. 

5 CONCLUSION AND FUTURE 
WORKS 

Since Mapping to Multidimensional Optimal 
Regions (M2OR) is a special purposed method for 
multi-classification task, it reduces computational 
complexity considerably in comparison to the other 
concepts. By enriching the code assignment process 
using the major informative directions of samples 
(i.e. principle components), the probability of 
overlapped mapping for different classes decreases 
and the accuracy of M2OR increases. Additionally, 
the unwanted variance of the results which is the 
result of the sensitivity of Hierarchical Self Organi-

Table 3: The error rate and the CC of enhanced M2OR in comparison to the previous versions and other methods. 

 M2OR+HSOM+SP M2OR+PCA+SP M2OR+PCA+FS Other methods 
L. Err. M. Err.  CC Err. CC Err. CC Err. CC Method 

MNIST 22.3 27.5±5.3 1.03 20.7 1.03 18.04 1.6 4.5 > 1000 < MLP 
 

Forest 
 

34.48 
 

35.7±1.3 
 

1.42 
 

30.05 
 

1.42 
 

22.5 
 

2.16 22.66 113<  <227 MLSVM 
23.81 5028.6 LSVM 

COIL-A 19 23.2±5.1 1.05 16.6 1.05 14.6 1.49 8.7 5050 < LSVM 
COIL-B 16.5 19.5±2.7 1.05 13.38 1.05 10.13 1.49 3.96 5050 < LSVM 

 

Robot 
 

4.4 
 

4.8±1.9 
 

1.7 
 

4.21 
 

1.7 
 

3.9 
 

2.5 
 

2.5 
 

38480 Combination 
of Classifiers 

Segment 19.8 27.3±5.1 1.78 25.81 1.78 19.76 2.7 10.48 149< <843 NLSVM 
MFeat 30.1 36.5±5.4 1.02 29.75 1.02 18.5 1.29 0.8 66 LDPP 

CC: Computational Complexity; SP: Sequential Partitioning; FS: Feature Selection using PCA; Err.: Error; L. Err.: Least Error; 
M. Err.: Mean Error. MLP: Multi-Layer Perceptron; (N)LSVM: (Non) Linear Support Vector Machine; MLSVM: Mixing LSVMs; 
LDPP: Learning Discriminant Projections and Prototypes. 
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zing Map (HSOM) to the initial weights of its 
neurons, is removed. Increasing the controllability 
on the upper bound of Vapnik-Chervonenkis (V.C.) 
dimension and lower complexity during training 
phase in comparison to HSOM are other advantages 
of applying PCA based code assignment. Since 
principle components are orthogonal set of basis, 
testing the first major components guarantees 
optimizing the set of raw codes for each sub-
mapping. 

In addition, applying the fine variables of the 
major principle components, increase the accuracy 
of the results in comparison to sequential feature 
partitioning approach. The orthogonality of the 
components reduces the probability of selecting a 
variable more than one time. It is demonstrated that 
the accuracy of enhanced M2OR is comparable with 
the state of the art methods for Forest Cover Type 
and Wall Following Robot datasets with 
incomparable lower computational complexity; 
however, it requires more enhancements in the line 
of accuracy for other datasets. Therefore, we 
propose to apply enhanced M2OR in Reproducing 
Kernel Hilbert Space (RKHS) for future works. 
Online learning is another important aspect to 
improve the abilities of M2OR. 

ACKNOWLEDGEMENTS 

This paper is supported in part by Information and 
Communication Technology (ICT) under grant T-
19259-500 and by National Elites of Foundation of 
Iran. 

REFERENCES 

Bala, M., Agrawal, R. K., 2009, Evaluation of Decision 
Tree SVM Framework Using Different Statistical 
Measures, International Conference on Advances in 
Recent Technologies in Communication and 
Computing, 341-345. 

Bavafa, E., Yazdanpanah, M. J., Kalaghchi, B., Soltanian-
Zadeh, H., 2009, Multiscale Cancer Modeling: in the 
Line of Fast Simulation and Chemotherapy, 
Mathematical and Computer Modelling 49, 
1449_1464. 

Bavafaye Haghighi, E., Rahmati, M., Shiry Gh., S., 
XXXX, Mapping to Optimal Regions; a New Concept 
for Multiclassification Task to Reduce Complexity, is 
submitted to the journal of Experimental & 
Theoretical Artificial Intelligence. 

Bavafaye Haghighi, E., Rahmati, M., XXXX, Theoretical 
Aspects of Mapping to Multidimensional Optimal 

Regions as a Multiclassifier, is submitted to the 
journal of Intelligent Data Analysis. 

Bazaraa, M., Sherali, H. D., Shetty, C. M., 2006, 
Nonlinear Programming, theory and Algorithms, 3rd 
ed., John Wiley and Sons. 

Ben-Hur, A., Horn, D., Ziegelmann, H. T., Vapnik, V., 
2001, Support Vector Clustering, Journal of Machine 
Learning Research 2, 125-137. 

Ditenbach, M., Rauber A., Merkel, D., 2002, Uncovering 
hierarchical structure in data using the growing 
hierarchical self-organizing map, Neurocomputing 48, 
199-216. 

El-Rewini, H., Abd-El-Barr, M., 2005, Advanced 
Computer Architechture and Parallel Processing, 
John Willey and Sons. 

Fu, Zh., Robles-Kelly, A., Zhou, J., 2010, Mixing Linear 
SVMs for Nonlinear Classification, IEEE 
Transactions On Neural Networks 21, 1963-1975. 

Heath, M. T., 1997, Scientific Computing: An Introductory 
Survey, Mc Graw Hill. 

Hofmann, T., Scheolkopf, B., Smola, A. J., 2008, Kernel 
Methods in Machine Learning, The Annals of 
Statistics 36, 1171–1220. 

Izenman, A. J., 2008, Modern Multivariate Statistical 
Technics, Springer. 

Jolliffe, I. T., 2002, Principle Component Analysis, 2nd ed., 
Springer. 

Kacprzyk, J., 2007, Challenges for Computational 
Intelligence, in: A Trend on Regularization and Model 
Selection in Statistical Learning: A Bayesian Ying 
Yang Learning Perspective, Springer, 343-406. 

Kietzmann, T. C., Lange, S., M., Riedmiller, 2008, 
Increamental GRLVQ: Learning Relevant Features for 
3D Object Recognition, Neurocomputing 71, 2868-
2879. 

Kohonen, T., 1997, Self Organizing Maps, Springer Series 
in Information Science, 2nd ed., Springer. 

Kumara, K. V., Negi, A., 2008, SubXPCA and a 
generalized feature partitioning approach to principal 
component analysis, Pattern Recognition, 1398-1409. 

LeCun, Y., Bottou, L., Bengio Y., Haffner, P., 1986, 
Gradient-Based Learning Applied to Document 
Recognition, Proceedings of IEEE, 86, 2278-2324. 

Martin, C., Diaz, N. N., Ontrup, J., Nattkemper, T. W., 
2008, Hyperbolic SOM-based Clustering of DNA 
Fragment Features for Taxonomic Visualization and 
Classification, Bioinformatics 24, 1568–1574. 

Meyer, C. D., 2000, Matrix Analysis and Applied Linear 
Algebra, SIAM. 

MNIST: http://yann.lecun.com/exdb/mnist/. 
Nene, S. A., Nayar, Sh. K., Murase, H., 1996, Columbia 

Object Image Library (COIL 100), Technical Report 
No. CUCS-006-96, Department of Computer Science, 
Columbia University. 

Ontrup, J., Ritter, H., 2006, Large-Scale data exploration 
with the hierarchically growing hyperbolic SOM, 
Neural Networks 19, 751-761. 

Sawaragi, Y., Nakayama, H., Tanino, T., 1985, Theory of 
Multiobjective Optimization, Academic Press. 

Schoelkopf, B., Smola, A. J., 2002, Learning with 

Enhancing�the�Accuracy�of�Mapping�to�Multidimensional�Optimal�Regions�using�PCA

545



 

Kernels, MIT press. 
Sen, M. U., Erdogan, H., 2011, Max-Margin Stacking and 

Sparse Regularization for Linear Classifier 
Combination and Selection, Cornell University 
Library, arXiv:1106.1684v1 [cs.LG]. 

Sharma, A., Paliwal, K. K., 2007, Fast principal 
component analysis using fixed-point algorithm, 
Pattern Rcognition Letters, 1151-1155. 

Stoer, J., Bulirsch, R., 2002, Introduction to numerical 
analysis, Springer. 

Tarantola, A., 2005, Inverse Problem Theory and Methods 
for Model Parameter Estimation, SIAM. 

Theodoridis, S., Koutroumbas, K., 2003, Pattern 
Recognition, 2nd ed., Elsevier Academic Press. 

UCI Repository: http://archive.ics.uci.edu/ml/. 
Vapnik, V. N., 2000, The Nature of Statistical Learning 

Theory, 2nd ed., Springer. 
Vijaya Kumar, K., Negi, A., 2007, A Feature Partitioning 

Approach to Subspace Classification, IEEE TENCON 
2007, 1-4. 

Villegas, M., Paredes, R., 2011, Dimensionality reduction 
by minimizing nearest-neighbor classification error, 
Pattern Recognition Letters 32, 633-639. 

Yang, M. H., Roth, D., Ahuja, N., 2002, Learning to 
Recognize 3D Objects with SNoW, Neural 
Computation 14, 1071-1104. 

Zurada, J., 1992, Introduction to Artificial Neural Systems, 
West Publishing Company. 

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

546


