
Combined Input Training and Radial Basis Function Neural Networks
based Nonlinear Principal Components Analysis Model

Applied for Process Monitoring

Messaoud Bouakkaz and Mohamed-Faouzi Harkat
University Badji Mokhtar-Annaba, P. O. Box 12, Annaba 23000, Algeria

Keywords: Nonlinear PCA, IT-net, RBF-neural Network, Process Monitoring, Fault Detection and Isolation.

Abstract: In this paper a novel Nonlinear Principal Component Analysis (NLPCA) is proposed. Generally, a NLPCA
model is performed by using two sub-models, mapping and demapping. The proposed NLPCA model consists
of two cascade three-layer neural networks for mapping and demapping, respectively. The mapping model is
identified by using a Radial Basis Function (RBF) neural networks and the demapping is performed by using
an Input Training neural networks (IT-Net). The nonlinear principal components, which represents the desired
output of the first network, are obtained by the IT-NET. The proposed approach is illustrated by a simulation
example and then applied for fault detection and isolation of the TECP process.

1 INTRODUCTION

Principal component analysis (PCA) is among the
most popular methods for extracting information
from data, which has been applied in a wide range
of disciplines. In process monitoring with Principal
component analysis, PCA is used to model normal
process behavior and faults are then detected by ref-
erencing the measured process behavior against this
model.

It is known that the multivariate projection tech-
nique of PCA is linear, therefore it is only applica-
ble for extracting information from linearly correlated
process data. However, many industrial processes ex-
hibit nonlinear behavior. For such nonlinear systems,
linear PCA is inappropriate to describe the nonlinear-
ity within the process and it can produce excessive
number of false alarms or alternatively, missed detec-
tion of process faults, which significantly compromise
the reliability of the monitoring systems.

To cope with this problem, extended versions of
PCA have been developed such as Nonlinear PCA
(NLPCA). Whilst linear PCA identifies the linear cor-
relations between process variables, the objective of
nonlinear PCA is to extract both linear and nonlinear
relationships. Hastie and Stuetzle (Hastie and Stuet-
zle, 1989), proposed a principal curve methodology
to provide a nonlinear summary of am-dimensional
data set. However, this approach is non-parametric

and can not be used for continuous mapping of new
data. To overcome the parametrization problem, sev-
eral nonlinear PCA based on neural networks have
been proposed (Kramer, 1991), (Dong and McAvoy,
1996), (Tan and Mavrovouniotis, 1995).

Tan and Mavrovouniotis (Tan and Mavrovounio-
tis, 1995) formulated an alternative scheme of non-
linear PCA based on an input-training neural network
(IT-Net). Under this approach, only the demapping
section of the NLPCA model is considered.

Compared with the other neural networks, when
it is in training, its inputs which represent the desired
principal component are not fixed but adjusted simul-
taneously with the internal network parameters, and
it can perform all functions of a five layer neural net-
work. However, IT-Net has its own limitation. For
example, for a new data set or observation, calcula-
tion of its corresponding nonlinear principal compo-
nent require more computation due to the necessity of
an on-line nonlinear optimizer.

To improve this approach, a NLPCA model com-
binin a principal curve algorithm (Hastie and Stuetzle,
1989) and two cascade three-layer neural networks is
proposed to identify mapping and demapping models
(Dong and McAvoy, 1996).

Harkat et al. (Harkat et al., 2003) proposes a
similar approach which uses two RBF networks for
nonlinear principal component mapping and demap-
ping, respectively. First, the principal curve algo-
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rithm is used to estimate the principal components.
Then supervised learning is used to train the two RBF
networks. The methodology proposed in this paper
avoids the use of the principal curve algorithm by re-
placing the RBF demapping network with an IT-Net,
which is able to estimate the principal components
during learning.

The NLPCA approach proposed in this study uses
SPE index for fault detection. In the linear version of
PCA, the reconstruction approach, which tries to re-
construct theith variable from all other variables, is
used for fault isolation (Dunia et al., 1996). Based
on the same idea, we develop a nonlinear version
of reconstruction approach using NLPCA model for
fault isolation and reconstruction of the faulty mea-
surements as in the linear case (Harkat et al., 2003),
(HAR, ).

The outline of this paper is as follows. Sec-
tion 2 presents a Principal Component Analysis ap-
proach. Section 3 gives briefly reviews of some ex-
isting NLPCA methods. Section 4 describes the pro-
posed NLPCA model combining the IT-Net and RBF
neural networks. Section 5 describes the detection
and isolation approach. Section 6 give an illustration
example while section 7 gives the results of applica-
tion of the proposed approach to the Tennessee East-
man process, and finally conclusions are presented in
the last section.

2 PRINCIPAL COMPONENT
ANALYSIS (PCA)

Principal component analysis (PCA) is a dimension
reduction technique used in multivariate statistical
analysis which deals with data that consist of mea-
surements. The number of variables in such cases is
often impracticably large, and one way to reducing it
is to take linear combinations of variables and discard
those with small variances. PCA looks for a few lin-
ear combinations which can be used to summarize the
data while losing as little information as possible.
Let X represents aN × m matrix of data. PCA is
an optimal factorization ofX into matrix T (princi-
pal componentsN × ℓ) andP (loadingsm× ℓ) plus a
matrix of residualsE (N ×m).

X = T PT +E (1)

whereℓ is the number of factors (ℓ < m). The Eu-
clidean norm of the residual matrixE must be min-
imized for a given number of factors. This criterion
is satisfied when the columns ofP are eigenvectors
corresponding to theℓ largest eigenvalues of the co-
variance matrix ofX . PCA can be viewed as a linear

mapping fromℜm to a lower dimensional spaceℜℓ.
The mapping has the form

t = PT x (2)

wherexT represents a single row ofX and tT rep-
resents the corresponding row ofT . The loadingsP
are the coefficients for the linear transformation. The
projection can be reversed back toℜm with

x̂ = Pt (3)

wherex̂ is the estimated vector of data.
Nonlinear PCA is an extension of linear PCA. Whilst
PCA identifies linear relationships between process
variables, the objective of nonlinear PCA is to extract
both linear and nonlinear relationships. This general-
ization is achieved by projecting the process variables
down onto curves or surfaces (Fig.2) instead of lines
or planes (Fig.1).

In both cases the objective function to be mini-
mized is the sum of squared orthogonal deviations:

min
N

∑
i=1

‖xi − x̂i‖
2 = min

N

∑
i=1

‖xi −F (G (xi))‖
2 (4)

wherexi is the ith row ofX , G is the mapping func-
tion andF represents the demapping function. In this
case, the nonlinear mapping has the form

t = G (x) (5)

and the inverse transformation is implemented by the
second nonlinear vector functionF that has the form

x̂ = F (t) (6)

Given anN ×m matrix representingN measurements
made onm variables, reduction of data dimensional-
ity aims to map the original data matrix to a much
smaller matrix of dimensionN × ℓ (ℓ < m), which is
able to reproduce the original matrix with minimum
distortion through a demapping projection. The re-
duced matrix describes principal component variables
extracted from the original matrix (Fig.3).

x1

x2

Figure 1: The linear principal component minimizes the
sum of squared orthogonal deviations using a straight line.

We provide in the next a brief overview of neu-
ral network based NLPCA proposed over the last two
decades and its implementation.
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x1

x2

Figure 2: The nonlinear principal component minimizes the
sum of squared orthogonal deviations using a smooth curve.

X ∈ ℜN×m

ℓ

X̂ ∈ ℜN×m

Mapping function

m

T ∈ ℜN×ℓ

ℓm

Demapping funtion

Figure 3: Reduction of data dimentionality.

3 NONLINEAR PCA

The objective, is to extract the nonlinear information
from the nominal data set, namely, how to find ma-
trix of nonlinear principal component scoresT and a
suitable nonlinear functionF (t) to satisfy the equa-
tion (4). In this field, many neuronal NLPCA ap-
proaches have been developed, (Hastie and Stuet-
zle, 1989), (Kramer, 1991), (Tan and Mavrovounio-
tis, 1995), (Dong and McAvoy, 1996), (Harkat et al.,
2003).

3.1 Five-layer Neural Network based
NLPCA

To perform NLPCA, the Neural Network in Fig.4
contains three hidden layers of neurons between the
input and output layers of variables (Kramer, 1991).

xm(k)

x̂1(k)

x̂2(k)

x̂m(k)

t1(k)

v(x)11

v(x)mr

w(x)
r

w(t)
r

w(x)
1

w(t)
1

b(x) b̄(x) b(t)

v(t)rm

v(t)11

b̄(t)

x1(k)

x2(k)

Figure 4: Five-layer NLPCA neural network for extraction
one nonlinear principal component.

A transfer functionG1 maps fromx, the input col-
umn vector of lengthm, to the first hidden layer, rep-

resented byh(x), a column vector of lengthr, with
elements

h(x)j = G1

(

m

∑
i=1

vi j
(x)x j + b(x)j

)

(7)

The mapping functionG is defined as

t = G (x) =
r

∑
j=1

w(x)
j h(x)j + b̄(x) (8)

Next, a transfer functionF1 maps fromt to the
final hidden layerh(t), a column vector of lengthr,
with elements

h(t)j = F1

(

w(t)
j t + b(t)j

)

(9)

and the demapping functionF is given by

x̂ = F (t) =
r

∑
j=1

v(t)ji h(t)j + b̄(x)i (10)

where ˆx representing the estimation vector of the orig-
inal datax The transfer functionsG1 andF1 are gen-
erally nonlinear. TheMSE (mean square error) be-
tween the neural network output ˆx and the original
datax is minimized by finding the optimal values of
V (x) ,b(x), w(x), b̄(x), w(t), b(t), V (t) andb̄(t).

3.2 Three-layer Neural Network
NLPCA

Dong and McAvoy (Dong and McAvoy, 1996) pre-
sented an NLPCA method which integrates the prin-
cipal curve algorithm and neural networks. The basic
idea is to reduce the five-layer auto-associative net-
work to a three-layer networks. In a such approach,
two three-layer neural networks have been used. The
inputs of the first neural network are the original data,
and the outputs are the nonlinear principal scores ob-
tained by principal curves. The inputs of the second
network inputs are theℓ nonlinear principal scores ob-
tained by principal curves, and the outputs are the cor-
rected data. Each neural network can be trained sepa-
rately by any appropriate algorithm.

3.3 RBF-NLPCA Model

The nonlinear principal component analysis model
for mapping and demapping can be obtained by us-
ing two RBF-Networks (Fig.5) and (Fig.6).

To identify the RBF-NLPCA model, we determi-
nate the parameters of radial basis functions (centers
and dispersions) and the weight parameters for the
two RBF-networks. It should be noted that the nonlin-
ear principal component matrixT being unknown, the
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Figure 5: RBF-Network for mapping fromℜm → ℜℓ.

.

.

.

.

.

.

x̂m

x̂2

x̂1
v11

ψ2

ψ1
v01

1

ψk

vmk

tℓ

t1
t2

Figure 6: RBF-Network for mapping fromℜℓ → ℜm.

training of the two RBF-networks separately is then
impossible.

To overcoming this problem, two solutions have
been proposed for estimating nonlinear principal
component (Webb et al., 1999), (Harkat et al., 2003).
The difference between the two methods is how to
calculate the nonlinear principal component neces-
sary for training of the two RBF neural networks. In
the first solution, proposed by Webb (Webb et al.,
1999), use the maximizing of the variance (Webb
et al., 1999), and the second is the combining the
RBF-networks and principal curves.

1. Webb (Webb et al., 1999) proposed an approach to
nonlinear principal component analysis using ra-
dial basis function (RBF) networks. The first net-
work projects data onto a lower dimension space
Fig.5, such that the nonlinear features are captured
in the sense of variance maximization of its out-
puts. So, Network parameters are determined by
the solution of a generalized symmetric eigenvec-
tor equation by maximizing the variance of its out-
puts and then nonlinear principal components are
the outputs given by this identified network.

By preserving the original dimension of the data,
the second network try to perform the inverse

transformation Fig.6 (reproducing the original
data) by minimizing the squared prediction error
between the original data samples and its corre-
sponding outputs. The two networks are trained
separately and the outputs of the first one are the
inputs of the second.
However, the optimization task of the first net-
work become so difficult because for this opti-
mization we need to minimize estimation error
which lead to train the second RBF-network and
compare its outputs to the inputs of the first one.

2. The nonlinear component matrixT is estimated
by using the principal curve algorithm (Hastie
and Stuetzle, 1989), (Verbeek, 2001). Then, each
RBF-network can be trained separately. So, the
training problem is transformed into two classical
nonlinear regression problems. We consider the
RBF neural network illustrated in Fig.5. The aim
is to use this network to define the nonlinear func-
tion G (.) : ℜm → ℜℓ of x ∈ ℜm. The outputs are
computed as a linear weighted sum of the hidden
node outputs:

t j = G (x) =
r

∑
i=1

wi jφi(x) (11)

Where t is the output vector ofℓ outputs,
(wi j, i = 1, · · · i, · · · r) are the output layer weight
parameters matrixW elements to be deter-
mined, connecting hidden nodei to output j,
and(φi, i = 1, · · · i, · · · r) is the gaussian function
given by:

φi(x) =

(

‖x− ci‖
2

2σ2
i

)

(12)

Whereci andσ2
i respectively denote centers and

dispersions, In this paper, the centers,ci are ob-
tained with C Fuzzy-means clustering method and
the dispersionsσ2

i are determined as the dis-
tance betweenci and the closestc j(i 6= j, j =
{1, · · · ,r}). So the training of the first network
needs only to update the parameter weights. The
parameter weights are obtained by a least square
solution minimizing according to definition (13).

w = (φT φ)−1φT T (13)

Where theith column ofφT is φ(xi) andφ(.) =
(φ1, · · · ,ϕi, · · · ,φr), wT = (w1, · · · ,wr) , and the
ith column ofT T is ti.
By preserving the original dimension of the data,
the second network tries to perform the inverse
transformation from the reduced data (Fig. 6). We
define the inverse transformationF : ℜℓ → ℜm:

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

486



x̂i = F (t) =
k

∑
j=1

v jiψ j(t)+ v0 (14)

for some radial basisψ j, ( j = 1, ...,k), weights
V = (v0, ...,vk), wherek is the number of kernels
andvi ∈ ℜℓ, (i = 0, . . . ,k).

The NLPCA model training procedure involves
three steps (Harkat et al., 2003):

1. Find principal curves by successively applying
the principal curve algorithm (Hastie and Stuet-
zle, 1989), (Verbeek, 2001) to observed data and
residuals. Then in the first stepT1 denotes the first
nonlinear principal component, so:X =F1(T1)+
E1, whereE1 is the residual. When more than
one nonlinear principal component is needed we
do the same calculation from the residual data
(LeBlanc and Tibshirani, 1994).

2. Train an RBF network that maps the original
data onto the nonlinear principal components (ob-
tained by the principal curves algorithm).

3. Train the second RBF network that maps the non-
linear principal components onto the original data.

3.4 IT-Net NLPCA

Compared with the other neural networks, the IT-Net
has its own features, when it is in training, its in-
puts are not fixed but adjusted simultaneously with
internal network parameters (linking weights between
each layer and active bias of each node). IT-Net alter-
nates between improving model parameters for given
inputs and finding the optimal inputs for given model
parameters. For a trained IT-Net, its final inputs con-
sist of the matrix of nonlinear principal component
scoresT and at the same time IT-Net approximates
the nonlinear function (6).

To perform NLPCA based IT-Net, the structure
presented in Fig.7, contains one hidden layer between
input and output layers.

Let, V ∈ ℜr×ℓ, b1 ∈ ℜr×1, W ∈ ℜm×r, andb2 ∈
ℜm×1 be the weights from the input layer to the hid-
den layer, biases of the nodes in the output layer, the
weights from the hidden layer to the output layer and
the biases of the neurons in the hidden layer, respec-
tively. For the IT-Net (Fig.7) with linear nodes in both
the input and output layer, and a nonlinear function in
hidden layer, a suitable function is sigmoid (σ ):

A transfer functionσ maps fromt (input column
vector of lengthℓ) to the hidden layer, represented by
h (column vector of lengthr), with elements,

h j = σ

(

ℓ

∑
i=1

v jiti + b1 j

)

(15)

t1(k)

t2(k)

v11

w11
x̂1(k)

x̂2(k)

x̂m(k)

b1 b2

wrm

tℓ(k)

∆t

vℓr

Figure 7: Structure of IT-Net.

whereti represents the elements of the input vector
t. The IT-Net outputŝx representing the approxima-
tion of the original datax, a column vector of length
m, with elements:

x̂(k)k =

(

r

∑
i=1

w jih j + b2 j

)

(16)

So, the demapping function is defined as follow:

F (t) =W (σ (Vt + b1))+ b2 (17)

In this study, we propose to use a gradient descent
back propagation algorithm with momentumη and
adaptive learning ratesrt , rw, rv, rb1, andrb2 to update
the inputs, the weights between each layer, and active
bias of each hidden layer node. The steepest descent
directions for the optimization of the network weights
are defined as follow:

∂J
∂wk j

= (xk − x̂k)h j (18)

∂J
∂v ji

=
m

∑
k=1

(xk − x̂k)wk jdh jti (19)

The steepest descent direction for the optimization
of the network inputs is defined as follow:

∂J
∂ ti

=
m

∑
k=1

(xk − x̂k)
r

∑
j=1

wk jdh jv ji (20)

where

dh j = σ ′

(

ℓ

∑
i=1

v jiti+ b1 j

)

(21)

Then the inputs and parameters of IT-Net can be
updated according to the following equations:

∆ti(k+1) = rt

[

(1−η)
∂J

∂ ti(k)

]

+η (∆ti(k)) (22)

∆w(k+1) = rw

[

(1−η)
∂J

∂w(k)

]

+η (∆w(k)) (23)
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∆v(k+1) = rv

[

(1−η)
∂J

∂v(k)

]

+η (∆v(k)) (24)

∆b1(k+1) = rb1

[

(1−η)
∂J

∂b1(k)

]

+η (∆b1(k))

(25)

∆b2(k+1) = rb2

[

(1−η)
∂J

∂b2(k)

]

+η (∆b2(k))

(26)
where

∆TNℓ(k+1) = TNℓ(k+1)−TNℓ(k) (27)

∆z(k+1) = z(k+1)− z(k) (28)

wherez represents each internal network parameter.
where adaptive learning ratesrt , rz are adapted as pro-
posed in (Zhu and Li, 2006).

rz(k) = 2λzrz(k−1) (29)

λz(k) = sign

[

∂J
∂ z(k)

∂J
∂ z(k−1)

]

(30)

rt(k) = 2λt rt(k−1) (31)

λt(k) = sign

[

∂J
∂ t(k)

∂J
∂ t(k−1)

]

(32)

Where, ∂J
∂ t and ∂J

∂ z are steepest descent direction
for optimizing network inputs and weights between
each layer, respectively, and ∂J

∂ tNℓ(k−1) and ∂J
∂ z(k−1) are

its previous steepest descent directions.

3.5 IT-Net Algorithm

The algorithm of IT-Net can follows the following
steps:

1. Initialization: Scaling each variable ofX matrix
to zero mean and unit variance, initialize input
matrixT of scaledX , and weights (W andV ), bias
(b1 andb2) with random values in the range[0 1].

2. Computation: For each inputtki, (i=1,2,.....,ℓ)
and(k = 1, ....,N), calculate the corresponding IT-
Net output ˆxk j, ( j = 1,2, .....,m) by using (16) and
calculate the errors between the output and the
scaledx,

3. Update: the weightsW ,V , b1, b2 and input vector
t by using equations (18) to (32),

4. For next inputt(k+1)i, i=(1,2, ....., ℓ) , repeat Step
2 to Step 3 until all inputs have been adjusted and
calculate the total error between the outputs ˆx and
the scaled samplex. if the maximum number of
epochs (repetitions) is reached or if the error is
smaller than aim error, and at the same time the
error does not change any more, exit the iteration.
Otherwise, go to the next step,

5. Repeat: the iteration from Step 2 to Step 4. Af-
ter the iteration is finished, we acquire the input
matrix T and a neural network model with fixed
weights.

For a new observation, to calculate its correspond-
ing nonlinear component requires the application of
a new training of network, but we do not need to train
the weights any more (fixed values) but only train in-
puts. The new input can be viewed as the nonlinear
principal component of the testing sample, which is
time consuming and can not be used in on-line pro-
cess monitoring.

4 THE PROPOSED NLPCA
MODEL

To take advantage of the Radial Basis Functions
(RBF) (Fig.5) and Input Training neural networks (IT-
Net) (Fig.7), a new NLPCA model combining these
two neural networks is proposed for fault detection,
isolation and reconstruction. These two networks are
used in cascade. The first RBF neural network is used
for mapping and the IT-Net for demapping, respec-
tively. The proposed method involves two steps :

1. Find nonlinear principal componentsT by train-
ing the IT-Net, at convergence we have also the
demapping functionF ,

2. Train the RBF network that maps the original data
to nonlinear principal components (obtained from
the IT-Net).

5 FAULT DETECTION AND
ISOLATION

5.1 Fault Detection

Abnormal situations that occur due to sensor drifts
induce changes in sensor measurements. Nonlinear
principal component analysis is used to model nor-
mal process behavior and faults are then detected by
checking the observed behavior against this model.

Once a NLPCA representation has been built from
data representing normal operation, thekth sample
vectorx(k) may be decomposed by NLPCA into two
portions,

x(k) = x̂(k)+ x̃(k) = x̂(k)+ e(k) (33)

where vectorŝx(k) andx̃(k) are the estimation of
x(k) from the NLPCA model at instantk and residual,
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respectively. Thêx(k) is the projection on the nonlin-
ear principal component subspace according to (6).
In this paper, fault detection is performed by moni-
toring the residuals, so we use theSPE detection in-
dex (squared prediction error) which is a statistic that
measures the lack of fit of the NLPCA model to the
data. At timek, theSPE is given by:

SPE(k) = eT (k)e(k) =
m

∑
j=1

e2
j(k) (34)

whereSPE(k) is the value of squared prediction
error for thekth sample of the process variables. Fault
detection compares the currentSPE with a threshold
δ 2, the process is considered normal if:

SPE(k)≤ δ 2 (35)
δ denoted the confidence limit forSPE. To improve
fault detection by reducing the rate of false alarms
(due to noise),EWMA (Exponentially Weighted
Moving Average) filter can be applied to the residu-
als. The filtered residualse f are thus obtained:

e f (k) = (I−Λ)(e f (k−1))+Λe(k) (36)

SPE f (k) = eT
f (k)e f (k) (37)

wheree f (k) andSPE f (k) are the filtered residuals
andSPE(k) respectively.Λ = γI denotes a diagonal
matrix whose diagonal elements are forgetting factors
for the residuals. IfSPE f (k) is above the confidence
limits, a fault is detected.

5.2 Fault Isolation and Reconstruction

After the presence of fault has been detected, it is
important to identify the fault and apply the neces-
sary corrective actions to eliminate the abnormal data.
Like variable reconstruction approach for sensor fault
isolation proposed by Dunia (Dunia et al., 1996) in the
linear case, we propose an extension of this approach
in the nonlinear case (Harkat et al., 2007). This ap-
proach assumes that each sensor may be faulty (in
the case of a single fault) and suggests to reconstruct
the assumed faulty sensor using the NLPCA model
from the remaining measurements. By examining the
residuals given by NLPCA model before and after re-
construction, we can determine the faulty sensor.

5.2.1 Nonlinear reconstruction

For theith variable, its reconstructionzi is defined, as
in the linear case, by an iterative approach, the esti-
mated value ˆxi is re-estimated by the NLPCA model
until convergence (Fig.8).

zi = ξ T
i F (G (xi)) (38)

wherexi = [x1 x2 ... x̂i ... xm]
T andξi is theith col-

umn of the identity matrix. The iterative expression
given by equation (38) must be started using some

better initial valuez(0)i . We suggest to use the mea-

surexi as initial valuez(0)i = xi. Note that the recon-
struction expression (38) converge quickly converges
quickly (i.e. in one or two iterations), for all the ex-
amples that have been treated.

x1
x̂1

x̂FGx

Figure 8: Depicts schematically an iterative reconstruction
for x1

So, letSPE f j(k) be the indexSPE f (k) calculated
after reconstruction of thejth variable. Therefore, if
the faulty variable is reconstructed, the indexSPE f j
is in the control limit because the fault is eliminated
by reconstruction. If the reconstructed variable is
not faulty, the indexSPE f j being always affected by
the fault, SPE j is outside its control limit. In sum-
mary, when fault is detected, all indicesSPE f j, ( j =
1, ...,m) are computed, and ifSPE f j ≤ δ 2

α , the jth sen-
sor is considered as the faulty one.

6 SIMULATION EXAMPLE

We use a simple three dimensional case to illustrate
the proposed NLPCA model efficacy. Three variables
x1, x2 andx3 are functions of one parameteru, and
Gaussian noise added.







x1 = u2+0.3sin2πu+ ε1
x2 = u+ ε2

x3 = u3+1+ ε3

The εi components are independent white noise
variables, uniformly distributed over[−0.1 0.1] andu
is a variable that is defined over[−1 1]. The two net-
works are trained using 400 data point. One nonlinear
principal component is retained for this model which
explains 97% of the variance of data.

The estimated curve using the proposed NLPCA
model is shown in Fig.9. Fig.10 indicates the evo-
lution of the first nonlinear principal component ob-
tained by three NLPCA models; the proposed model
(with 1-7-3 IT-Net structure, 3-8-1 RBF structure),
Verbeek algorithm (Hastie and Stuetzle, 1989) and
five-layer neural network (Hsieh and Li, 2001).
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Figure 9: Data and estimation by IT-Net for nonlinear sys-
tem
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Figure 10: Evolution of the first nonlinear principal compo-
nent.

For this example, Fig.11 represents the evolution
of SPE f in normal operating condition and in the
presence of a fault simulated on the variablex1 from
sample 300 to 400. This fault is detected by this in-
dex.

Fig.12 indicates the time evolution ofSPE f 1,
SPE f 2 andSPE f 3 indices after reconstruction of vari-
ablesx1, x2 andx3, respectively. TheSPE f 1 calcu-
lated after the reconstruction ofx1 is under its con-
trol limit which indicates thatx1 is the faulty vari-
able. Then we can reconstruct this variable in order
to give a replacement value for the faulty measure-
ments. Fig.13 shows, for variablex1, the fault free
measurements, the faulty measurements and the re-
placement values obtained by IT-Net and RBF neural
networks NLPCA model. It is clear, that the recon-
struction measurements are good estimations of fault
free measurements.

7 APPLICATION

The Tennessee Eastman (TECP) process shown in
Fig.14 is a simulation of a real plant, developed by
Downs and Vogel of the Eastman chemical Company
to provide a realistic simulation for evaluating process
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Figure 11: Fault detection for NLPCA IT-Net (a: SPE f plot
for normal operating conditions,b : SPE f plot with a simu-
lated fault on variablex1).)
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Figure 12: Fault isolation and faulty variable reconstruction
(a,b,c: SPE f i plot after reconstruction each variable:x1, x2,
x3 respectively.
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Figure 13: Faulty variablex1 reconstruction.

control and monitoring methods, and widely used as
a source of data (Downs and Vogel, 1993), (Vogel,
1994).
The process has five major units: a reactor, a product
condenser, a vapor-liquid separator, a recycle com-
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Table 1: Tennessee Eastman process Variables.

MeasurementsVariable name Units
m1 D Feed Kg/h
m2 E Feed Kg/h
m3 A+C Feed kscmh
m4 Reactor Feed Rate kscmh
m5 Reactor Level %
m6 Reactor Temp ◦C
m7 Product Sep Underflowm3/hr
m8 Stripper underflow Kpa
m9 Stripper Temp ◦C
m10 Steam Flow Kg/s
m11 Reactor Cool Temp ◦C
m12 Cond Cool Temp ◦C

pressor and product stripper. The process produces
products, G and H from four reactants A, C, D and E,
also presents an inert B, and by-product F.

The process here consists of 12 manipulated vari-
ables from the controller and 41 measurements, of
which 22 are continuous and 19 compositions mea-
sured by the Gaz chromatographic measurements can
not be collected continuously. In this paper only 12
continuous outputs are used in our study as demon-
strated in table 1.

There are two important factors that should be
considered, one is that the process is nonlinear, and
the second, the process operates in different modes
(Downs and Vogel, 1993), a 50:50 G:H mass ratio,
and others are in a 10:90 and a 90:10 G:H mass ra-
tio. Here, the process is operated in mode at 90:10
mass ratio. We generate a set of data according to this
condition. NLPCA is used to model the data. The
first 400 samples are the normal data, and the next
100 samples involve data with a drift fault simulated
on the variablem6 which mean that the relationship
among the process variables changes.

Figure 14: A diagram of the Tennessee Eastman and the
base control problem simulator.

Four (4) nonlinear principal components are re-

tained for the NLPCA model, which explains 98.68%
of the variance of data.

Based on the obtained NLPCA model, the indices
for detecting sensor faults and isolating faulty sensor
can be calculated on-line. Fig.15 shows time evolu-
tion of the squared prediction errorSPE f for normal
operating conditions.

To apply the sensor data validation method (sensor
fault detection, isolation and reconstruction), a fault is
introduced for the variablem4 between samples 400
and 500.

SPE f in 15 almost immediately allows to detect-
ing the fault. To identify sensor, a reconstruction ap-
proach is applied andSPE f j ( j = 1,2, ....12) are com-
puted. In Fig.17, the indexSPE f 4 (computed after
the reconstruction ofm4) is under its control limit.
Which indicates that the faulty variable ism4. Vari-
ablem4 being identified as the faulty variable, then we
can reconstruct this variable in order to give a replace-
ment value for the faulty measurements. Fig.18 shows
the fault-free measurements, the faulty measurements
and the replacement values obtained by reconstruc-
tion for variablem4. It is clear that the reconstructed
measurements are good estimations of the fault-free
measurements.
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Figure 15: Time evolution ofSPE f for normal condition.
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Figure 16: Time evolution ofSPE f with a fault on variable
m4.

8 CONCLUSIONS

In this paper we have presented a new nonlinear
principal component analysis model. The proposed
NLPCA model is obtained by combining two cas-
cade neural networks. An RBF-Network for map-
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Figure 17: Time evolution ofSPE f i after reconstruction of
each the variablemi.
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Figure 18: Reconstruction of the faulty measurements.

ping function and an IT-Net for demapping function.
The principal components are calculated using the
IT-Net which represent the demapping function, then
the RBF network is trained to perform the mapping
function. This two functions determines the NPLCA
model.

An NLPCA model is built, using data obtained
when the process is under normal condition. An ex-
tension of the nonlinear reconstruction approach is
proposed. The variable reconstruction consists in esti-
mating a variable from others process variables using
the NLPCA model, i.e. using the redundancy rela-
tions between this variable and the others. This ap-
proach is presented as an extension of the reconstruc-
tion in the linear case (Dunia et al., 1996) and leads to
an iterative expression of the reconstructed measure-
ments.

The proposed approach for sensor fault detection
and isolation, using nonlinear reconstruction method,
is presented and successfully applied to a Tennessee
Eastman process. The proposed approach also gives
replacement values of faulty measurements.
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