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Abstract: In (Jenei and Montagna, 2003) was proved that the non-commutative psMTL logic introduced in (Hájek,
2003b) is the logic of left-continuous non-commutative t-norms or, equivalently, that the logic psMTL enjoys
standard completeness. In the present paper we provide an alternative proof for the standard completeness
theorem for the logic psMTL and we furthermore show that this result can be obtained also for finite theories.

1 INTRODUCTION

In general, a non-commutative logic is a logic
equipped with a non-commutative conjunction &, i.e.
the formulaϕ&ψ is not equivalent with the formula
ψ&ϕ. Motivations for considering non-commutative
logics appear in different areas, within and also out-
side mathematics. Some situations that give rise
to non-commutative conjunctions are the semantics
of parallel programming, quantum mechanics which
make use of non-commutative observables, Lambek
calculus (Lambek, 1958) modelling sentence struc-
tures using concatenation as a non-commutative op-
eration, logics based on formal matrix multiplication,
linear logics studied in (Girard, 1995), quantales that
have the non-commutative ”and” given by closure
of the product subspace (Rosenthal, 1990), (Mulvey
and Nawaz, 1995). On the other hand, in ordinary
language a commutative ”and” between clauses indi-
cates independence, while a non-commutative ”and”
indicates a pragmatic dependence as pointed out by
(Schmerling, 1975). Consider, for example, state-
ments from natural language such as ”he lost weight
and he got sick” vs. ”he got sick and he lost weight”.

T-norms were introduced by (Schweizer and
Sklar, 1960) in order to formulate properly the trian-
gle inequality in probabilistic metric spaces. Since
then, t-norms have been applied in various other
mathematical disciplines including game theory, the-
ory of non-additive measures and integrals, theory
of measure-free conditioning, theory of aggregation
operations, fuzzy set theory, fuzzy logic, fuzzy con-
trol, preference modeling and decision analysis, ar-
tificial intelligence. The role of t-norms in the the-

ory of many-valued logics is extremely important.
Many-valued t-norm based logics are non-classical
logical systems that use t-norms as truth-functions for
the conjunction connective and their residua as truth-
functions for the implicative connective. The seman-
tics of many-valued logics given by t-norms is usually
called standard semantics.

Hájek introduced in his influential monograph
(Hájek, 1998) a very general many-valued logic,
called BL logic (BL stands for ’Basic Logic’), with
the idea to formalize the many-valued logics induced
by continuous t-norms and their residua; this fact was
proved later in (Cignoli et al., 2000). On the other
hand, Esteva and Godo observed that the minimal
condition for a t-norm to have a residuum, and there-
fore to determine a logic, is left-continuity, not con-
tinuity. Therefore, in (Esteva and Godo, 2001) they
proposed a weaker logic, called MTL logic (MTL
stands for ’Monoidal T-norm based Logic’). In (Jenei
and Montagna, 2002) was proved that MTL is indeed
the logic of left-continuous t-norms and their residua.

The non-commutative counterparts of t-norms
were investigated by Flondor, Georgescu and
Iorgulescu in (Flondor et al., 2001) under the name of
pseudo-t-norms. Every continuous pseudo-t-norm is
commutative, but there are left-continuous pseudo-t-
norms which are not commutative. As a consequence,
the non-commutative counterpart of the logic BL can-
not provide a fruitful logic, since the standard seman-
tics do not have a non-commutative nature; despite
this weakness, the non-commutative BL logic was de-
veloped in (Hájek, 2003a).

On the other hand, the non-commutative MTL
logic introduced in (Hájek, 2003b) under the name of
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psMTL logic (psMTL stands for ’pseudo Monoidal
T-norm based Logic’) enjoys standard completeness
with respect to left-continuous pseudo-t-norms, as
proved in (Jenei and Montagna, 2003).

The goal of the present paper is to provide an al-
ternative method to prove the standard completeness
theorem for the logic psMTL and to show that this
result holds even for finite theories, i.e. we prove
the finite strong standard completeness theorem for
psMTL logic.

This paper is organized as follows: in Section
2 we recall the definitions and the basic properties
on psMTL logic; Section 3 is the innovative part of
this paper, where we give an alternative proof for
the finite strong standard completeness theorem for
psMTL logic; Section 4 contains some concluding re-
marks.

2 THE LOGIC PSMTL

Hájek introduced the non-commutative logic psMTL
in (Hájek, 2003b). In this section we recall this log-
ical system in a somewhat different formulation but
equivalent with that of Hájek, following the line of
(Diaconescu, 2012).

The fact that the logic psMTL has a non-
commutative conjunction & leads to the existence
of two implications. Therefore, the language of the
propositional calculus psMTL consists of denumer-
able many propositional variables, whose set is de-
noted by Var, the primitive connectives→, , &, ∧,
∨ and the constant0. From this primitive connectives,
further connectives and constants are defined by:

¬ϕ is ϕ → 0,
∼ ϕ is ϕ 0,

1 is 0→ 0,
ϕ ↔ ψ is (ϕ → ψ)&(ψ → ϕ),

ϕ! ψ is (ϕ ψ)&(ψ ϕ).
The formulas are defined by structural induction as
usual and we denote by FormpsMTL the set of all for-
mulas of the logic psMTL. For any formulaϕ of
psMTL, we define the formulaϕ• obtained by inter-
changing the two implications→ and and revers-
ing the arguments of &. Notice that(ϕ•)• = ϕ. The
axioms of psMTL are:
I. a formula which has one of the following forms is
an axiom:

(A1) (ψ → χ)→ ((ϕ → ψ)→ (ϕ → χ))
(A2) (ϕ&ψ)→ ϕ
(A3) (ϕ∧ψ)→ ϕ
(A4) (ϕ∧ψ)→ (ψ∧ϕ)

(A5) ((ϕ → ψ)&ϕ)→ (ϕ∧ψ)
(A6a) (ϕ → (ψ → χ))→ ((ϕ&ψ)→ χ)
(A6b) ((ϕ&ψ)→ χ)→ (ϕ → (ψ → χ))
(A7) ((ϕ → ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A8a) (ϕ∨ψ)→ (((ϕ ψ)→ ψ)∧ ((ψ ϕ)→ ϕ))
(A8b) (((ϕ ψ)→ ψ)∧ ((ψ ϕ)→ ϕ))→ (ϕ∨ψ)
(A9) 0→ ϕ
II. if ϕ is an axiom of the form(A1), (A2), (A5),
(A6a), (A6b), (A7), (A8a) or (A8b), thenϕ• is also
an axiom.

The deduction rules of psMTL are:

(MP1)
ϕ ϕ → ψ

ψ
(Impl1)

ϕ → ψ
ϕ ψ

(MP2)
ϕ ϕ ψ

ψ
(Impl2)

ϕ ψ
ϕ → ψ

A theory over psMTL logic is any set of formu-
las. Provability in a theoryT is defined in the ob-
vious way, using all the deduction rules. We note
by T ⊢ ϕ the fact thatϕ is a T-theorem and by
TheorpsMTL(T) the set of allT-theorems (we use the
notation TheorpsMTL whenT is the empty set).

Proposition 2.1. For any formulaϕ of psMTL and
any theory T , T⊢ ϕ iff T ⊢ ϕ•.

The algebraic models for psMTL logic were intro-
duced by Flondor, Georgescu and Iorgulescu:

Definition 2.1. (Flondor et al., 2001). ApsMTL-
algebra is a structure A= (A,∨,∧,⊙,→, ,0,1)
such that the following conditions are fulfilled:

(i) (A,∨,∧,0,1) is a bounded lattice,
(ii) (A,⊙,1) is a monoid,
(iii) x⊙ y≤ z iff x≤ y→ z iff y≤ x z,
(iv) (x→ y)∨ (y→ x) = (x y)∨ (y x) = 1.

Condition (iii) is called theadjointness property,
while (iv) is known as theprelinearity condition. We
say that a psMTL-algebra is achainif the underlying
lattice order is linear.

For any psMTL-algebra A, anA-evaluation of
propositional variablesis a mappinge : Var → A.
Any A-evaluation of propositional variablese can be
uniquely extended to anA-evaluationof all formulas
(denoted also bye) using the operations on A as truth
functions, i.e.e(0) = 0, e(ϕ&ψ) = e(ϕ)⊙e(ψ), and
e(ϕ◦ψ) = e(ϕ)◦e(ψ), where◦ ∈ {∨,∧,→, }.

If T is a theory of the logic psMTL, A is a psMTL-
algebra ande is an A-evaluation such thate(ψ) = 1,
for anyψ ∈ T, then we calle an A-modelof T.

Kühr introduced a particular class of psMTL-
algebras, namely representable psMTL-algebras. The
variety of psMTL-algebras do not enjoy the subdirect
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representation property (i.e. each algebra is a subal-
gebra of a direct product of chains), but it was proved
that a psMTL-algebra is subdirectly representable if
and only if it is a representable psMTL-algebra.

Definition 2.2. (Kühr, 2003). A representable
psMTL-algebra (psMTLr -algebra, for short) is a
psMTL-algebra in which the following identities are
valid:

(R1) (y→ x)∨ (z ((x→ y)⊙ z)) = 1,
(R2) (y x)∨ (z→ (z⊙ (x y))) = 1.

Conditions (R1) and (R2) are also known asKühr’s
identities.

Hájek reflected this problem in the logical frame-
work by introducing in (Hájek, 2003b) the logic
psMTLr as an extension of psMTL by the axioms:

(A10) (ϕ → ψ)∨ (χ ((ψ → ϕ)&χ))
(A10•) (ϕ ψ)∨ (χ → (χ&(ψ ϕ)))

Axioms (A10) and(A10•) are just the logical reflec-
tion of Kühr’s identities. Due to the properties of
psMTLr-algebras, a chain completeness theorem for
psMTLr was proved by Hájek:

Theorem 2.1. (Hájek, 2003b). Let T be a theory over
psMTLr andϕ be a formula. T provesϕ iff for each
psMTLr -chain L and each L-model e of T , e(ϕ) = 1.

The non-commutative generalizations of t-norms
were studied by Flondor, Georgescu and Iorgulescu:

Definition 2.3. (Flondor et al., 2001). Apseudo-t-
norm is a binary relation⊗ on the real unit inter-
val [0,1] that is associative, non-decreasing in both
arguments and satisfyingx⊗ 1 = 1⊗ x = x, for all
x∈ [0,1].

A pseudo-t-norm⊗ is left-continuous if
∨

i∈I (ai ⊗
b) = (

∨
i∈I ai)⊗ b and

∨
i∈I (b⊗ ai) = b⊗ (

∨
i∈I ai).

Moreover, any left-continuous pseudo-t-norm⊗ has
a left residuum→ and a right residuum given by

a→ b = sup{c | c⊗a≤ b},
a b = sup{c | a⊗ c≤ b}.

The structure([0,1],max,min,⊗,→, ,0,1) is a
psMTLr-chain, called astandard psMTL-algebra.
Notice that every standard psMTL-algebra is repre-
sentable.

It was proved in (Flondor et al., 2001) that any
continuous pseudo-t-norm is commutative, but there
are left-continuous pseudo-t-norms which are not
commutative as shown by the following example:

Example 2.1. (Flondor et al., 2001).
Let 0< a1 < a2 < b2 < 1 andT : [0,1]× [0,1]→ [0,1]
defined by

T(x,y)=

{

a1, a1 < x≤ a2, a1 < y≤ b2
min(x,y), otherwise .

ThenT is a left-continuous pseudo-t-norm which is
not commutative.

3 STANDARD COMPLETENESS

This section is the main contribution of this paper.
In (Jenei and Montagna, 2003) it was proved that

the logic psMTLr is complete with respect to left-
continuous pseudo-t-norms and their residua, by gen-
eralizing to the non-commutative case the proof for
the standard completeness theorem for MTL logic
from (Jenei and Montagna, 2002).

In this section we provide an alternative proof for
the standard completeness theorem for psMTL logic.
Moreover, we prove a strong standard completeness
theorem with respect to finite theories, namely:

Theorem 3.1(Finite Strong Standard Completeness).
Let T be a finite theory overpsMTLr and ϕ be a
formula. T provesϕ iff for each standard psMTL-
algebra L and each L-model e of T , e(ϕ) = 1.

This theorem is proved along this section. The
idea behind the proof is to adapt to the non-
commutative case the proof given by (Horčik, 2007)
for the standard completeness theorem for MTL logic.

Let us consider a finite theoryT and a formula
ϕ over the logic psMTLr such thatT 0 ϕ. Thus, by
Theorem 2.1, there is a psMTLr-chain

L = (L,⋆L,→L, L,≤,0,1)

and an L-modeleL of T such thateL(ϕ)< 1. We will
show that L can be embedded into a standard psMTL-
algebra. As in (Horčik, 2007), we define the follow-
ing set:

G= {eL(ψ) | ψ is a subformula ofχ ∈ T ∪{ϕ}}.

Let S be the submonoid of L generated by the set
G, i.e. S= (S,⋆,≤,0,1), where⋆ denotes the restric-
tion of ⋆L to S. Observe thatS is finitely generated
sinceG is finite.

Lemma 3.1. The monoidS is countable and inversely
well ordered, i.e. each subset of S has a maximum.

Proof. Let g1, . . . ,gn be the generators ofS and M
a subset ofS. For any element ofm∈ M we have
|m|gi = ki , for eachi ∈ {1, . . .,n}, where|m|gi repre-
sents the number of occurrences ofgi in m. There-
fore we can assign to each element ofM an n-tuple
(k1, . . . ,kn) ∈ Nn. Let us denote bym(k1,...,kn) the ele-
ment fromM associated with then-tuple(k1, . . . ,kn).
Thus there is a subsetH ⊆Nn such that(k1, . . . ,kn) ∈
H iff m(k1,...,kn) ∈ M. Moreover, if (k1, . . . ,kn) ≤
(t1, . . . , tn), we havem(k1,...,kn) ≥ m(t1,...,tn) since⋆ is
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order-preserving. SinceH has only finitely many
minimal elements, one of them must correspond to the
maximum ofM, thusS is inversely well ordered.

Due to the previous lemma, we can introduce the
following residua on S:

a→ b = max{z∈ S | z⋆a≤ b},
a b = max{z∈ S | a⋆ z≤ b}.

Therefore we can prove the following result:

Proposition 3.1. The enriched monoid

S= (S,⋆,→, ,≤,0,1)

is a psMTLr -chain and there exists an evaluation eS
of T such that eS(ϕ)< 1.

Proof. We know that S is an integral totally ordered
monoid and that≤ is compatible with⋆. The fact that
a⋆b≤ c iff a≤ b→ c iff b≤ a c follows immedi-
ately from the definitions of→ and . Hence S is an
psMTLr-chain.

Let us define an evaluationeS(p) = eL(p), for
every propositional variablep appearing in anyχ ∈
T ∪{ϕ} and arbitrarily, otherwise. Letχ ∈ T ∪{ϕ}.
We show by induction on the complexity ofχ that
eS(ψ) = eL(ψ), for each subformulaψ of χ. Al-
most all cases are trivial, therefore we treat only the
case whenψ = ψ1  ψ2. By definition we have
eS(ψ) = eL(ψ1) eL(ψ2) =max{z∈ S| eL(ψ1)⋆z≤
eL(ψ2)}. Since ψ is a subformula ofχ, we have
eL(ψ)∈ S. Consequently,eL(ψ1)⋆eL(ψ) = eL(ψ1)∗L
eL(ψ) ≤ eL(ψ2). Thus eL(ψ) ≤ eS(ψ). Now sup-
pose there is an elementz′ ∈ S such thatz′ > eL(ψ)
andeL(ψ1) ⋆ z′ ≤ eL(ψ2). Sincez′ ∈ L, we getz′ ≤
eL(ψ1)  eL(ψ2) = eL(ψ) (contradiction). Hence
eS(ψ) = eL(ψ).

SinceeS(τ) = eL(τ) = 1, for anyτ ∈ T, eS is an
S-model ofT. Moreover,eS(ϕ) = eL(ϕ)< 1.

Therefore we have the psMTLr-chain S which is
countable and inversely well ordered, and the evalu-
ation eS on S such thateS(ϕ) < 1. The next step is
to build a new psMTLr-chain S′ order-isomorphic to
[0,1] in which S can be embedded.

In order to define such a psMTLr-chain, we will
use a similar construction as in the original proof of
the standard completeness theorem from (Jenei and
Montagna, 2003). We define the new universe by:

S′ = {(a,x) | a∈ S\{0}, x∈ (0,1]}∪{(0,1)}.

The order≤′ onS′ is the lexicographic order, i.e.

(a,x)≤′ (b,y) iff a< b or (a= b andx≤ y).

Let I be the set of all idempotents ofS, i.e x⋆ x = x.
We define the following monoidal operation onS′:

(a,x)⋆′ (b,y)=







(a⋆b,1), a⋆b< a∧b
(a,xy), a= b, a∈ I

min{(a,x),(b,y)}, otherwise

wherexy stands for the usual product of reals. Note
that in any case, the first coordonate always equals
a⋆b.

The proof of the following result follows closely
the proof of Lemma 6 from (Horčik, 2007), but dif-
ferences do appear since we are dealing with a non-
commutativity operation⋆′.

Lemma 3.2. The structure

S′ = (S′,⋆′,≤′,(0,1),(1,1))

is a totally ordered integral monoid, where(1,1) is
the neutral element and the top element as well,(0,1)
is the bottom element and⋆′ is monotone with respect
to≤′ on both arguments.

Proof. It is obvious that(1,1) is the neutral element
and the top element and that(0,1) is the bottom ele-
ment. Let us prove that⋆′ is associative, i.e.

(a,x)⋆′ ((b,y)⋆′ (c,z)) = ((a,x)⋆′ (b,y))⋆′ (c,z).

We denote the left-hand side (right-hand side, respec-
tively) of the above equation by L (R, respectively).
Let P(a,b) denote the following property ofa,b∈ S′:

P(a,b) : a= b anda∈ I .

Clearly, if P(a,b) holds, thenP(b,a) holds as well.
We must analyse several cases:

1. Suppose that none ofP(a,b), P(b,c), P(a,b⋆ c),
P(a⋆b,c) is valid. We distinguish two cases:
(i) a⋆b⋆c= a∧b∧c. Then both L and R are equal

to min{(a,x),(b,y),(c,z)} and therefore associa-
tivity of ⋆′ holds.

(ii) a⋆ b⋆ c 6= a∧b∧ c. We claim that in this case
both L and R are equal to(a⋆b⋆c,1). Let us con-
sider the case of L, since for R we have a similar
proof. If b⋆c= b∧c, thena⋆ (b⋆c) 6= a∧ (b⋆c),
therefore L= (a⋆b⋆ c,1). If b⋆ c 6= b∧ c, then
(b,y) ⋆′ (c,z) = (b⋆ c,1) anda⋆ b⋆ c 6= a. Thus
eithera⋆ b⋆ c 6= b⋆ c and then L= (a⋆ b⋆ c,1),
or a⋆b⋆c= b⋆c and then L= (a,x)∧ (b⋆c,1) =
(b⋆ c,1) = (a⋆b⋆ c,1).

2. Suppose thatP(b,c) holds. Thenb= c, b is idem-
potent and L= (a,x)⋆′ (b,yz). We obtain that

L =











(b,xyz), if a= b
(a⋆b,1), if a⋆b< a∧b

(a,x), if a⋆b= a∧b,a< b
(b,yz), if a⋆b= a∧b,a> b

.

For R we have the following cases:
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− if a= b, then R= (b,xy)⋆′ (c,z) = (b⋆ c,xyz) =
(b,xyz);

− if a⋆b< a∧b, then(a⋆b)⋆b= a⋆b= (a⋆b)∧b.
Moreovera⋆b< a∧b≤ b. Thus R= (a⋆b,1)⋆′

(b,z) = (a⋆b,1);

− if a⋆b= a∧b anda< b, then R=(a,x)⋆′ (b,z)=
(a,x);

− if a⋆b= a∧b andb< a, then R=(b,y)⋆′ (b,z)=
(b,yz).

3. Suppose thatP(a,b) holds. The proof follows sim-
ilarly with the case 2.

4. Suppose thatP(a,b⋆c) holds and none ofP(a,b),
P(b,c) is valid. Thena = b⋆ c which impliesa ≤
b,c. Moreovera < b, sincea = b implies P(a,b).
Froma< b, we obtaina= a⋆a< a⋆b, buta⋆b≤ a,
thusa⋆b= a. Similar we get thata= b⋆a= a⋆c=
c⋆a. Therefore we have:

R= (a,x)⋆′ (c,z) =

{

(a,xz), if a= c
(a,x), if a< c

.

If a= c, then L= (a,x)⋆′ ((b,y)⋆′ (a,z)) = (a,x)⋆′

(a,z) = (a,xz). On the other hand, ifa < c, then
a< b∧c sincea< b. As b⋆c= a< b∧c, we get L
= (a,x)⋆′ (b⋆ c,1) = (a,x).

5. Suppose thatP(a ⋆ b,c) is valid and none of
P(a,b), P(b,c) is valid. Similarly with the previous
case, we can show that L= R.

Finally, let us prove that⋆′ is monotone, i.e.
(a,x) ≤′ (b,y) implies (a,x) ⋆′ (c,z) ≤′ (b,y) ⋆′ (c,z)
and(c,z) ⋆′ (a,x) ≤ (c,z) ⋆′ (b,y). We prove only the
first implication, since the other has a similar proof.
We distinguish several cases:

1. Suppose that none ofP(a,c), P(b,c) holds. We
have the following cases:

− a⋆c= a∧c andb⋆c= b∧c. We have that(a,x)⋆′

(c,z) = min{(a,x),(c,z)} ≤′ min{(b,y),(c,z)} =
(b,y)⋆′ (c,z).

− a⋆ c= a∧c andb⋆ c< b∧c. Notice thata⋆ c≤
b⋆ c implies(a,x)⋆′ (c,z) = min{(a,x),(c,z)} ≤′

(b⋆ c,1) = (b,y)⋆′ (c,z).

− a⋆c< a∧c andb⋆c= b∧c. We have thata⋆c<
a∧ c ≤ b∧ c = b⋆ c. Therefore(a,x) ⋆′ (c,z) =
(a⋆c,1) and the first component of(b,y)⋆′ (c,z) is
b⋆c= b∧c> a⋆c. Thus(a,x)⋆′ (c,z)≤′ (b,y)⋆′

(c,z).

− a⋆ c< a∧c andb⋆ c< b∧c. Notice thata⋆ c≤
b⋆ c and(a,x) ⋆′ (c,z) = (a⋆ c,1) ≤′ (b⋆ c,1) =
(b,y)⋆′ (c,z).

2. Suppose thatP(a,c) holds. Thena⋆b= a, since
a≤ b anda is idempotent. We have(a,x)⋆′ (c,z) =

(a,xz). Moreover,

(b,y)⋆′ (c,z) =

{

(a,yz), if a= b
(a,z), if a< b

If a = b, thenx ≤ y and(a,xz) ≤′ (a,yz) since the
usual product of reals is monotone. Ifa < b, then
(a,xz)≤′ (a,z) sincexz≤ z.

3. Suppose thatP(b,c) holds. Moreover, suppose
thatP(a,c) is not valid. Thenb= c anda< b. Thus
(b,y)⋆′ (c,z) = (b,yz) and

(a,x)⋆′ (c,z) =

{

(a⋆b,1), if a⋆b< a
(a,x), if a⋆b= a

.

Sincea⋆b≤ b, we get(a,x)⋆′ (c,z)≤′ (b,y)⋆′ (c,z).

Moreover, we can endowS′ with two additional
operations such that it becomes a psMTLr-chain:

Lemma 3.3. The structure

S′ = (S′,⋆′,→′, ′,≤′,(0,1),(1,1))

is a psMT Lr -chain, where

(a,x)→′ (b,y) = max{(c,z) | (c,z)⋆′ (a,x)≤′ (b,y)},

(a,x) ′ (b,y) = max{(c,z) | (a,x)⋆′ (c,z)≤′ (b,y)}.

Moreover, the mappingψ : S→ S′ defined byψ(x) =
(x,1) is an embedding of psMTL-algebras.

Proof. By Lemma 3.2, it is enough to show that⋆′ has
a left and a right residuum. Therefore we must show
that each set of the formM1 = {(c,z) | (c,z)⋆′ (a,x)≤′

(b,y)} or M2 = {(c,z) | (a,x) ⋆′ (c,z) ≤′ (b,y)} has
a maximum. Let us consider the case ofM1. Since
S is inversely well ordered by Lemma 3.1,π1(M1)
has a maximumcM1, whereπ1 is the projection on
the first component. Thus there is an element of the
form (cM1,z) ∈ M1. If cM1 ⋆a< b, then(cM1,1) is the
maximum ofM1. Thus suppose thatcM1 ⋆a= b. We
distinguish several cases:

1. SupposecM1 ⋆ a < cM1 ∧ a. Then, for anyz, we
have(cM1,z) ⋆

′ (a,x) = (cM1 ⋆ a,1). Thus(cM1,1)
must be the maximum ofM1.

2. Suppose thatP(cM1,a) holds. Then we have
(cM1,z) ⋆

′ (a,x) = (cM1,zx). If x ≤ y, then(cM1,1)
is the maximum ofM1. If x> y, then the maximum
of M1 is (cM1,y/x).

3. Suppose thatcM1 ⋆ a= cM1 ∧a. Moreover, let us
assume thatP(cM1,a) is not valid. Then(cM1,z) ⋆

′

(a,x) = min{(cM1,z),(a,x)}. The have several
cases:
· if a= cM1, then min{(cM1,z),(a,x)}= (cM1,x∧z)

and the maximum ofM1 is either(cM1,1) when
x≤ y, or (cM1,y) otherwise;
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· if a< cM1, then min{(cM1,z),(a,x)} = (a,x) and
(cM1,1) is the maximum ofM1;

· if a > cM1, then min{(cM1,z),(a,x)} = (cM1,z)
and(cM1,y) is the maximum ofM1.

It follows immediately from the definitions of→′ and
 

′ that the following hold:

(a,x)⋆′ (b,y)≤′ (c,z) iff (a,x)≤′ (b,y)→′ (c,z) iff
(b,y)≤′ (a,x) (c,z).

Finally, it can be easily verified that the mappingψ
satisfies the following equalities:
ψ(a)⋆′ ψ(b) = (a,1)⋆′ (b,1) = (a⋆b,1) = ψ(a⋆b),
ψ(a)→′ ψ(b) =max{(c,z)|(c,z)⋆′ (a,1)≤′ (b,1)}=
(a→ b,1) = ψ(a→ b),
ψ(a) ′ ψ(b) =max{(c,z)|(a,1)⋆′ (c,z)≤′ (b,1)}=
(a b,1) = ψ(a b).
Therefore the proof is completed.

The remaining step is to show that S′ is order-
isomorphic to[0,1]. As shown in (Hrbacek and Jech,
1999), any totally ordered setX is order-isomorphic
to [0,1] if it satisfies the following properties:X is
complete,X has a maximum and a minimum andX
has a countable subsetD which is dense inX, i.e. for
eachx,y∈ X such thatx< y, there isz∈ D such that
x< z< y.

Thus it is enough to prove that S′ satisfies all the
above mentioned conditions. Clearly, S′ has a maxi-
mum and a minimum. Further, the subset

{(a,x) | a∈ S, x∈Q∩ [0,1]}

of S′ is countable and dense inS′. Finally, givenX ⊆
S′, X 6= /0, letZ= π1(X). ThenZ⊆SandZ 6= /0, hence
Z has a maximuma0, sinceSis inversely well ordered
by Lemma 3.1. Now let

α = sup{x∈ (0,1] | (a0,x) ∈ X}.

Then(a0,α) = sup(X). In conclusionS′ is complete
and we have the following result:

Lemma 3.4. The set S′ is order-isomorphic to[0,1],
i.e. there is a bijectionΦ : S′ → [0,1] such that
(a,x)≤′ (b,y) impliesΦ(a,x)≤ Φ(b,y).

Let us define the following operations on[0,1]:

a⊙b= Φ(Φ−1(a)⋆′ Φ−1(b)),

a→⊙ b= Φ(Φ−1(a)→′ Φ−1(b)),

a ⊙ b= Φ(Φ−1(a) ′ Φ−1(b)).

Then the structure

[0,1]⊙ = ([0,1],⊙,→⊙, ⊙,≤,0,1)

is a standard psMTL-algebra and we have an[0,1]⊙-
model of T such thatΦ(ψ(eS(ϕ))) < 1. Thus the
proof of Theorem 3.1 is finished.

4 CONCLUSIONS

In this paper we proved the finite strong standard
completeness theorem for the non-commutative logic
psMTL. For proving this result, we used a construc-
tion of standard psMTL-algebras which is interesting
on its own. Our proof can also be seen as an alterna-
tive proof for the standard completeness theorem for
psMTL logic given in (Jenei and Montagna, 2003).

As a future research, it would be interesting to
extend our proof for the finite strong standard com-
pleteness theorem for psMTL for some schematic ex-
tensions of psMTL logic. We mention that in (Dia-
conescu, 2012), the proof for the standard complete-
ness theorem for psMTL logic given in (Jenei and
Montagna, 2003) was extended for the extensions
psSMTL and psIMTL of psMTL logic.
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