
Multi-agent Solution for ‘8 Queens’ Puzzle

Ivan Babanin1, Ivan Pustovoj1, Elena Kleimenova2, Sergey Kozhevnikov1, Elena Simonova1,
Petr Skobelev1 and Alexander Tsarev1

1Software Engineering Company «Smart Solutions», Ltd., Samara, Russia
2Institution of the Russian Academy of Sciences Institute for the Control of Complex Systems of RAS, Samara, Russia

Keywords: 8 Queens Problem, Evolutionary Computing, Multi-agent Technology, Strategy of Conflict’s Resolving,
Domain Ontologies, Experimental Data.

Abstract: The problem of 8 Queens is one of the most well-known combinatorial problems. In this article multi-agent
evolutionary-based solution for ‘8 Queens’ problem is proposed. In the multi-agent solution each Queen (or
other chess-man) gets a software agent that uses a 'trial-and-error' method in asynchronous and parallel
decision making on selecting new position for queens. As the result the solution is found in distributed
manner without main control center that provides a number of benefits, for example, introducing new types
of chess-man or changing constraints in real time. Two main strategies of Queen’s decision making process
has been considered and compared in experiments: random generation of the next move and conflict-solving
negotiations between the agents. Experiments’ results show significant acceleration of the decision making
process in case of negotiation-based strategy. This solution was developed for training course for students of
Computer Science as a methodical basis for designing swarm-based multi-agent systems for solving such
complex problems as resource allocation and scheduling, pattern recognition or text understanding.

1 INTRODUCTION

Multi-agent technology could be reviewed as a new
generation of object-oriented programming
(AgentLink, 2012). Multi-agent system (MAS)
consists of agents – autonomous software objects
that can analyze the situation, make goal-driven
decisions and communicate with each other
(Wooldridge, 2009). MAS forms a new framework
for evolutionary computing and distributed problem
solving for very complex problems that can’t be
currently solved by existing mathematical methods
and tools. There are several approaches (Bonabeau,
2000) how to build multi-agent systems with direct
or indirect communications. In our paper we will
compare these two basic approaches and show that
coordination between agents helps to reach solution
faster.

In our concept agents will use ‘trial-and-error‘
method and select the first appropriate decision
(‘try‘) which allows improving the situation is being
made, but then – in case of conflicts – the decision
could be revised. Any decision of agent changes
situation for other agents triggering new decision
making process with direct or indirect

communications. In contrast to traditional
centralized, monolithic and sequential solutions
swarm-based approach requires finding right balance
of many conflicting interests of players involved
with the view that new players with new conflicting
interests can arrive at any time. In the paper we
propose to use a well-known ‘8 Queens’ puzzle as a
basis for programmer’s experincing with
methodology of evolutional computing in complex
problem’s solving. Instead of classical combinatorial
search-based method we propose to create agents of
Queens and develop strategies for solving conflicts
in real time. The results of this study are used in
solving complex problems for resource allocation,
scheduling and optimization (Skobelev, 2011).

2 ‘8 QUEENS’ PROBLEM AND
APPROACH TO ITS SOLVING

The ‘8 QUEENS’ puzzle is the problem of putting
eight chess queens on an 8×8 chessboard in such a
way that none of them is able to capture any other
using the standard chess queen's moves. It is known
that there are only 12 fundamentally different

278 Babanin I., Pustovoj I., Kleimenova E., Kozhevnikov S., Simonova E., Skobelev P. and Tsarev A..
Multi-agent Solution for ‘8 Queens’ Puzzle.
DOI: 10.5220/0004148502780281
In Proceedings of the 4th International Joint Conference on Computational Intelligence (ECTA-2012), pages 278-281
ISBN: 978-989-8565-33-4
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

solutions (and 92 in general) for this puzzle on 8x8
chessboard and there are a lot of classical algorithms
in literature which implement traditional
combinatorial search to find appropriate solutions.
But these methods have some restrictions, for
instance, some of them are applicable for fixed
number of Queens only, some are too complex for
computations, some are hard to modify, etc. (Eight
queens puzzle, 2012).

We will make the classical problem statement
even more complex by introduction of the following
new requirements:
 It is possible to introduce new classes of chess-
men without solution re-programming;
 Enable users to add and remove figures on board
in real-time by user interventions;
 Change preferences and constraints of any agent,
for example, putting constraints on chessmen move
direction;
 Support interactive mode for users which will be
able to re-configure queens positions at any moment
of time;
 Set time constraint on solution finding. The
system will provide intermediate solutions in case of
lack of time, with minimum of conflicts on
chessboard;
 Provide programmers the opportunity to
influence agents intelligence by modify decision
making logic.

Our approach provides a multi-agent solution for ‘8
Queens’ problem with no main ‘control’ center
which analyzes the whole situation on the board and
makes decisions for each Queen. On the contrary,
autonomous software agent is acting on behalf of
each Queen. Agents work as a state machines (in
fact, co-routines) which get control from the multi-
agent dispatcher on each step.

When all agents make their movements they find
that the solution is partial and incomplete because
solution has many unresolved conflicts. Then agents
start to improve the solution by revealing and
resolving conflicts between each other. Two main
strategies of are proposed:
 Random moving: if the agent of queen detects a
conflict (it attacks other Queen or is being attacked
by another chess-man), agent will find available free
positions to go and then select one of them
randomly;
 Conflict negotiations: at first, each Queen tries to
recognize conflicts with others; then negotiations
should help to find a coordinated decision on who
must move and where to go. Such kind of

intelligence allows finding more suitable solutions
faster.

As the result solution is being produced as a set of
trial-and-errors and trade-offs between chess-men as
it takes place in all complex problems.

3 MAS SOLUTION

A conceptual model of problem domain should be
described in the form of ontology that contains a set
of concepts and relationships (SemanticWeb, 2012).
The basic entity of our ontology ‘Queens’ is a
‘Chesspiece’ concept, with 6 successors (Figure 1).
‘Chesspiece’ is an abstract class, so the logic of
behavior should be specified in the successors.

Figure 1: Concepts and relationships of ontology.

By placing the chess-men on certain positions in
the system, the user creates a scene that could be
then executed dynamically. So the Queens are being
placed in accordance with the rules specified in
ontology. Each chesspiece has its own way of attack
that is taken into account in logics of agents.

If some chesspiece becomes a subject or an
object of an attack, it should go to another position.
Search for available positions could be executed as
follows: first, agent will try to find position where a
chesspiece will not have a conflict with any other
chesspiece; if it is impossible, chesspiece will go to
position with minimal number of conflicts, or stay
on initial place.

Logic of the agents’ behavior could be specified
by ‘Attacks’ attribute in the ontology, which is used
in agent’s methods implementation of the decision
making strategy and logic of new position search.

For example, Knight is known to attack positions
one line away horizontally from itself and two lines
away vertically. Thus, the behavior of chesspieces
could be described by the set of pairs consisting of
horizontal and vertical distances from the current
position. For Knight it is {(1, 2), (2, 1)}. Similarly,
we can describe logic of other chesspieces.

To implement generic logic of different
chesspieces just one type of agent is being used:

Multi-agent�Solution�for�'8�Queens'�Puzzle

279

ChessmateAgent. ChessmateAgent could be ordinary
agent of chesspiece, or ‘observer’.

Observer is an agent who, in contrast to ordinary
agents, is not taking part in decision making but
collects information about conflicts from ordinary
agents and on this base can stop the scene and report
data to user.

Observer and ordinary agents independently
from the strategy of conflict’s resolving store
positions of all other chess-men in local memory.
Scene representation in agent’s local memory is
more efficient than the usage of special ‘scene’
agent which should be contacted by each agent of
chess-men on each step, from the point of view of
processor speed.

As it was mentioned above two main strategies
of conflict’s resolving were implemented in the
system. In accordance with the random move
strategy agent makes decision where to go
randomly. Let’s consider negotiations in case of
second strategy of negotiations:
1) Agent starts negotiation strategy for decision
making.
2) Agent prepares list of conflicting chess-men.
3) The first conflicting chess-men is being selected
and the message about number of conflicts is sent to
it (ConflictsCountMessage).
4) Selected chesspiece after receiving the message,
compares the number of conflicts with own number
of conflicts. If own number of conflicts is greater or
equal than received, the chesspiece goes to another
position. In other case, counter-part should make a
move.
5) Agent returns the control to dispatcher.

Architecture of multi-agent solution for ‘8 Queens’
problem has been shown in Figure 2. The following
components are presented in the system’s
architecture: multi-agent run-time engine including
dispatcher and messaging system; module of agent’s
construction and logic; storage of ontologies and
scenes, containing all knowledge about class and
current state of the problem being solved; database
for temporary storing of intermediate and final
solutions; visualization tools that allow users to
review the information about the problem being
solved; ontology editor and scene editor; user
interface (Figure 3).

Users can introduce new classes of chess-men,
change position of chess-men, add/delete chess-men,
set time constraints, choose strategy of decision
making, change attributes of chess-men, make step-
back to previous solution. In the process of
computations user can see the best solutions, the log

of agents’ negotiations and the diagram with number
of conflicts in scene.

Figure 2: Architecture of the system.

Figure 3: User interface.

4 EXPERIMENTS WITH
STRATEGIES

During decision making process, the intermediate
positions for scene are being evaluated in the system
– when some agents are in conflict state and others
are not.

User can fix the positions the Queens and then
create new conflicts by moving some of them. Then
start scene again. Selected Queens will be fixed, but
free Queens will find other safe positions, and
solution will be generated again.

In some cases the ‘Queens’ problem solution
needs quite a lot of time. For example, if it is

IJCCI�2012�-�International�Joint�Conference�on�Computational�Intelligence

280

required to solve ‘9 Queens’ problem in following
initial position. For some cases there is no solution
at all, for example, for 9 queens on 8x8 chess board.
To find acceptable solution using the finite time
interval in this case, user can specify the time
constraint by special tool on the Control Panel.

After the end of the time limit specified by
constraint, the solution or the scene with the minimal
number of conflicts, i.e. partial solution, will be
shown. After restart the solution could be improved
because of possibility that some of the recently
generated scenes could have less number of conflicts
than previously processed at the preceding iteration.
After getting intermediate solution user can try to
improve it manually. This method allows avoiding
infinite loop of the positioning algorithm.

In the developed system it is also possible to play
with arbitrary number of chess-men on the board
(more than 8).

As it was mentioned above, user can change the
basic strategy interactively. Let’s compare two
strategies: random strategy and strategy with
negotiations for coordinated decision making.
Experiment was carried out on the following
hardware configuration:
 CPU: Intel Core 2 Duo T5450 @ 1.66 GHz;
 RAM: 2 Gb DDR2-667;
 OS: Windows 7 RC1.

We received the following time data for two
different strategies of conflict resolving and 7
different initial positions of 8 Queens – Table 1.

Table 1: Experimental data.

Scene
experiment

Random
selection (ms)

Simple
negotiations (ms)

1 2449 562

2 8127 390

3 1762 343

4 11419 327

5 3120 405

6 2792 795

7 2184 780

The table shows that the results based on
coordinated decision making allowed to accelerate
problem solving in 4 times in comparison to random
strategy and made the solution process more stable,
productive and efficient.

Thus, changes in the number of conflicts during
the decision making process, were studied
separately. The initial scenes for the experiments
were created randomly. The number of conflicts and
total time required (ms) was stored for each scene.

Furthermore, for the better reliability scenes with
partial fixation of chess-men positions, and scenes
with the number of chesspieces greater than 8, were
proceed additionally. As a next step we are going to
study the use of more sophisticated strategies.

5 CONCLUSIONS

Multi-agent solution for ‘8 Queens’ problem was
developed to demonstrate the important advantages
of the evolutional approach implemented by the
multi-agent technologies. The developed system is
used for the training course on Computer Science
aimed to methods of complex problems’ solving
using multi-agent technologies. The main objective
of this work is to show how ‘swarm intelligence’
formed and supported by coordinated decision
making helps to solve complex problems in more
flexible, efficient and faster way.

Future work will be focused on the development
of the agents’ logic editor, elements of self-learning
of the agents, more complex strategies of conflicts
resolving, improvement of the GUI and other
modifications – to make system more intelligent,
visual and interactive.

REFERENCES

AgentLink (2012). [online] Available at:
<http://www.agentlink.org/> [5 April 2012].

Wooldridge, M., 2009. An Introduction to Multiagent
Systems, John Wiley&Sons. London, 2nd edition.

Bonabeau, E., Theraulaz, G., 2000. Swarm Smarts.
Scientific American, vol. 282, no. 3, pp. 54-61.

Skobelev, P., 2011. Multi-Agent Systems for Real Time
Resource Allocation, Scheduling, Optimization and
Controlling: Industrial Application. In HoloMAS’11,
10th International Conference on Industrial
Applications of Holonic and Multi-Agent Systems.
Springer. Berlin. pp. 1-15.

Eight queens puzzle (2012), Wikipedia. [online] Available
at: <http://en.wikipedia.org/wiki/8_queens_problem>
[10 April 2012].

SemanticWeb (2012), Wikipedia. [online] Available at:
<http://en.wikipedia.org/wiki/Semantic_web> [20
March 2012].

Multi-agent�Solution�for�'8�Queens'�Puzzle

281

