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Abstract: This study presents a new algorithm for structural topological optimization by combining the Extended 
Finite Element Method (X-FEM) with an evolutionary optimization algorithm. Taking advantage of an 
isoline design approach for boundary representation in a fixed grid domain, X-FEM can be implemented to 
obtain more accurate results on the boundary during the optimization process. This approach can produce 
topologies with clear and smooth boundaries without using a remeshing or a moving mesh algorithm. Also, 
reanalysing the converged solutions in NASTRAN confirms the high accuracy of the proposed method. 

1 INTRODUCTION 

In recent years, structural optimization has become a 
rapidly growing field of research with application in 
many areas such as mechanical, civil and automotive 
engineering. Topology optimization is one of the 
most challenging aspects of structural optimization, 
in which one needs to find the best topology as well 
as shape of a design domain. The approaches which 
have been proposed for the topology optimization of 
continuous structures fall into two categories: first, 
mathematical based methods such as 
homogenization (Bendsøe and Kikuchi, 1988), Solid 
Isotropic Material with Penalization (SIMP) 
(Bendsøe, 1989); (Zhou and Rozvany, 1991) and 
level set method (Wang et al., 2003); (Allaire et al., 
2004); second, heuristic methods which are more 
intuitive and less mathematical, such as evolutionary 
structural optimization ESO/BESO methods (Xie 
and Steven 1993); (Querin et al., 1998); (Yang et al., 
1999). 

ESO is based on the assumption that the optimal 
layout of the design domain can be obtained by 
gradually removing inefficient material from the 
design domain (Huang and Xie, 2009). In the 
original ESO method, the elements of the design 
space are ranked in terms of their sensitivity, and 
those with lower sensitivity are removed from the 
design domain until a desired optimum is obtained. 
Bi-directional evolutionary structural optimization 
(BESO) is an extension of ESO in which the 
elements are allowed to be added and removed 
simultaneously. These heuristic methods are easy to 

program and provide a clear topology (no grey 
regions of intermediate densities as in SIMP) in the 
resulting optimal designs. Conventional ESO/BESO 
algorithms have been successful since they can be 
easily combined with the finite element model of a 
structure. However they suffer from a week 
capability of boundary representation. In these 
methods the geometrical information of the 
boundaries is not clear during the optimization 
process and the boundaries of the optimal solution 
are represented by the jagged edges of the finite 
elements. This limitation causes difficulties in 
combining these methods with CAD and the 
obtained solutions require post processing to 
manufacture a smooth design.  

The fixed grid finite element method (FG-FEM) 
allows the boundaries of the design to cross over 
finite elements. This capability has been used in 
boundary based optimization methods such as the 
level set method, and element based optimization 
methods such as fixed grid evolutionary structural 
optimization (FG-ESO) method. FG-ESO or Isoline/ 
Isosurface approach (Victoria et al, 2009; Victoria et 
al, 2010) is an alternative to ESO in which the 
inefficient material is allowed to be removed/added 
within the elements of the design domain during an 
evolutionary process. The boundaries are defined by 
the intersection of Iso-line plane with the criteria 
distribution of the design domain. Since in this 
approach the boundary of the design is no longer 
consistent with the fixed finite elements as in ESO, a 
classical finite element analysis may result in poor 
FE approximation on the boundary. Conventionally 
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The basic idea of isoline design is to represent the 
shape and topology of the structure using the 
contours of desired structural behaviour. This idea 
has been suggested in several studies (Maute and 
Ramm, 1995); (Lee et al., 2007). The isoline 
optimization algorithm that we use in this paper is 
originated from the isoline topology design (ITD) 
algorithm proposed by Victoria et al., 2009.  

The ITD approach can be summarized into the 
following steps: 
1- An extended finite element analysis is performed 
to find the distribution of strain energy density 
within the design domain. 
2- A minimum SED level (MSL) is determined and 
the new structural boundary is obtained from 
intersection of SED distribution and MSL.  
3-  The regions of the domain having the criteria 
level less than MSL are not included in the design 
domain. Therefore their material property is set to 
the weak material. The regions where the criteria 
level is more than MSL are inside the design domain 
and their material property is set to the solid 
material. 
4- Steps 1-3 are repeated by gradually increasing 
the MSL until a desired optimum is obtained. 

2.2.1 Integration Scheme 

In a conventional fixed grid approach, the stiffness 
matrices of the boundary elements are approximated 
by a density scheme in which the stiffness of an 
element is proportional to the area ratio of the solid 
part of the element. The material is considered to be 
uniformly distributed through the whole element and 
the variations in material distribution in an element 
are not taken into account in calculating the element 
stiffness matrix. For example, figure 2 shows three 
different shapes for a boundary element where the 
area fraction of solid material within the element is 
0.50. Using density method the same stiffness is 
calculated for all three elements. This issue may 
cause errors near the boundary of the design during 
the optimization process. 

(a)  
 

(b)  
Figure 2: a- Typical boundary elements for area 
ratio=0.50. b- Their density scheme equivalent solid 
element with 50% density. 

The extended finite element method (X-FEM) is 
an alternative fixed grid approach proposed by Moës 
et al in 1999. It was originally developed to 
represent crack growth in a fixed grid domain 
without meshing the internal boundaries. X-FEM 
has also been implemented for other kinds of 
discontinuities such as fluid structure interaction 
(Gerstenberger and Wall 2008) and modelling holes 
and inclusions (Sukumar et al 2001). In our case, the 
X-FEM scheme for modelling holes and inclusions 
can be implemented for modelling the boundary of 
the design (weak/solid material interfaces) during 
the optimization process. In this approach, the 
displacement field is approximated by the following 
equation: 

ሻݔሺݑ  =෍ ௜ܰሺݔሻ௜ ௜ (4)ݑሻݔሺܪ

where ௜ܰ are the classical shape functions associated 
to degree of freedom ݑ௜, and the Heaviside function 
H(x) has the following properties: ܪሺݔሻ = ൜1 ݂݅ 	ݔ ∈ Ωௌ0 ݂݅ 	ݔ ∉ Ωௌ (5)

where Ωௌ is the solid sub-domain. Since there is no 
enrichment in the displacement approximation 
equation of X-FEM in modelling holes and 
inclusions, there will be no augmented degrees of 
freedom during optimization. Equation 5 defines a 
zero displacement field for the void part of the 
element, which means that only the solid part of the 
element contributes to the element stiffness matrix. 
Thus we can use the same displacement function as 
FEM and simply remove the integral in the void sub-
domain of the element. 
௘ܭ  = න Ω݀ݐܤௌܦ்ܤ

Ωೄ  (6)

with ܤ the displacement differentiation matrix, ܦௌ 
the elasticity matrix for the solid material and t the 
thickness of the element. When an element is cut by 
the boundary, the remaining solid sub-domain is no 
longer the reference rectangular element. So we 
partition the solid part of the boundary element into 
several sub-triangles (figure 3) and use Gauss 
quadrature to calculate the integral given by 
equation 6. 

2.2.2 Combining X-FEM and the 
Optimization Algorithm 

Figure 5 illustrates the topology optimization 
procedure used which in general consists of 
initialization, X-FEM structural analysis, and isoline 
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update scheme. In initialization, the initial material 
distribution within the design domain and the 
descretization of the design domain, as well as the 
necessary parameters for the isoline topology design 
are defined. 

 

 
Figure 3: The solid sub-domain of the boundary elements 
are partitioned into several sub-triangles. 

In our study, the second order Gauss rule with 3 
midline Gauss points was implemented (figure 4). 
 

 
Figure 4: X-FEM integration scheme. 

 
Figure 5: Flowchart of optimization algorithm. 

In the X-FEM structural analysis, by using nodal 

criteria numbers, the elements are categorized into 
three groups: solid, void and boundary elements. 
Solid and void elements are treated using classical 
finite element approximation. The stiffness matrix of 
the boundary elements are calculated by partitioning 
the solid sob-domain into several sub-triangles and 
applying the Gauss quadrature integration scheme 
described in the previous section. 

The minimum SED level (MSL) is calculated by 
increasing the value from the last iteration. The new 
structure is obtained from the intersection of the 
MSL and current criteria distribution. The process is 
continued until the target volume is achieved. 

 

 
Figure 6: The two test cases. 

3 TEST CASES 

 
 

 

 
Figure 7: Optimized final design and iteration histories of 
objective function and volume fraction for test case 1. 
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Figure 8: Optimized final design and iteration histories of 
objective function and volume fraction for test case 2. 

The proposed method of combining X-FEM and 
evolutionary optimization algorithm was 
implemented in a MATLAB code to present the 
topology optimization of 2D rectangular domains. 
Two test cases are used in this study (figure 6). First 
a short cantilever beam having length 60, height 30 
and thickness 1 where a unit concentrated load is 
applied in the middle of the free end. The second test 
case was a cantilever beam having the same 
dimensions as test case 1 but with the load applied at 
the bottom of the free end. A 60x30 mesh was used 
for both cases to discretize the design domain. To 
avoid singularity issues with the concentrated 
loading, the loading region was treated as a non-
design domain. 

The optimized final design, as well as the 
iteration histories of the objective function and 
volume fraction for the test cases 1and 2, are shown 
in figures 7 and 8, respectively. It can be seen that 
the strain energy increases, as material is gradually 
removed from the design domain, then reaches a 
constant value at convergence. 

3.1 A Methodology for Evaluating 
X-FEM Solutions 

To evaluate the performance of the final solutions 
and the accuracy of the proposed method, the 
obtained solutions were discretized by a very fine 
structured mesh and imported to NASTRAN to 
perform a classical finite element analysis (figure 9). 

Table 1 compares the X-FEM solutions and the 
regenerated NASTRAN structures in terms of their 
strain energies and tip displacements. It can be seen 
that the X-FEM solutions are very close to the 
regenerated NASTRAN solutions. The slight 
difference in the X-FEM and NASTRAN results 
may be attributed to the different mesh size used in 
the two approaches. 

 

 
Figure 9: XFEM solution discritized by a very fine mesh 
and imported to NASTRAN. 

Table 1: Comparison of X-FEM solutions and regenerated 
NASTRAN structures. 

Test case 1 Strain Energy Tip Displacement 
X-FEM 29.04 54.00 

NASTRAN 29.21 54.39 
 

Test case 2 Strain Energy Tip Displacement 
X-FEM 31.08 57.54 

NASTRAN 31.24 57.85 

4 CONCLUSIONS 

In this study, X-FEM and Isoline design are 
implemented for the topology optimization of 2D 
continuum structures. By applying the proposed X-
FEM scheme there is no need to use the time 
consuming remeshing and moving mesh approaches 
to improve the FE solution. The generated structures 
have smooth boundaries which need no further 
interpretation and post-processing. The numerical 
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examples presented in this paper show the accuracy 
and efficiency of the proposed algorithm.  
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