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Abstract: The increased availability of cheaper sensing technologies, the implementation of fibre-optic networks, the 
availability of cheaper data storage repositories, and development of powerful machine learning models are 
fundamental components that provide a new facet to the concept of the Smart Power Grid. An important 
element in the Smart Grid concept is predicting potential fault events in the Smart Power Grid, or better 
known as fault prognostics. This paper discusses an approach that uses machine learning methods to 
discover fault event-related knowledge from historical data and helps in the prognostics of fault events in 
power grids and critical and expensive components such as power transformers circuit breakers, and others.   

1 INTRODUCTION 

Recent technological advances in sensor 
technologies, fibre-optic networks, cheaper data 
storage capabilities, powerful data mining 
techniques, and faster computing power coupled 
with the need of improving the efficiency of 
electrical power utilization have contributed to the 
development of smarter power grids in the 
transmission and distribution industries. Utilities are 
increasingly interested in incorporating sensor 
technologies to expensive assets such as power 
transformers, circuit breakers, and back-up batteries, 
in overhead and underground transmission lines and 
connecting equipment. Many utilities are developing 
fibre-optic networks that allow the transmission of 
data from sensors to central data repositories.  

2 THE SMART GRID 

The existing power grids consist of multiple power 
networks that coordinate their operations using 
various levels of communication and control 
mechanisms, which are primarily manually 
controlled. The primary elements of the Smart Grid 
include: (a) data; (b) information; (c) intelligence; 
(d) communications (Mousavi, 2009). Data elements 
are supplied by sensors embedded in different 
components of the grid. The information element is 
delivered by processors that perform certain 

operations on data. The intelligence element is 
generated by processing data and information via 
analytics models. The communications element is 
required to deliver data, information, and 
intelligence to the right decision making agent in the 
right format at the right time. The IEEE – Power and 
Energy Society (IEEE-PES) and the National 
Institute of Standards (NIST) have developed a 
conceptual model for the Smart Grid that defines 
seven important domains: Bulk Generation, 
Transmission, Distribution, Customers, Operations, 
Markets, and Service Providers. 

3 FAULTS IN THE SMART GRID  

Machine learning approaches have been utilized to 
forecast fault events in the power distribution grid 
and in critical equipment. This section discusses 
how machine learning models were utilized 
determine; (a) fault vulnerability profiles in power 
distribution grids; (b) equipment fault forecasting.  

3.1 Power Grid Fault Prognostics 

Power distribution is typically managed by power 
substations that receive power from the transmission 
lines and distribute electrical power through feeders 
to consumers. In addition of the equipment within 
the substation, the typical distribution grid is 
composed of equipment such as distribution 
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transformers, switches, fuses, power lines 
(underground or overhead), and relays. Utilities are 
very interested in fault prognostics in the power 
distribution grid to minimize power disruptions to 
customers. Faults in the distribution grid are 
typically related with power line fatigue, burned 
fuses, lightning falling on equipment (such as 
distribution transformers, etc.), short circuits, animal 
contacts, trees and tree branches falling on assets, 
weather related faults to overhead or underground 
equipment, faults in splicing, power lines touching 
each other, and many more. Currently, the vast 
majority of utilities are reactive to faults and they 
manually deal with a contingency. There are many 
factors identified in the literature that can cause fault 
events in a power distribution grid (Lu, 2010). These 
factors can be broadly classified into (a) physical 
properties of the distribution grid; (b) electrical 
values of grid; (c) weather conditions; (d) assets or 
components degradation in the grid; and (e) type of 
grid infrastructure (see Figure 1). The work 
described in this paper has been focused on the 
prognostics of faults in two primary areas: (a) the 
forecast of fault events in a distribution grid; (b) 
forecasting potential faults to expensive assets such 
as power transformers in either the transmission or 
distribution network. Forecasting fault events in the 
distribution grid has been conducted by utilizing 
historical data on weather conditions, grid electric 
value readings at the time of a fault event, and the 
type of grid infrastructure. Forecasting faults on 
expensive assets has been conducted by analyzing 
the condition of power transformers utilizing 
historical data collected while performing dissolved 
gas analyses and other tests. This investigation was 
conducted with an Investor Own Utility (IOU) 
partner in the US. Several types of historical datasets 
associated with the IOU were collected and utilized 
during this investigation. The historical dataset types 
utilized include: (a) fault data and electrical values 
from the IOU; (b) weather data; (c) infrastructure 
type of the IOU. The fault data from the IOU was 
collected utilizing an automated system of intelligent 
electronic devices (IED’s) with sensing and analytic 
capabilities located at power feeders. These IED’s 
monitor electrical values from the distribution lines 
and are able to detect a fault event in the grid after it 
occurred. The fault data includes these electrical 
values, and was also corroborated with data entries 
documented by IOU engineers after restoring 
service. The weather data was collected from the US 
National Weather Service (NWS) and from the 
WeatherBug (WBUG) weather services. The NWS 
data was collected by their weather station every 

five minutes in METAR format. The WeatherBug 
data was collected from small weather stations 
located in various locations close to the different 
substations of the IOU.    

 

Figure 1: Fault factors in Smart Grid. 

3.2 Machine Learning for Forecasting 
Power Distribution Grid Fault 
Events 

Supervised classification machine learning 
techniques were utilized to forecast the occurrence 
of faults in the distribution power grid of the IOU. 
Four supervised classification machine learning 
algorithms were utilized to conduct the analyses: 
Neural Networks (NN), kernel support vector 
machines (KSVM), decision-tree based 
classification (recursive partitioning; RPART), and 
Naïve Bayes (NB). Five analyses were conducted 
utilizing these four algorithms: (a) fault event 
prediction; (b) grid zone prediction; (c) substation 
prediction; (d) type of grid infrastructure; (e) feeder 
number prediction.  

3.2.1 Fault Prediction Models 

Four models were created to identify weather 
patterns that are most likely to result in a fault event 
using the NN, KSVM, RPART, and NM algorithms. 
The models were constructed by taking weather data 
points joined to fault events, as well as random 
weather data samples when no fault events were 
recorded in the selected IOU substations. The 
dataset contained a total of 3471 records (1725 with 
faults and 1746 without faults), of which 2430 were 
used for training each of the four models and 1041 
for testing the models. The output of these models 
shows a prediction of the weather conditions for 
which a fault event may or may not occur. The best-
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performing model was the one created with the feed-
forward trained by a multi-layer perceptron back-
propagation Neural Network algorithm with an f-
measure of 75%. 

3.2.2 Zone Prediction Models 

The four zone prediction models were trained by 
considering fault historical data from the IOU grid 
and weather data. Of the 1725 records with faults 
and weather data, 70% were used for training and 
30% for testing the trained models. The output of 
these models predict in what zone (AMZ, UMZ, 
PMZ) on the IOU grid the fault occurred. The best-
performing model was the one created training a 
Neural Network algorithm. The model contains one 
hidden layer with 20 nodes, and produces an 
accuracy of 66%, an average precision of 69%, an 
average recall of 68%, and an f-measure of 68%. 

3.2.3 Substation Prediction Models 

The four substation prediction models were trained 
by considering fault historical data from the IOU 
grid and weather data. Of the 1725 records with 
faults and weather data, 70% were used for training 
and 30% for testing the trained models. The output 
of these models predicts the IOU substation ID 
where the fault occurred. The best performing model 
was the one created with the recursive partitioning 
algorithm and produces an accuracy of 59%, an 
average precision of 66%, an average recall of 54%, 
and an f-measure of 59%. 

3.2.4 Infrastructure Prediction Models 

The four infrastructure prediction models were 
trained by considering fault historical data from the 
IOU grid and weather data. Of the 1725 records with 
faults and weather data, 70% were used for training 
and 30% for testing the trained models. The output 
of these models predicts the type of infrastructure 
(overhead or underground) on the section of the IOU 
grid where the fault occurred. The best-performing 
model was the one created training a Neural 
Network algorithm with an f-measure of 57%. 

3.2.5 Feeder Prediction Models 

The four feeder prediction models were trained by 
considering fault historical data from the IOU grid 
and weather data. Of the 1725 records with faults 
and weather data, 70% were used for training and 
30% for testing the trained models. The output of 
these models predicts the IOU Feeder where the 

fault occurred. The best-performing model is the one 
created with the recursive partitioning algorithm 
with an f-measure of 74%. 

3.3 Machine Learning for Forecasting 
Fault Events in Assets  

Many utilities have deployed diverse types of 
sensors in their mission critical and expensive assets 
such as power transformers. When monitoring 
power transformers two types of on-line 
measurements can be collected: (a) operational 
information such as voltage, load, current, oil 
temperature, winding temperatures, pump status, fan 
status, cooling system status, etc; (b) condition 
information, such as oil quality, gassing, dielectric 
properties, aging, etc. Utilities use a variety of 
sensors in their transformers and such sensors have 
different monitoring capabilities, especially in terms 
of the types and concentrations of gasses in the oil of 
the transformers. Some time utilities supplement the 
monitored concentration of gasses by conducting a 
dissolved gas analysis (DGA) test periodically. A 
study has been completed with the objective of 
developing analytical models based on data mining 
to identify patterns in gas concentrations, to identify 
trends of gas concentrations that may lead to 
catastrophic failures of equipment, and in general to 
identify correlations between observations that 
would result in new knowledge or confirm existing 
heuristic knowledge about power transformers. The 
example presented below does not identify the name 
of the utility with which this study was conducted. 
Hence, we refer our customer as Utility A. In our 
example, Utility A had a fleet of over 300 power 
transformers and had historical data collected for a 
period of ten years. The historical data collected 
included DGA analysis tests for all transformers 
(concentration of H2, CH4, C2H6, C2H4, C2H2, 
CO, CO2, O2, N2, and moisture), ID transformer 
data (transformer name, type, age, pump type, 
construction type, and conservator type), oil 
temperature, winding temperature, and fluid quality 
(metal particles present in oil). Utility A installed 
sensors in its transformers fleet and recently 
installed a fibre-optic network that helped to 
transmit the monitored data into a central repository. 

The objective was to develop a profile of 
potential “hot spots” in power transformers where 
the concentration of CO, CO2, and O2 are high (CO 
> 571 parts per million, CO2 > 4001 ppm, and O2 > 
10,000 ppm) and oil temperatures need to be 
monitored so they do not exceed values > 150 C. 
These conditions can show deterioration of the 
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insulation of the windings. The following data sets 
were employed to conduct the data mining analyses: 
(a) Transformer Description Database: that includes 
the following data attributes: SERIAL_NUMBER, 
AGE, CONSTRUCTION_TYPE; (b) Gasses 
Concentration Database: concentrations in parts per 
million (ppm) of the following gasses: H2, CH4, 
C2H6, C2H4, C2H2, CO, CO2, O2, N2, and 
MOISTURE. The data availability studied for this 
case includes 335 power transformers for which 
gasses data concentrations have been collected 
during 10 years. The total number of gasses 
concentration observations is 3100. The working 
dataset analyzed includes the fusion of both the 
transformer description and combustible gasses 
concentration databases. Entries with missing data 
points were removed from the analysis. Figure 2 
shows the sequence of machine learning approaches 
utilized for this analysis. First, the data was 
classified based on the CONSTRUCTION _ TYPE 
of the transformers (where transformers can be 
Core_Form and Shell_Form). 

 

Figure 2: CO, CO2, and O2 Concentration Analysis. 

With this classification completed, CO, CO2, and 
O2 gasses concentrations were identified for each of 
the construction types. Also, a cluster analysis was 
conducted with all data using the SimpleKMeans 
algorithm and the clusters shown in Table 1 were 
obtained. Sixty percent of the data was utilized to 
train the algorithm and forty percent of the data was 
utilized to test the algorithm. The data mining open 
source tool utilized for this analysis was Weka. 

Table 1: Cluster Analysis of CO, CO2, and O2  

 
Results from these analyses suggest that the number 
of CORE_FORM transformers that has high 
concentrations of O2 is larger than SELL_FORM or 
TPN-V CORE_FORM. Similarly, Fig. 8 shows that 
CORE_FORM transformers have the largest number 

of CO2 gas concentration. Results also suggest that 
CORE_FORM transformers have the highest 
concentration of CO gas.  The results of the analyses 
above show that a utility with a fleet of transformers 
that have CORE_FORM construction type should 
pay to the temperature of these transformers if the 
concentrations of CO, CO2, and O2 are in dangerous 
concentration neighbourhoods (CO > 571 parts per 
million, CO2 > 4001 ppm, and O2 > 10,000 ppm). 
After running the cluster algorithm, Table 1 shows 
that a cluster of 481 transformers (cluster 2) have 
high concentrations of CO and CO2 with moderate 
concentration of O2. For this cluster of transformers, 
it is important to monitor temperatures and also 
concentration of O2. 

4 CONCLUSIONS 

The development of smart sensors, fibre-optic 
networks, large data storage repositories, powerful 
hardware, and robust machine learning algorithms 
are becoming important elements that bring the 
concept of the Smart Grid to the forefront. The 
objective of the work presented in this paper is to 
demonstrate that machine learning models can be a 
powerful element of the Smart Grid concept. 
Machine learning can be utilized for diagnostics and 
forecasting of faults in a power transmission and 
distribution grid. This is an important element of the 
concept of the Smart Grid. 
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