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Abstract: Discovering teams of experts in social networks has been receiving the increasing attentions recently. These 
teams are often formed when a given specific task should be accomplished by the collaboration and the 
communication of the small number of connected experts and with the minimum communication cost. In 
this study we propose a game theoretic framework to find top-k teams satisfying such conditions. The 
importance of finding top-k teams is revealed when the experts of the best discovered team do not have an 
incentive to work together for any reason and hence we must refer to the next found teams. Finally, the local 
Nash equilibrium corresponding to the game is reached when all of the teams are formed. The experimental 
results on DBLP co-authorship graph show the effectiveness and efficiency of the proposed method.

1 INTRODUCTION 

Finding teams of experts has become one of the 
most important and interesting subjects in the realm 
of social network analysis. It is necessary for many 
companies or departments to detect persons who 
have enough relevant experiences and expertise to 
accomplish a given specific task. However the 
success of the project is not merely defined as the 
completeness of the task and the project manager 
must also takes care about the amount of the 
communication and the collaboration exchanged 
between the members of team. In addition, it is 
important to satisfy the minimum possible costs 
when accomplishing the project.  

Game theory is a good tool to capture both the 
behavior of individuals and strategic interactions 
among them (Adjeroh and Kandaswamy 2007), 
because it can model strategic interactions between 
rational, autonomous and intelligent agents 
mathematically. In this paper, we modify the game-
theoretic framework proposed in (Alvari et al., 2011) 
to address the problem of forming teams in social 
networks. Specifically, we assume each node of the 
underlying social network graph as a rational agent 
who joins the adjacent groups based on her utilities. 
The utility of each agent with regards to each of the 
groups she belongs to is defined as a difference of 
her gain and loss functions in that team. Finally, the 
Nash  equilibrium  of the game results in discovering 

all of the existing teams.  
The most important contribution of our method 

is that it can find top-k teams simultaneously. The 
importance of finding ݇	teams is intensified in two 
cases. First, when the members of the best found 
team do not have incentives to form the team and 
second, when they form the team but suddenly 
decide to leave the project because of any reason. As 
a result, in these cases, we must be able to assign the 
project to other next teams if it is applicable. 

The remainder of this paper is organized as 
follows. Section 2 gives brief reviews on the related 
works. In Section 3, our proposed framework is 
introduced in detail. The experimental results are 
presented in Section 4, and finally we conclude the 
paper in Section 5. 

2 RELATED WORK 

A considerable number of works in the literature 
have been devoted to studying team formation 
problem. In these works, the authors study the team 
formation problem by transforming it into an integer 
programming. Simulated annealing (Baykasoglu et 
al., 2007), branch-and-cut (Zakarian and Kusiak, 
2004), and genetic algorithm (Wi et al., 2009) are 
used to find an optimal match between individuals 
and requirements. Chen et al. use a psychological 
test to form a team by estimating the individuals’ 
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interpersonal relationship attributes and their 
personalities (Chen and Lin, 2004). However Gaston 
et al., show the correlation between different graph 
structures and performance of a team but they don’t 
consider a computational problem of finding team 
formation (Gaston et al., 2004). Cheatham et al., 
consider the structure of social network by collecting 
the neighbours surrounding each skill in a social-
concept graph (Cheatham and Cleereman, 2006). 
But they don’t pay attention to the communication 
cost among individuals. 

The team formation problem in the presence of a 
social network of individuals by considering the 
communication cost is first addressed by Lappas et 
al. (Lappas et al., 2009). They also proved that the 
problem of finding such teams is NP-hard. In their 
work, they propose two algorithms RarestFirst 
algorithm and the EnhancedSteiner algorithm to 
solve the team formation problem based on diameter 
and minimum spanning tree (MST) respectively. 

In RarestFirst approach, the algorithm, first 
estimates each required skills supporter and the skill 
with rarest sponsors is determined. Then for each of 
its candidates, a sub-graph is defined by 
investigating the closest connected individuals in 
other support sets. In the last step it selects the sub-
graph with minimum communication cost with 
diameter metric. The EnhancedSteiner algorithm 
consists of two steps. First, it enhances the given 
graph as follow: it creates the virtual nodes for each 
of the required skills in the given task and connects 
them to their supporters by the heavy weighted edge. 
Second, it can find the solution by searching the 
Steiner Tree of this enhanced graph. To find a 
Steiner tree, they use a greedy heuristic algorithm. 

3 PROPOSED FRAMEWORK 

3.1 Problem Statement 

Given the social network graph ܩሺܸ,  ሻ, the skill setܧ
of individuals and a task ܶ which is composed of the 
required skills ݏ௜, the team formation problem is 
formally defined as finding a set of experts V'⊆V 
who best support the required skills. To be specific, 
a sub-graph ܩሾܸ′ሿ is formed such that: (1) all of the 
required skills in the given task should be 
accomplished by team and (2) the total 
communication cost denoted by ܥܥሺܸ’ሻ among 
selected individuals must be minimized as much as 
possible.  

Additionally, the problem of discovering top-k 
teams is simply a generalized version of the well-

known team formation problem. It is formally 
defined as finding a set of teams whose experts 
V'
ଵ,V

'
ଶ, . .,V

'
௞⊆	V best support the given task 

independently. In this case, a set of sub-graphs 
ሼܩሾV'ଵሿ, ,ሾV'ଶሿܩ … ,  ሾV'௞ሿሽ is formed and the aboveܩ
two conditions for team formation problem must be 
satisfied for each of these teams.  

3.2 Our Approach 

The social network is modelled as an undirected and 
weighted graph ܩሺܸ, ܸ ሻ, where the verticesܧ ൌ
ሼݒଵ, ,ଶݒ … ,  represent ܧ ௡ሽ are experts, and the edgesݒ
collaborations in co-activities. The edge weight ݓ, 
describes the cost (distance) between any of two 
experts. The small-weight edges show that the 
experts have more frequent collaborations than high-
weight edges. Here, we suppose that ܩ is connected, 
but in the case of graphs with disconnected 
components (i.e., dissimilar components), we can 
also add very high-weight edges between every pair 
of nodes that belong to different disconnected 
components. This weight is much higher than the 
sum of all pair-wise shortest paths in each connected 
component and is used when there are some 
disconnected teams in the network in addition to 
connected teams. 

The definitions of the necessary symbols for the 
remaining of the paper are shown in Table 1.  

Table 1: Definition of symbols. 

SYM. DEFINITION 

,ሺܸܩ  ሻ Undirected and weighted graphܧ

݊,݉ Number of individuals and skills 

௜ܺ Set of skills of agent i 

௜ܰ Set of neighbours of agent i 

ܶ Given task consisting of required skills 

ܵ Set of skills 

Φ Strategies profile 

߮௜  Strategy of agent i 

݃௞ Potential group k to become one of top teams 

U௜
௚೔
ೖ

 Utility value for agent i corresponding to group k 

G௜
௚೔
ೖ

 Gain value for agent i corresponding to group k 

L௜
௚೔
ೖ

 Loss value for agent i corresponding to group k 

Furthermore, assume that we have a set of m skills, 
ܵ ൌ ሼݏଵ, ,ଶݏ . .  ௠ሽ where each expert has a skill setݏ
Xi⊆ S. We denote by sj∈ Xi that the individual ݅ has 
skill s௝. Also, a subset of individualsV'⊆V has skill 
s௝, if there is at least one individual in V' associated 
with s௝. A task ܶ is simply a subset of skills ܵ 
required to accomplish the project. The graph 
distance function for every two nodes i,j∈V is the 
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weight of the shortest path between them in G, 
denoted by ݀ሺ݅, ݆ሻ. The distance between node ݅ ∈ ܸ 
and a set of nodes ܸᇱ ⊆ ܸ is then defined by 
dሺi,ܸ ′ሻൌminj∈V' d(i,j).  

The set of all feasible teams of the network is 
denoted by ሾߖሿ ൌ ሼ1,2, … , Δሽ where ߖ is 
polynomial in ݊, however the number of our final 
teams, Δ, may be much smaller than ݊. As 
mentioned earlier, we put each vertex down to a 
rational agent who has a utility function and 
preserves a vector of group labels that she belongs to 
as her strategies. Formally, the strategy of each 
agent is denoted by ߮௜ ⊆ ሾߖሿ and strategy profile ߔ 
denotes the set of strategies of all agents, i.e. 
ߔ ൌ ሼ߮ଵ, ߮ଶ,…߮௡ሽ. The group is considered as a 
team only if it can accomplish the task.  

Naturally, when joining to a new group, each of 
the agents will be beneficiary, but on the other hand, 
it must pay some costs (e.g. fees). The utility for 
agent ݅ who belongs to group ݇ is calculated by: 

ܷሺߔሻ௜
௚೔
ೖ

ൌ ሻ௜ߔሺܩ
௚೔
ೖ

െ ሻ௜ߔሺܮ
௚೔
ೖ

			 (1) 

Where, ܩሺߔሻ௜
௚೔
ೖ

and ܮሺߔሻ௜
௚೔
ೖ

are respectively, gain 
and loss functions for agent ݅: 

ሻ௜ߔሺܩ
௚೔
ೖ

ൌ
ߙ
|ܶ|

ൈ ቮ ራ ሺݏ௝ ∩ ܶሻ
௝∈௚ೖ∪ሼ௜ሽ

ቮ			 (2) 

ሻ௜ߔሺܮ
௚೔
ೖ

ൌ ሺ݃௞ܥܥ ∪ ሼ݅ሽሻ	 (3) 

In equation 2, ݏ௝ ∈ ܺ௚ೖ∪ሼ௜ሽ is the number of skills 

which are covered by both the members of ݃௞ and 
agent ݅. However, we consider just the skills which 
are in the subset of required skills ݏ௝ ⊆ ܶ in the task 
ܶ. Here, ߙ is a coefficient to weight the gain 
function over the loss function. The main reason for 
contributing this coefficient is to encourage the 
agents to form teams. The significance of using ߙ is 
revealed when the supporters of the required skills 
are so far from each other or there is not any 
connected team in our social graph. In equation 3, 
 ሺܸ′ሻ is the communication cost function definedܥܥ
as a diameter of ܸ′. 

In our framework, the best response strategy of 
an agent ݅ with respect to strategies ିߔ௜ of other 
agents is calculated by: 

݃ݎܽ ݔܽ݉
ఝ೔
ᇲ⊆ሾఅሿ

,௜ିߔሺܩ ߮௜
′ሻ െ ,௜ିߔሺܮ ߮௜

′ሻ			 (4) 

The strategy profile ߔ forms a pure Nash 
equilibrium of the team formation game if all agents 
play their best strategies. In other words, in Nash 
equilibrium no agent can improve its own utility by 
changing  its  strategy; that  is  each agent is satisfied 

with its current utility: 

∀݅, ߮௜
ᇱ ് ߮௜, ௜ܷሺିߔ௜, ߮௜

ᇱሻ ൑ ௜ܷሺିߔ௜, ߮௜ሻ				 (5)

We are satisfied with local Nash equilibrium in 
this game, because reaching global one is not 
feasible (Lorrain and White, 1971). In other words, 
the strategy profile ߔ forms a local equilibrium if all 
agents play their local optimal strategies. Here 
 :݅ ሺ߮௜ሻ refers to local strategy space of agentݏ݈

∀݅, ߮௜
ᇱ ∈ ,ሺ߮௜ሻݏ݈ ௜ܷሺିߔ௜, ߮௜

ᇱሻ ൑ ௜ܷሺିߔ௜, ߮௜ሻ	 (6)

The GameTeamFormation algorithm, shown in 
the algorithm 1, takes as input, the graph ܩ and the 
set of required skills	ݏ௝ ⊆ ܶ to specify the task ܶ. 
Each agent is selected randomly from a pool of 
agents. The selected agent searches for its 
neighbours and what they belong to. After 
discovering the neighbour groups the agent 
constructs the virtual relationship with them. So in 
this step we have a set ௜݃

ᇱ consisting of | ௜ܰ| ൈ
∑ | ௟݃|௟∈ே೔  virtual groups, except those which were 
computed previously. In the next step, the gain 
function is computed by equation 2. This function is 
defined as the fraction of covered skills to the 
required skills in the task ܶ. For the loss function, 
we calculate the minimum diameter corresponding 
to these virtual groups. Recall that the diameter of 
the graph is the largest shortest path between any 
two nodes in the graph. As it is mentioned before, 
the utilities of the current agent corresponding to 
each of these virtual groups are calculated according 
to equation 1. Then, the maximum utility value for 
this agent is calculated according to equation 7 and 
the winner group ݇ᇱ is determined.  

௜ܷ
௚೔
ೖᇲ

ൌ ݔܽ݉
௖∈௚೔

ᇲ
ሼ ௜ܷ

௖ሽ					 (7) 

Finally, the label ݇ᇱ is added to the labels of the 
current agent according to equation 8 and receives 

utility ௜ܷ
௚೔
ೖᇲ

only if it is greater than the maximum of 
the previous utilities.  

߮௜ ← ߮௜ ∪ ሼ݇ᇱሽ		 (8) 

On the other hand, if this utility equals the 
previous utilities or is smaller than them, the agent 
performs no specific action and remains indifferent. 

Since all of the members of the selected group 
collaborate to do the task, we consider here that they 
share a common utility and loss values. Therefore, 
all of the remaining members of this group also 

update their corresponding utility value to ௜ܷ
௚೔
ೖᇲ

. 
We  now  consider  this  group as one of the final 
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top-k teams if its members are able to accomplish 
the task. Furthermore, in each stage of detecting 
teams, if it is revealed that merging some of the 
existing teams to one team can increase their 
individual utilities, these teams will be immediately 
merged. Finally, all of the teams will be discovered 
when the game reaches the Nash equilibrium. As 
mentioned before, since reaching global Nash 
equilibrium is not feasible, we stop the game after 
reaching the local Nash equilibrium. 

In this algorithm, k is the group which is 
constructed previously, ݇ᇱ is one of the virtual 
groups and ݇" is a new group which will be added to 
the list of current teams. 

Algorithm 1: The GameTeamFormation algorithm 

Input: ܩሺܸ, ሻ,ሼܧ ଵܺ, ܺଶ, …ܺ௡ሽ and  ܶ. 
Output: Teams ܩሾV'

ଵሿ, ሾVܩ
'
ଶሿ, … , ሾVܩ

'
௞ሿ. 

1. Teams={} 
2. Repeat 
3.     ݅ = Random_Select(Agents) 
4.     for every ݆ ∈ ௜ܰ           
5.          for every ܿ ∈ ݃௝ 

௜ܩ              .6
௚೔
೎

←
ఈ
|்|
ൈ ห⋃ ሺݏ௞ ∩ ܶሻ௞∈௚೎∪ሼ௜ሽ ห 

7.              ܴ={ Diameter(a) | a∈ ݃௖} 

௜ܮ		            .8
௚೔
೎

ൌ min௔ ܴ 

9.            		 ௜ܷ
௚೔
೎

ൌ ௜ܩ
௚೔
೎

െ ௜ܮ
௚೔
೎

  

10.  ௜ܷ
௚೔
ೖ′

ൌ max஼ ௜ܷ
௚೔
೎

 

11.     if ( ௜ܷ
௚೔
ೖ′

൐ max௞∈௚೔ ௜ܷ
௚೔
ೖ

) 

12.       if (݃௜
௞′ ∈                          (ݏ݉ܽ݁ܶ

13.            ݃௞
"
← ݃௞

′
∪ ሼ݅ሽ,	߮i←φi∪{݇"},	 ௜ܷ

௚೔
ೖ"

← ௜ܷ
௚೔
ೖ′

 
14.       else 

15.           ݃௞
′
← ݃௞

′
∪ ሼ݅ሽ,   { ௝ܷ

௚ೕ
ೖ′

← ௜ܷ
௚೔
ೖ′

, ∀j∈ ݃௞
′
} 

16.     if (ܩ௜
௚೔
ೖ′

==1) 

ݏ݉ܽ݁ܶ	        .17 ← ݃௞
ᇲ
 

18. Until local equilibrium is reached 
19. Sort(Teams) 

4 EXPERIMENTS 

4.1 Dataset 

For our experiments, we use the DBLP dataset as a 
benchmark dataset which is publicly available from 
the DBLP portal. The snapshot of this dataset was 
taken on April 12, 2006, while the data is related to 
papers which are published in areas of Database 
(DB), Data mining (DM), Artificial intelligence (AI), 
and Theory (T) conferences. They are used in order 
to   balance   the   necessity  of  covering  the diverse 

fields of study (including 19 venues as follows: 
{SIGMODE, VLDB, ICDE, ICDT, EDBT, PODS, 
WWW, KDD, SDM, PKDD, ICDM, ICML, ECML, 
COLT, UAI, SODA, FOCS, STOC and STACS}). 

We construct the expert social network using co-
authorship graph in the following way. First, to 
collect the experts, the authors who have less than 
three papers in DBLP are discarded. Then, the skill 
set ௜ܺ of each author ݅ is filled with the terms that 
appear in at least two titles of their papers in the co-
authorship graph. For the skill extraction, we use the 
terms extracted from Bibsonomy tag tools to avoid 
noisy tags. Two authors are called connected if they 
co-authored in at least two papers. The weights on 
edges are computed by equation 9: 

,ሺ݅ݓ ݆ሻ ൌ 1 െ
௜݌| ∩ |௝݌
௜݌| ∪ |௝݌

			 (9) 

Where ௜ܲ is a set of papers published by author ݅. 
The graph distance between two nodes in graph 
 ௗ௕௟௣ is computed by using the shortest pathܩ
distance. In this graph, the total number of authors is 
5508 where there are 1792 distinct skills and 5588 
edges. 

The preliminaries for performing our method are 
as follow. Each task T=ሺp,qሻ is characterized by two 
parameters: (1) ݌, the number of required skills in 
task T; (2) ݍ, the minimum required number of 
experts to accomplish each skills of T. Specifically, 
a task ܶ is generated as follows: first, ݌ skills are 
picked randomly from the terms appearing in 
published papers. In all experiments reported in this 
section, we use p∈{2,4,…,20} and ݍ ൌ 1. Then, for 
every ሺ݌,  ሻ configuration, we generate 100 randomݍ
tasks for all of the algorithms and take the average 
performance achieved by different methods. 

4.2 Quantitative Results 

In this section, our results compared with two well-
known algorithms, RarestFirst and EnhancedSteiner 
(Lappas et al., 2009) are presented. The comparisons 
are done with respect to the communication cost, 
team cardinality, the number of disconnected teams, 
stability and scalability. 

Figure 1, compares the average communication 
cost, team cardinality and the number of 
disconnected teams on the DBLP dataset. The 
following observations are achieved from the 
analysis of Figure 1. As we can see in Figure 1(a), 
by increasing the number of required skills, the 
communication costs of the algorithms grow 
considerably, since in this case, the search space 
which is needed to be explored, will be expanded. In 
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other words, because of the sparsity of the 
underlying graph, the probability of the existence of 
experts who are capable to do the required skills 
decreases. Our final evaluation is in term of the 
number of disconnected teams. In the real world 
projects, the employees who are in the same 
department can communicate and collaborate more 
easily than other employees who are in the outside. 
Therefore, it is of great importance to detect 
connected teams to minimize the communication 
cost. As it is depicted in Figure 1(c), the 
GameTeamFormation algorithm as well as 
EnhancedSteiner and RarestFirst algorithms first try 
to find the connected teams, and if these teams are 
not available, they determine the disconnected ones. 

 
(a) 

 
(b) 

 
(c) 

Figure 1: Average effective measures for k=1 is reported 
by GameTeamFormation, RarestFirst, EnhancedSteiner 
algorithms: (a) Average communication cost. (b) Average 
cardinality. (c) Average number of disconnected teams. 

The  stability  status  of  the  algorithm  for   each 

specified task is depicted in Figure 2. The results 
show that although each of the agents is selected 
randomly from the pool of the agents, this does not 
affect our final results and this shows that our 
method is stable. As it is mentioned before, this is 
due to the fact that in each run of our method, it 
finally reaches its equilibrium, meaning that the 
agents will not change their strategies. However, the 
fact of getting the average of 100 runs for each ݌ in 
Figure 1 does not imply the instability of our method 
and it is for thwarting the effect of randomness of 
the selected ݌	required skills in each run. On the 
other side, although RarestFirst algorithm 
demonstrates stability in its runs, EnhacedSteiner 
algorithm is somehow sensitive to the random 
selection which is done in the greedy heuristic 
algorithm used in its Steiner Tree algorithm. 
Therefore, EnhacedSteiner algorithm outputs its 
results with fluctuation in each run for the specific 
skills. 

 
(a) 

 
(b) 

 
(c) 

Figure 2: The stability of GameTeamFormation algorithm 
for p=2, k=1, the two specified required skills. (a) 
Communication cost. (b) Team cardinality. (c) Average 
number of disconnected teams. 

Finally,  Figure  3   shows   the  scalability of our 

0

2

4

6

8

10

12

14

16

18

20

2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 C
om

m
u

n
ic

at
io

n
 

C
os

t 
of

 t
h

e 
T

ea
m

# of Required Skills (p)

RarestFirst
Enhanced Steiner
GameTeamFormation

0

5

10

15

20

25

30

2 4 6 8 10 12 14 16 18 20A
ve

ra
ge

 T
ea

m
 c

ar
d

in
al

it
y

# of Required Skills (p)

RarestFirst
Enhanced Steiner
GameTeamFormation

0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14 16 18 20

N
u

m
b

er
 o

f 
d

is
co

n
n

ec
te

d
 

te
am

s

# of Required Skills (p)

RarestFirst
EnahnecdSteiner
GameTeamFormation

0

0,5

1

1,5

2

2,5

3

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 
C

om
m

u
n

ic
at

io
n

 C
os

t 
of

 
th

e 
T

ea
m

# of Runs

RarestFirst
Enhanced Steiner

0

0,5

1

1,5

2

2,5

3

10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 T
ea

m
 

ca
rd

in
al

it
y

# of Runs

RarestFirst

Enhanced Steiner

0

1

2

3

4

5

6

7

8

10 20 30 40 50 60 70 80 90 100

N
u

m
b

er
 o

f 
d

is
co

n
n

ec
te

d
 t

ea
m

s

# of Runs

RarestFirst
EnahnecdSteiner

KDIR�2012�-�International�Conference�on�Knowledge�Discovery�and�Information�Retrieval

256



 

method. First, as we can see in this figure, by 
increasing the number of ݇, the running time of our 
method remains constant. This is because after 
reaching the Nash equilibrium, all of the applicable 
teams are always detected regardless of the value of 
݇. Furthermore, since we use local Nash equilibrium 
in our method, the time complexity of our method to 
discover all of the applicable teams is comparable 
with other methods considering that they are 
extended to support finding all of the teams instead 
of just finding the best team. Second, the average 
running time increases when the number of required 
skills grows. The main reason is that, here, the 
underlying social network’s graph is very sparse 
w.r.t the given task. Therefore, to satisfy the task 
with low communication cost, when the number of 
the required skills increases, the agents have to 
explore their neighbourhoods more.  

 

Figure 3: The scalability of GameTeamFormation 
algorithm. 

Totally, it can be seen that our proposed 
framework is capable of forming finer top-k teams 
of experts. The analysis of the experiments shows 
that our method performs well in the terms of 
communication cost, team cardinality of the selected 
teams and the number of disconnected teams, 
stability and scalability. 

5 CONCLUSIONS 

In this paper, the problem of finding top-k teams 
which can independently accomplish a specific 
given task with minimum communication cost is 
studied and the game-theoretic framework is 
presented for finding these teams. 

The experimental results on DBLP show that the 
effective teams can be found with minimum 
communication cost and cardinality. Also the 
stability and scalability of the proposed method is 
studied. 

For the future works, more constraint teams can 
be  considered. Furthermore,  the  generalized   tasks 

can be studied and defined with the required skills 
which should be supported with the minimum 
number of experts.  
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