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Abstract: This paper presents a new technique for detecting and extracting lists of structured records from Web pages. 
With respect to most of the state-of-the-art systems, our approach is capable of detecting nested data 
structures (sublists) and it also incorporates some heuristics to delete unwanted content such as banners and 
navigation menus from the data region. This article also describes the experiments we have performed to 
validate the system. The precision and recall we have obtained in our tests surpass 90%. 

1 INTRODUCTION 

Many websites provide an underlying database 
containing structured data. However, in most of the 
cases, this information is only offered in HTML 
format, which makes it difficult for programs to 
access it. Fortunately, the layout used by websites is 
often regular, allowing us to infer the data structure 
with an acceptable accuracy. An example of list with 
structured records is shown in Figure 1. 

Classic automatic Web data extraction systems 
use the so-called supervised approach (Zhai and Liu, 
2005; Raposo et al., 2007), in which a human 
administrator configures a Web automation process 
(‘wrapper’) for each data extraction process in every 
target website. The process must also be updated 
every time the website changes. Although this 
approach can produce very accurate results, it does 
not scale for a high number of websites. 

On the other hand, we have the unsupervised 
approach, in which the extraction process is fully 
automatic. Although this approach tends to produce 
less accurate results, it can scale to large numbers of 
websites. Most systems using this approach present 
two important problems: 

1. Inability to deal with nested data structures. 
2. Lack of measures to detect unwanted content 

such as navigation menus and banners inside 
the data region. 

In this paper, we present an unsupervised Web 
data extraction system capable of obtaining data 
with high precission and recall even in pages 
presenting the aforementioned complexities.  

r0

r1

r2

r3

Sublist with 3 records

Sublist with 1 record

Sublist with 2 records

Sublist with 2 records

 

Figure 1: An HTML page with a list of nested records. 

2 RELATED WORK 

RoadRunner (Crescenzi et al., 2001) and ExAlg 
(Arasu and Garcia-Molina, 2003) were some of the 
first web data extraction systems using the 
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unsupervised approach. They share an important 
limitation: they need multiple pages with the same 
template in order to infer the extraction rules to 
obtain the data. In addition, RoadRunner does not 
support disjunctions in the schema. 

DEPTA (Zhai and Liu, 2006) needs only one 
page to detect and extract its structured records. It 
analyses the visual layout of the page and calculates 
tree-edit distances between elements. However, it 
assumes features that are not always verified in real 
websites, such as that all the records are composed 
by the same number of subtrees and the space that 
separates two data records is bigger than the one that 
separates two data values from the same record. 

Álvarez et al. (2008) present a system that reuses 
some of the models presented in ExAlg and extracts 
data from a single page. Their method does not 
present the limitations we have found in DEPTA. 
However, neither this system nor DEPTA support 
extracting data from nested structures. Their system 
also addresses the problem of cleaning unwanted 
data, but it shows important limitations. Our system 
uses the one by Álvarez et al. (2008) as a starting 
point, so section 3 studies it more thoroughly. 

Miao et al. (2009) introduce a system that is 
capable of detecting nested structures and non-
consecutive records, but it simply identifies the data 
records without extracting the individual data fields 
of each record. 

G-STM (Jindal and Liu, 2010) is an extension to 
the Simple Tree Matching algorithm. It is capable of 
dealing with nested sublists, but their method may 
identify non-lists as lists when subtrees are not deep 

enough. In turn, our system includes additional 
heuristics for these cases. 

3 OVERVIEW OF THE EXISTING 
SOLUTION 

The purpose of our algorithm is to extract a list of 
data records from an HTML page such as the one 
shown in Figure 1. Our approach is based on a state-
of-the-art solution (Alvarez et al., 2008), 
summarized in this section, and we have extended it 
to process nested sublists and other complexities 
(section 4). 

The system is based on the DOM tree 
representation of HTML pages. Starting from this 
tree, a three-step algorithm is applied to extract the 
data. Figure 2 shows an excerpt of the DOM tree 
corresponding to our example page. 

The first step is finding the dominant list of 
records of the page. This is equivalent to finding the 
common parent node of the sibling subtrees which 
form the data records. In our example of Figure 2, 
the node we should discover is n1. The subtree with 
that node as root is called the data region. 
The second step is dividing the data region into 
records. We assume that each record is composed of 
one or several consecutive subtrees of the root node 
of the data region. For instance, in Figure 2, we need 
to detect that the first record is formed by the 
subtrees  labelled  as  t0, t1 and t2, the second record 
is formed by the subtrees labelled t3 and t4, etc. 
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{ craigslist.com | September 30, 2012 }
COMPENSATION: $350.00
EXTRACOMPENSATION: up to $50.00
JOB TYPE: full time

… … … … …

#textDutch-speaking 
babysitter for 
Marbella and its
surroundings

Marbella 
(Spain)

$350,00 $2,900.00

t0 t1

#text

t3 t4 t5 t6 t7 t8 t9

TD

IMG BRBR BBR UL

Job Services/
Services/
Babysitter

B up to $50,00

#text

TR

TD

SPANfull time

t2

#text

TR

…

t10

TD

SPAN I BR I

#text

Looking for a 
Nanny 
Housekeeper 
and Driver in our home

Marbella 
(Spain)

TD

IMG BRBR BBR UL

Job Services/
Jobs/
Domestic

LI

A SPAN

gumtree.com

September
16, 2011

LI

A SPAN

segundamano.es

October
22, 2011

LI

A SPAN

mundoanuncio.com

October
12, 2011

LI

A SPAN

craiglist.com

September
30, 2012

CATEGORY: Job Services/Jobs/Domestic
TITLE: Looking for a Nanny Housekeeper and Driver in our home
LOCATION: Marbella (Spain)
PUBLISHEDIN: { gumtree.com | September 16, 2011 } 
COMPENSATION: $2,900.00

A A

B

#text

B

#text

 

Figure 2: An excerpt of the DOM tree of the page in Figure 1. 
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The key idea in this step is to choose the record 
division that maximizes the similarity between 
records. The similarity measure used is based on 
serializing the subtrees as strings and then applying 
string edit-distance techniques (Levenstein, 1966). 

The main problem to apply this idea is that the 
number of candidate divisions is 2n-1, where n is the 
number of subtrees. In most real Web pages, this 
number is too high to compute the similarities for all 
the possible divisions. Therefore, we first need to 
generate a set of candidate divisions. 

The method for choosing the candidate divisions 
starts by clustering all the subtrees in the data region 
according to their similarity. Then, we assign an 
identifier to each cluster we have generated and we 
build a sequence by listing the subtrees in the data 
region in order, representing each subtree with the 
identifier of the cluster it belongs to (see Figure 3). 
The string will tend to be formed by a repetitive 
sequence of cluster identifiers, with each repetition 
corresponding to a data record. Since there may be 
optional data fields in the extracted records, the 
sequence for one record may be slightly different 
from the sequence corresponding to another record. 
Nevertheless, we will assume that all records either 
start or end with a subtree belonging to the same 
cluster (i.e. all the data records always either start or 
end in a similar way). This is built on the heuristic 
that in most Web sites, records are visually delimited 
in an unambiguous manner to improve clarity. 

This process reduces the number of candidate 
divisions to 1+2k, where k is the number of clusters. 

Figure 3 shows the subtrees of Figure 2 that have 
been chosen for each record r0-r3 of our example by 
applying this process and choosing the subtree with 
the highest similarity between records. 

TABLE

TR TR TR TR TR TR TRTR TR TRt0 t1 t2 t3 t4 t5 t6 t7 t8 t9

c2 c0 c1       c2     c1       c2   c0 c1       c2 c1 c1

TRt10

r3r2r1r0  

Figure 3: Record division for the page in Figure 1. 

The third step is extracting the attributes of the 
data records. This point involves two stages: (1) 
transforming each record into a string and (2) 
applying string alignment techniques to each record 
in order to identify its attributes. Variations of the 
“center star” algorithm (Gonnet et al., 1992) are 
used to solve this problem. The key idea is that the 
aligned variable values in several records represent 
the different values of the same field in different 
records. Figure 4 shows an excerpt of the alignment 

between the strings that represent the records of our 
example. In this excerpt, it can be seen how the last 
data fields of each record are aligned (fields that 
correspond to the attributes COMPENSATION, 
EXTRACOMPENSATION and JOB_TYPE). 

r0  … TR TD B  TEXT TEXT B  TEXT   TEXT TR TD B   TEXT   TEXT SPAN TEXT

r1  … TR TD B  TEXT  TEXT

r2  … TR TD B  TEXT TEXT B  TEXT   TEXT TR TD B   TEXT   TEXT

r3  … TR TD B  TEXT TEXT TR TD B   TEXT   TEXT

COMPENSATION EXTRACOMPENSATION JOBTYPE

“Compensation:” “Extra compensations:” “Job Type:” “(only on vacancies)”

 

Figure 4: Alignment between records of Figure 1. 

4 IMPROVEMENTS TO THE 
EXISTING SOLUTION 

The method described in the previous section has 
several limitations. For instance, it is unable to 
identify the sublists marked in our example of 
Figure 1. In this section, we will describe the 
improvements we have incorporated to deal with 
these limitations. 

The main idea behind our algorithm is very 
simple: each record from the list identified by the 
above method can be considered as a reduced 
HTML page by simply adding a root node to their 
subtrees. Then we can simply execute the method 
again on these “reduced pages” to find sublists 
inside them. For instance, applying our algorithm on 
the first record of Figure 1 (r0) will correctly 
identify the 3-record sublist inside it. In the cases in 
which sublists are found, we can keep applying the 
method recursively for each record. Unfortunately, 
this simple method has several important drawbacks: 

1. Sublists with very few records will not be 
identified. Our method for finding lists is based 
on finding records with high inter-similarity, 
but, for instance, in record r1 of Figure 1, the 
sublist contains only one record, so the method 
cannot work directly. 

2. As the “pages” used to search for lists become 
more and more reduced, lists tend to be shorter 
and their elements tend to have fewer fields. In 
this situation, the list identification process will 
have less information, so we need additional 
heuristics to maintain the accuracy. 

Section 4.1 discusses these issues. The problem 
of removing unwanted content (ads, pagination 
controls, etc.) contained inside the data region is 
discussed in section 4.2. 

The results of the algorithm are stored in a 
multilevel map due to the hierarchical nature of the 
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data model. Figure 5 shows the resulting multilevel 
structure from applying our algorithm on the Figure 
1 example. 

4.1 Processing Nested Structures 

The biggest challenge in detecting nested data 
structures inside records is to distinguish sublists 
from sequences of data fields. For instance, in the 
Web page of Figure 1 the challenge is recognising 
that the pairs (URL, date) present in each ad form a 
sublist, while the remaining parts of the ad (title, 
description, compensation, etc.) are individual data 
fields of the top-level records. 

Our method is based on the following 
observations about the nature of lists and records: 

1. By definition, the data records of a list are of the 
same type, while the data fields of an individual 
record may be of different types. 

2. The number of elements in a list can be very 
variable, while the number of data fields in 
different records of the same type tends to be 
fixed. The variability in the number of fields is 
usually more limited than the variability in the 
number of elements of a list. 

From the first feature, we conjecture that the 
different records of a list will be formatted in the 
same (or very similar) way in the page, while data 
fields of an individual record will tend to show some 
formatting differences. Therefore, we set an inter-
record similarity threshold for candidate sublists. 

From the second characteristic, we conjecture 
that the corresponding sublists found in different 
records of the top-level list should tend to have a 
different number of elements. 

These conjectures are combined to determine if a 
candidate sublist should pass the filter. For instance, 
in the page of Figure 1, we notice how the number 
of pairs (url, date) is different among the records in 

the main list (there are three pairs in r0, one in r1 
and two in r2 and r3). In addition, the formatting of 
all pairs is identical, and, therefore, it will result in a 
very high inter-record similarity. Hence, this 
candidate sublist will be considered as correct. 

The way to combine these heuristics depends on 
the average number of data fields in the records of 
the candidate sublist. If this number is medium-high, 
the inter-record similarity will be used as crucial 
source of evidence. However, if this number is low 
(e.g. below 2), variability will be more important. 

The rationale behind this is that, on the one hand, 
when the elements making up the candidate sublist 
have many fields, inter-record similarity provides 
enough evidence to conclude that the sublist is 
correct. On the other hand, when the records of the 
candidate sublist consist of very few elements (e.g.: 
a single text or link), then the inter-record similarity 
gives us less information and variability should also 
be considered. 
For instance, consider the case of a simple HTML 
table representing one record in each row, one data 
field in each column and where all the column 
values are single text elements. Considering only 
inter-record similarity would incorrectly identify the 
sequence of columns in each row as a sublist, since 
all the data fields are formatted identically. 
However, the variability measure will discard those 
candidate sublists, since all of them have exactly the 
same number of records. 

Some refinements are still needed by this method 
in order to deal with some special cases. These cases 
are studied in subsections 4.1.1 and 4.1.2. 

4.1.1 Sublists that Contain a Low Number 
of Elements 

When sublists contain a low number of elements, the 

… …

r3r2r1

Records  ‐ level 1 (for r0) Records – level 1 (for r1) ... ...

Records – level 0

r0,0

r0,1

r0,2

r1,0 …

…

…

…

0

1

Data Extraction ListLevels

r0

 

Figure 5: Result of the algorithm applied to the example. 
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method for finding lists will not detect them. For 
instance, the record r1 of Figure 1 contains a sublist 
with only one element, so it will not be detected. 

However, the existence of a sublist in other 
records of the same list (or in the records of another 
list at the same level) can help to detect these 
situations. In our example, finding sublists in records 
r0, r2 and r3 suggests that r1 may also contain a 
sublist of the same type. For this reason, when we 
confirm the existence of sublists in a certain list, we 
inspect again those records where no sublists have 
been found and we align them with the remaining 
ones using the alignment process which has been 
described in section 3 and illustrated in Figure 4. If 
one record in which sublists have not been found 
does contain some portions aligning with the sublists 
found in other records, those portions will be 
considered sublists too. 

4.1.2 Use of Label Information 

As we have explained in the previous sections, one 
of the assumptions of our approach is that the 
records of a list will be formatted similarly in the 
page, while the different data fields of a record will 
tend to show some formatting differences. 

However, there are also cases like the one shown 
in Figure 6, in which all the data fields of a record 
are formatted in the same way. This could cause the 
system to incorrectly identify the sequence of data 
fields called “title”, “location”, and “compensation” 
as elements of a sublist. 

Fortunately, it is very frequent in these cases that 
some or all of the data fields are prefixed by labels 
identifying them in order to avoid confusions. For 
instance, in Figure 6, the data fields called “title”, 
“location”, and “compensation” are prefixed by their 
corresponding labels. 

Labels

 

Figure 6: Using labels to identify data fields. 

Labels can be easily detected by the aligning 
process: when a data field always appears prefixed 
by the same text in all records of the list, we 
consider that text a label for the field. 

Our hypothesis in this case is that labels are 
indicative of the existence of data fields. A sequence 
containing (label, value) pairs is very improbable to 
be a list because all the elements of a list are of the 
same type and, therefore, it is not needed any label 
to distinguish between them. 

4.2 Removing unwanted Data 

The first step in extracting lists of data records is 
finding the common parent node of the sibling 
subtrees forming the data records. 

In some websites, the data region also contains 
other tokens that do not belong to the actual data. 
Typical examples are banners, navigation links, etc. 
These items are normally located at the beginning or 
at the end of the data region. We use three heuristics 
to deal with this problem, although the first one had 
already been included in the system by Álvarez et al. 
(2008): 

1. Remove leading and trailing unaligned tokens: 
since all the data records always either start or 
end in the same way, we can conclude that 
tokens at the beginning and at the end of the 
data region that do not align with anything else 
are candidates to be removed. 

2. Remove tokens that only align in the first and 
last data record: sometimes unwanted data is 
repeated in the first and last records of the data 
region. Navigation links to other result pages 
are an example of this. 

3. Remove leading and trailing records with low 
similarity: if a record in the data region has low 
similarity with the other records, it will likely 
contain unwanted information. 

5 ASSESSMENT 

We have chosen 170 well-known websites in 5 
different application domains for our experiments: 
classified ads (40), job sites (31), social networks 
(24), online shops (5) and bookstores (70). 

We have executed one query in each website and 
collected the first page containing the list of results. 
We have manually selected the queries to guarantee 
that the collection includes pages having a very 
variable number of results (from two or three to 
dozens). 

We  have  calculated  the  precision  and recall of 
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the system in two different ways: (1) considering 
only the records that have been extracted perfectly 
and (2) considering partially correct records too 
(records where most of the data fields are correctly 
identified, but where some attributes are missing). 

As it can be seen in Table 1, our algorithm 
achieves more than 86% for both precision and 
recall. If we consider partially correct records, the 
results are close to 93%. 

Table 1: Results of the empirical evaluation. 

 With correct 
records only 

With partially 
correct records 

Records to extract 2,416 2,416 
Extracted records 2,427 2,427 

Correctly extracted 2,089 2,247 
Precision 86.07% 92.58% 

Recall 86.47% 93.00% 

6 CONCLUSIONS 

This paper has presented a system for automatic 
Web data extraction. The system detects and extracts 
lists of structured records in Web pages following an 
unsupervised approach. It is capable of obtaining 
data from nested structures (sublists) and it also 
includes heuristics to remove unwanted and 
unimportant data such as banners, navigation links 
and menus. 

The system has been tested in a high number of 
real websites, reaching precision and recall values 
higher than 86% when only correctly extracted 
records are considered and values close to 93% 
when partially correct records are considered too. 
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