
A Context Sensitive Experience Feeder for Computer Aided
Engineering

Bo Song and Zuhua Jiang
Department of Industrial Engineering and Logistics Management, Shanghai Jiao Tong University, Shanghai, P.R. China

Keywords: Context, Experience, Computer Aided Engineering.

Abstract: Computer aided engineering (CAE) tries to map properties and interactions of real world entities with
symbols and values readable to the machine. Modern CAE software packages are powerful in function, but
users usually need a lot of knowledge and experience to manipulate them. As a kind of tacit knowledge,
experiences require gauged context in order to be fully understood and applied. To better exploit the freely
written, hard-to-encode experiences on the web, we propose in this paper a context sensitive experience
feeding mechanism which is able to recommend experiences matching the context of a given CAE task. Our
method makes use of information extraction and natural language processing techniques to find experience
valuable to engineer’s trouble shooting. Empirical evaluation of a prototypical feeder suggests that our
method is effective.

1 INTRODUCTION

Knowledge employed in so called knowledge-
intensive tasks incorporates two aspects: the explicit
aspect and the tacit aspect. While explicit knowledge
is relatively easy to acquire, codify and reuse, such
operations for tacit knowledge are much harder for
that tacit knowledge is rooted in an individual’s
experience and values and is difficult to reduce to
formal representation (Nonaka and Konno, 1998;
Chen, 2010). Computer aided engineering is a
typical knowledge intensive practice which has
aroused continuous interests among researchers of
knowledge engineering (Colombo, Mosca and
Sartori, 2007). Modern CAE software packages are
powerful in function, but users have to be equipped
with a lot of knowledge and experience to
manipulate them. One proven is that there exist tens
of thousands of questions asking for guidance or
experiences in some online CAE forums such as
XANSYS and iMechanica. In our work, we try to
channel existing experiences to engineers who might
need them in their current working context, hope
doing so could save time that otherwise would be
spent on query formulating, searching, and waiting
for response.

2 CONTEXT SENSITIVE
EXPERIENCE FEED

Knowledge management efforts, to be successful,
need to be sensitive to features of the context of
generation, location, and application of knowledge
(Nidumolu, Subramani and Aldrich, 2001). To make
recommended experience more useful to an engineer,
we should understand what he is doing and what
problem he will face. The information collected
from an ongoing CAE task facilitating such
understanding is called context.

2.1 CAE Task Context

Computer aided engineering maps the property and
interaction of real world entities with symbols and
values readable to machine. To use CAE software
packages to solve engineering problems, people
have to know the terms and concepts denoting such
abstract entities. This makes the name of these
entities a good indicator of what a CAE task is about.
As CAE operations are composed of actions taken
by people on target entity, the verb-object structure
can assume an informative role in describing a CAE
task. Based on these observations, we propose our
context model as following.

343Song B. and Jiang Z..
A Context Sensitive Experience Feeder for Computer Aided Engineering.
DOI: 10.5220/0004133103430346
In Proceedings of the International Conference on Knowledge Engineering and Ontology Development (KEOD-2012), pages 343-346
ISBN: 978-989-8565-30-3
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

The concept list:

C = {ci | i=1, 2, … , m}
where ci denotes a concept (noun phrase)
captured from a CAE task, i=1, 2, … , m
defines the sequence of concepts

The potential trouble pool:

P ={(v , c)| c∈C, v is a verb }

The number of concepts in C is confined to m —
when a new concept is added, the oldest concept in
C is deleted and all subscripts are adjusted. For the
construction of P, other than manually building a
static lexicon, we choose to extract verb-object pairs
from the ever-evolving Internet corpus. To do this,
for noun phrase ci in C, we construct four quoted
queries:

“how to * <ci’s singular form> ”
“how to * <ci’s plural form> ”
“cannot * <ci’s singular form> ”
“cannot * <ci’s plural form> ”

Every query is to be submitted to a search engine
that supports wildcard and exact string match. After
the search engine has returned results for the
constructed queries, we use a part-of-speech tagger
to assign POS tags to matched texts, and any
contained verb-object structures using ci as argument
are extracted according to the following rule (in
BNF):

(“how to”|“cannot”) [adverb]<verb>[pronoun]
[adjective]<noun phrase ci>

We adopt above query patterns for three reasons:
first, we are mainly concerned with know-how
experiences; second, though there exists other
syntaxes such as “how can/do I/you do a thing” for
people to query know-how knowledge, a few search
trials can tell that with the same semantic meaning,
petitions beginning with “how to” and “I cannot”
surpass others in quantity; third, under the
redundancy surmise of Internet content, a single
syntax should have questioned most aspects of a
concept.

2.2 Trouble Detection

As a CAE task proceeds, the concept list C and
potential trouble pool P are dynamically changing.
At any time the task owner encounters difficulty and
stops to check the experience feeder, we must assess
the task context and come up with remedies for the
trouble that the task owner is most probably facing.
This is done by approximating the probability P(t|C)
for every potential trouble t in P:

(,)
(|)

()

1
 (,)

p

 q max{ () (,)}

 z max{ () { (, ,)}}

ij
ij

ij

ij x

ij i x

P t
P t

P

P t

w x P t c

w x e v c c









C
C

C

C

(1)

where
subscript i ranges over the m concepts in
C, and subscript ij denotes the jth verb
that has ci as its direct object ;
x≠i ;
w(x) is weight function ;
e(vij,ci,cx) denotes any experience piece
that contains the three keywords: vij, ci
and cx ;
z is normalizer.

The three approximate equalities each have its
meaning:

 The first approximate equality means the
chance of any specific concept series is treated
as equal.

 The second approximate equality significantly
reduces the scale of joint distribution of
concepts out of computational complexity
concern. Besides, we add a weight function
here to gain some control over the choice of
concepts. An instinctive idea is to use more
recent concepts to infer possible troubles.

 The third approximate equality relaxes the
verb-object constraint between vij and ci when
using them to retrieve evidence. This is
because it is impractical to parse every
sentence while searching a gigantic corpus.

Whenever a new concept is captured and
changes C, we recalculate P(t|C) for every potential
problem in P. For some most probable troubles, we
would search for relevant experiences and
recommend them to the task owner.

2.3 Experience Retrieval

To retrieve a piece of experience as candidate
remedy for sensed trouble (suppose the most
troublesome is tij), we use three features of textual
experience for match making: trouble mentioning,
context overlap, and procedural marks.

Trouble mentioning: an empirical remedy should
explicitly mention the target trouble, tij, which is
described by a verb-object pair. To do this, a natural
language parser is needed.

Context overlap: for a piece of textual experience,

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

344

Figure 1: Context sensitive experience feeding.

e, we count the times that each concept in C appears
in e and denote it with fei , i=1, 2, … , m. Then context
overlap index for e can be calculated by:

Oe = ∑i (fei /Le) (2)

where Le denotes the words count of e

Procedural marks: since useful experience usually
takes the form of procedural guidance, we studied
literature investigating the characteristics of
procedural text and use the linguistic marks
proposed in (Aouladomar, 2005) and (Fontan and
Saint-Dizier, 2008) to assess the quality of a
candidate experience.

Retrieved experience pieces are firstly grouped
based on what trouble they address. These groups
are then ranked in descending order according to the
product of trouble probability and averaged context
overlap. Experience-carrying texts within each
group are sorted descendently according to the
number of procedural marks they contain. The
information process flow for experience feeding is
shown in Figure 1.

3 METHOD EVALUATION

3.1 Method Implementation

In our research, we choose ANSYS based finite
element analysis as an exemplary CAE task.
ANSYS is a wildly used computer program for
doing finite element analysis, and it is operated in
such way that a series of text-rich dialog windows
are gone through one by one as the task stage
advances. Thus an agent able to record texts on
ANSYS dialog window can be used for context
collecting. The whole procedure of experience
feeding is shown in Figure 1.

Aside from the description presented in section 2,
we use following concrete configurations when
realizing an ANSYS experience feeder:

 m, the number of memorized concepts, equals
12 ;

 recorded window titles are assigned POS tags
for noun phrase extraction;

 for each noun serving as context, we retain the

4 most appeared verb (counted from each
query’s first Google 100 results);

 when using formula (1) to find the most
probable potential problem, e(vij,ci,cx) is any
Google result in which the three keywords co-
occur, and the weight function is set as below:

ሻݔሺݓ ൌ ቄ1 ݂݅ ݔ ൒ ݉/2
0 					݁ݏ݈݁

 (3)

 for a perceived trouble, tij, relevant experience
is picked from the Google results used to
assess the probability P(tij|C) — if parsed
e(vij,ci,cx) gets the trouble mentioning feature,
then the paragraph it resides in is treated as
one relevant experience ;

 Stanford Parser (Klein and Manning, 2003) is
used to parse Google results and assign POS
tags.

3.2 Empirical Evaluation

Totally 24 college students in their junior year
taking a finite element analysis course were
materially rewarded to assess the effectiveness of
experience feeder. We chose a static contact
problem which requires about 20 steps to complete
as background task, and recorded the ANSYS
window titles each student had gone through when
solving the task. Each time an ANSYS window is
activated, the recommendation list is refreshed and
the 10 most highly ranked experiences are shown.
Table 1 is a snapshot of experiences recommended
when the 7th window is activated.

Each student is asked to read through the
experience lists and rate each experience with three
grades: 1) useful to current problem solving; 2) good
to know but not directly useful to current task; 3)
totally irrelevant. The evaluation result is shown
below (proportion=0.2 means).

Number of instantly useful ratings among 24 participants

rating count 0 1 2 3 4 5 >5

person count 1 5 6 6 4 1 1

Proportion of relevant ratings among 24 participants

proportion 0.1 0.2 0.3 0.4 0.5 0.6 0.7

person count 1 3 6 6 4 2 2

A�Context�Sensitive�Experience�Feeder�for�Computer�Aided�Engineering

345

Table 1: Recommended experiences.

Window title history Relevant experiences

Global Element Sizes
For trouble: generate mesh concerning: area

Typically, you will generate a mesh for the source area yourself, before you
sweep the volume.
For trouble: generate element concerning: contact

1. Sets of nodes that are likely to come into contact must be defined and used
to generate the necessary elements.

2. Generate contact elements whose contact node is within a radius of RADC
measured from the centroid of each target element face.
For trouble: find area concerning: mesh

While meshing the model in ANSYS we are facing difficulty in finding
missing common areas.
…

Meshing Attributes

Volume Sweepings

Mesh Volumes

Contact Manager

Contact Wizard

Select Areas for Target

4 CONCLUSIONS

Experiences are not formal, validated knowledge,
but they are highly thought-provoking and worth
sharing. In this paper we have proposed an
experience feeder for engineers who process finite
element analysis, a typical CAE task. Experiment
shows that by our method engineers can gain
knowledge about what problems they may encounter
at different task stage and what the possible
solutions are. Other study has achieved higher
performance in knowledge recommending (Shen,
Geyer, Muller, Dugan, Brownholtz and Millen,
2008), but they require training on manually
annotated activities and resources, which we do not.
In future work, to enhance our method, geometry
feature recognition can be used to capture more
informative concepts form CAE tasks, and keyword
extraction technique can be used for extracting
concepts from task defining documents.

ACKNOWLEDGEMENTS

The author is most grateful to National Nature
Science Foundation of China (No. 70971085) and
the Research Fund for the Doctoral Program of
Higher Education of China (No. 20100073110035),
for financial support that made this research possible.

REFERENCES

Aouladomar, F. (2005). Towards answering procedural
questions. In Knowledge and Reasoning for Answering
Questions, Workshop associated with IJCAI05, 21-31.

Chen, Y. (2010). Development of a method for ontology-
based empirical knowledge representation and
reasoning. Decision Support Systems,50, 1–20.

Colombo, G., Mosca, A. and Sartori, F. (2007). Towards
the design of intelligent CAD systems: an ontological
approach. Advanced Engineering Informatics, 21,
153–168.

Fontan, L. and Saint-Dizier, P. (2008). Constructing a
know-how repository of advices and warnings from
procedural texts. In Doceng'08: Proceedings of the
Eighth Acm Symposium on Document Engineering,
249-252.

Klein, D. and Manning, C. D. (2003). Accurate
unlexicalized parsing. In Proceedings of the 41st
Meetingof the Association for Computational
Linguistics, 423-430.

Nidumolu, S. R., Subramani, M. and Aldrich, A. (2001).
Situated learning and the situated knowledge web:
exploring the ground beneath knowledge management.
Journal of Management Information Systems, 18(1),
115-151.

Nonaka, I. and Konno, N. (1998). The concept of ‘ba’:
building a foundation for knowledge creation.
California Management Review, 40(3), 40-54.

Shen, J., Geyer, W., Muller, M., Dugan, C., Brownholtz,
B. and Millen, D. (2008) Automatically finding and
recommending resources to support knowledge
workers' activities, In ACM 2008, 207-216.

KEOD�2012�-�International�Conference�on�Knowledge�Engineering�and�Ontology�Development

346

