
Implementation of an A+ Interpreter for .NET

Péter Gál and́Akos Kiss
Department of Software Engineering, University of Szeged, Dugonics tér 13., 6720 Szeged, Hungary

Keywords: A+, .NET, Interoperability.

Abstract: In this paper, we introduce a clean room implementation of an A+ interpreter for the .NET platform. Our
goal was to allow interoperability between A+ and .NET programs, thus unlocking existing routines to .NET
developers and making .NET class libraries available to A+ developers. In a preliminary experiment, we made
the advantage of interoperability visible: we achieved a 5-fold speedup by calling .NET methods from an A+
script. Additionally, we have also shown how to use A+ as an embedded domain-specific language in C#
code.

1 INTRODUCTION

A+ is an array programming language (Morgan Stan-
ley, 2008) inspired by APL. It was created more than
20 years ago to suite the needs of real-life financial
computations. However, even nowadays, many criti-
cal applications are used in computationally-intensive
business environments. Unfortunately, the original
interpreter-based execution environment of A+ is im-
plemented in C and is officially supported on Unix-
like operating systems only.

Our goal was to develop a .NET-based implemen-
tation, thus allowing the interoperability between A+
and .NET programs (calling .NET methods from A+
scripts, or executing A+ code from or even embed-
ding – as a domain-specific language – into .NET pro-
grams), and the hosting of A+ processes on Windows
systems. This would extend the lifetime of existing
A+ applications, unlock existing financial routines to
.NET developers, and make .NET class libraries avail-
able to A+ developers.

In this paper, we introduce a clean room im-
plementation of an A+ runtime1 for the .NET en-
vironment utilizing its Dynamic Language Runtime
(DLR) (Chiles and Turner, 2009). We give an
overview of its architecture, we present preliminary
results on its performance, and most importantly,
highlight the potential that lies in the interoperability
between A+ and .NET code.

The rest of the paper is organized as follows. Sec-
tion 2 gives a short introduction to the A+ language,
focusing on its specialities, Section 3 discusses briefly

1Project hosted at: https://code.google.com/p/aplusdotnet/.

the implementation of the .NET A+ runtime, Sec-
tion 4 details the experiments conducted with the run-
time, Section 5 overviews related work, and finally,
Section 6 concludes the paper and gives directions for
futute work.

2 THE A+ PROGRAMMING
LANGUAGE

A+ derives from one of the first array programming
languages, APL (Clayton et al., 2000). This legacy of
A+ is one of the most notable differences compared to
more recent programming languages. While the op-
erations in modern widespread programing languages
usually work with scalar values, the data objects in A+
are arrays. Even a number or a character is itself an
array, of the most elementary kind. This approach al-
lows the transparent generalization of operations even
to higher dimensional arrays.

The other striking speciality of A+ is the vast num-
ber of (more than 60) built-in functions, usually called
operators in other languages. These functions range
from simple arithmetic functions to some very com-
plex ones, like the matrix inverse or inner product cal-
culations. Furthermore, most functions have special,
non-ASCII symbols associated. This allows quasi-
mathematical notations in the program source code,
but may cause reading and writing A+ code to be a
challenge for the untrained mind.

Finally, although being a language of mathemati-
cal origin, A+ has an unusual rule: all functions have
equal precedence and every expression is evaluated

297Gál P. and Kiss Á..
Implementation of an A+ Interpreter for .NET.
DOI: 10.5220/0004129202970302
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 297-302
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

(+/a) , ×/a ← 1 + ι 10

Listing 1: The computation of the sum and product of the
first 10 natural numbers in A+.

from right to left.
The above mentioned specialities are exemplified

in Listing 1, which shows how the computation of the
sum and product of the first 10 natural numbers can
be formalized in A+. The expressionι 10 (using the
symboliota) generates a 10-element array containing
values from 0 to 9, while1 + increments each ele-
ment by one, which is then assigned to the variablea.
The operator×/ computes the product of the vector,
while +/ computes the sum. The concatenation func-
tion is denoted by comma, which finally results the
two-element array55 3628800 . Note the parentheses
around the sum, whithout which concatenation would
be applied to variablea and the product, and summa-
tion would be applied only afterwards because of the
right-to-left order of evaluation.

As the above code shows, quite complex computa-
tions can be easily expressed in a very compact form
in A+. The Language Reference gives further exam-
ples, mostly from financial applications, e.g., how to
compute present value at various interest rates in a
single line (Morgan Stanley, 2008, page 62).

3 IMPLEMENTATION OF THE
INTERPRETER

3.1 Problems

Even before the implementation of the .NET-based
runtime could have started, we have run into two ma-
jor problems of the original system. First, it turned
out that A+ has no formal grammar. There are only
two official sources of information available on the
syntax of A+: the Language Reference (Morgan Stan-
ley, 2008), which gives only a textual description of
the language, and the source code of the reference
implementation, which contains a hand-written tok-
enizer and parser, from which the formal rules are
non-trivial to reverse engineer. Thus, we had to for-
malize the grammar of A+ first. (The resulting gram-
mar in EBNF form is available from the repository of
the project.)

The second major problem was that the language
reference and the reference implementation conflicted
at quite a few points in semantic matters. Some dif-
ferences were clearly the result of the lazyness of the
implementer (e.g., the system command$mode de-
termines whether a string equals to “apl”, “ascii” or

.NET Base Class Library

DLR
Parser

Lexers

Helpers

Code Generator

Execution Engine

Figure 1: Components of the A+ .NET runtime.

“uni” based on the second character of the string in-
stead of looking for an exact match). Some other dif-
ferences were, however, the results of extensions to
the semantics documented in the language reference
(e.g., the implementation of the pick function accepts
not only one-dimensional arrays as documented but
multi-dimensional ones as well.) In those cases that
fell into the first category, we decided not to repeat
the same errors but to follow the language reference.
However, in the case of the second category, we chose
to accept the extensions in the .NET version since ex-
isting A+ applications may rely on their existence.

Once we handled the disturbing syntactic and se-
mantic problems of the original system, we became
able to work on the adaptation to .NET. The architec-
ture of the resulting system is described in the next
subsection.

3.2 Architecture Overview

Figure 1 depicts the architecture of the .NET-based
A+ runtime and identifies its main components. The
white boxes denote components provided by the .NET
framework, including the base class library and the
DLR that aids the adaptation of scripting languages
to .NET. The shadowed boxes form the system imple-
mented by us. These components build on top of each
other as follows.

The lexer and parser modules are automatically
generated by ANTLR (Parr, 2007), thanks to the for-
malization of the A+ grammar. In the current im-
plementation, we have lexer grammars for two input
modes of the possible three of A+: one for the APL
input mode that is commonly used by the everyday
users of the language (but requires a special APL font
for proper display) and one for the ASCII input mode,
which makes the embedding of A+ scripts into other
source code, e.g., into C#, easier. (The system can be
extended with the now-missing UNI mode lexer eas-
ily if the need arises.)

The output of the generated parser is an abstract
syntax tree (AST), which is transformed by the Code

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

298

*

v +

64 10

AST

v *
64+10

Lexer & Parser

ILA+ script DLR Expression Tree

Code Generator DLR Compiler

Figure 2: Compilation steps of an A+ script.

Generator module into DLR Expression Trees (ET).
During transformation, part of the semantics – es-
pecially control structures and the structure of state-
ments – are expressed using ETs, while complex
functionalities operating on diverse data structures get
usually transformed to calls to helper functions imple-
mented in C#.

The entry point for the execution of an A+ script is
the Execution Engine. It glues together the parser, the
Code Generator, and the DLR subsystem by feeding
the A+ source code into the lexer-parser, giving the re-
sulting AST to the Code Generator, passing the gen-
erated ET to the compiler of DLR, and finally, call-
ing the compiled executable IL code. In Figure 2,
we show how the different components of the run-
time transform an A+ source code until it becomes
executable by the .NET framework.

3.3 Usage

The .NET-based A+ execution engine can be used in
two ways. Since DLR provides a command line host-
ing API, it is very easy to implement a command line
tool mimicking the behaviour of the reference inter-
preter implementation. The biggest advantage of the
.NET-based implementation is, however, that it can be
embedded into other .NET applications. Moreover,
by adding .NET methods into the execution scope of
the engine, it is possible to achieve interoperation be-
tween A+ scripts and the embedding .NET environ-
ment.

4 EXPERIMENTS

Although our primary goal for the initial implemen-
tation of the .NET-based runtime was to make its ob-
servable behaviour as equivalent to the reference im-
plementation as possible and, thus, we did not focus
especially on optimizations, we still wanted to get
preliminary results on its runtime performance. Thus,
we extracted a code fragment from a real-life code
base and extended it with some code performing ex-
ecution time measurement. Listing 2 shows the test
A+ script, where lines 1–20 implement URL encod-
ing of strings, and lines 22–28 drive the encoding by
feeding a set of URLs to the routines (and repeating

1 uri .AN ← { " ABCDEFGHIJKLMNOPQRSTUVWXYZ",

2 " abcdefghi jk lmnopqrstuvwxyz" ,

3 "0123456789 - _ .˜" };

4

5 str ing . join {char ; s t r l is t}: {

6 if (0=# str l is t) ← "";

7 ← (-# char) ↓ ⊃ str l ist , ¨ <char ;

8 }

9

10 uri . encodechar{ char ; ignore }: {

11 if ((char=’ ’) ∧ (’ ’ ∈ ignore)) ← ’+ ’;

12 if (char ∈ uri .AN) ← char ;

13 if (char ∈ ignore) ← char ;

14 ← ’% ’ ,(16 16 ⊤ ‘ int? char)#"0123456789abcdef ";

15 }

16

17 uri .encode {asci i ; ignore }: {

18 bts ← uri . encodechar ¨ {asci i ; < ignore };

19 ← str ing . join { ’ ’; bts };

20 }

21

22 uri . encodeD{asci i }: ← uri . encode { asci i ; ""}

23

24 start ← t ime{}

25 300 do { uri . encodeD ¨ data ; }

26 end ← t ime {}

27

28 ↓ ’ e lapsed: ’, ⊤◦ end [2] - start [2]

Listing 2: The A+ script used for performance evalua-
tion (written in APL input mode).

this 300 times) and additionally measure the elapsed
time. The input for the encoding has been collected
during a browsing session and contains 50 URLs of
length ranging from 60 to 1439 characters. (Because
of length constraints, the test data is not listed here.)

For our experiments, we used a computer
equipped with a Dual Core AMD Opteron 275
2.2GHz CPU and 4GB RAM. During the evalua-
tion, the reference implementation of the A+ inter-
preter (version 4.22) acted as a baseline for compari-
son, which was executed on a 32-bit Debian Squeeze
Linux installation. Our .NET-based implementation
(revision 231) was ran on Windows 7 (32-bit) and
.NET framework 4.0 by embedding the execution en-
gine into an application utilizing the command line
hosting API of DLR.

In our first experiment, we compared the execu-
tion time of the A+ script as measured on the ref-
erence implementation and on the .NET-based inter-
preter. The result of the comparison is shown on the
first two columns (A, B) of Figure 3. According to the
measurements, the reference implementation is about
7 times faster than the .NET port, currently.

However, we also experimented with the interop-
erability between A+ and .NET. Since the .NET Base
Class Library contains equivalents ofstring.join
and url.encode , we performed two additional ex-

Implementation�of�an�A+�Interpreter�for�.NET

299

A B C D
0

10

20

30

40

50

60
R

un
tim

e
(s

ec
s)

Figure 3: Execution times of the test script A) on
the Linux reference implementation, B) on the .NET
implementation, C) on the .NET implementation with
string.join replaced, and D) on the .NET implementa-
tion with uri.encode replaced.

periments where we removed the A+ implementation
of these functions from the test script (lines 5–8 in
the first experiment, lines 1–20 in the second) and
added their .NET counterparts to the scope of the
engine before execution. The result of these exper-
iments is shown on the last two columns (C, D) of
Figure 3. The replacement ofstring.join by its
.NET equivalent resulted in a nearly 30% speedup,
even though this version is still slower than the ref-
erence implementation. However, the replacement of
url.encode yielded a huge performance gain. The
execution time in this experiment dropped to 20% of
the time measured for the reference implementation,
which is equivalent to a 5-fold speedup. This latter
result shows one of the possible exploitations of the
interoperability, i.e., performance improvement of ex-
isting A+ applications by adding .NET implementa-
tions for critical code parts.

Speeding up the execution of A+ scripts by call-
ing .NET routines is not the only interesting ap-
plication of the runtime. Because of the math-
ematical expressive power of A+, it can be used
in .NET code as an embedded domain-specific lan-
guage. Since A+ is mostly used in financial com-
putations, we illustrate the usefulness of the embed-
ding with the mixed-language implementation of the
oft-cited Black-Scholes formula (Black and Scholes,
1973) used to calculate the price of European put and
call options. Listing 3 shows a code fragment where
mathematical formulas are written in A+ but control
structures are in the host C# language.

5 RELATED WORK

Efforts on the integration of script languages into
modern object-oriented frameworks did not begin
with DLR. One of the first attempts was the imple-
mentation of the Python language in/on Java, called
JPython (now Jython) (Hugunin, 1997). That ap-
proach featured a Python to Java byte code compiler
to achive its goals. The developer of the port reported
a slowdown by a factor of 1.7 compared to the C im-
plementation.

For the .NET framework, Python was again
among the languages to be ported first. However, in
the pre-DLR era that was a hard task and the project
has been abandoned (Hammond, 2000). This negative
result has led some interpreter developers not to reim-
plement their execution engines in .NET but to pro-
vide a bridge between the framework and the existing
interpreter (Mascarenhas and Ierusalimschy, 2004).

Then, however, the idea of porting Python to .NET
was raised again, which resulted in the successful
IronPython project (Hugunin, 2004). In the first pub-
licly announced version (0.2), it was considerably
(100-fold) slower on some benchmarks than the C
implementation (while faster on some others). The
project is still under active development and its per-
formance is regularly compared to the reference im-
plementation (Fugate, 2010). Most importantly, the
DLR also grew out from this project (Hugunin, 2007).

The Java community is also putting effort on sup-
porting the execution of script languages on the Java
platform. Several related JSRs (Sun Microsystems,
2006; Sun Microsystems, 2011) reached final status
and got incorporated into public releases of the plat-
form.

Besides A+, APL has several other derivatives as
well. Two of these are even designed to work with
the .NET framework. The first version of VisualAPL,
an APL-based development platform for .NET, be-
came available in 2003, and it was released as a
consumer-ready product in 2009 (Blaze, 2009). How-
ever, VisualAPL has departed from the conventional
APL and adopted object-orientation, and C# syn-
tax and semantics into the language. More recently,
APL# (Kromberg et al., 2010) was introduced based
on Dyalog APL. In this case, the language designers
have taken careful steps not to introduce language-
breaking features. The APL# language is still under
active development, with an interpreter in a pre-beta
phase.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

300

1 aplusEngine. Execute(" d1 := ((log (S % X)) + T * (r + (v ˆ2) % 2)) % (v * T ˆ 0.5)" , scope);

2 aplusEngine. Execute(" d2 := d1 - v * T ˆ 0.5" , scope);

3

4 if (option == "call ") {

5 result = aplusEngine. Execute("(S * CND{d1}) - (X * ˆ(- r * T) * CND{d2 })" , scope);

6 } else {

7 result = aplusEngine. Execute("(X * ˆ(- r * T) * CND{-d2 }) - (S * CND{-d1 }) " , scope);

8 }

Listing 3: A C# code fragment embedding A+ expressions (written in ASCII input mode).

6 SUMMARY AND FUTURE
WORK

In this paper we have introduced our .NET-based
clean room implementation of an A+ runtime. Al-
though the current version of the .NET port is slower
than the reference C implementation, its greatest ad-
vantage, i.e., the interoperability between A+ and
.NET, is already visible. In a preliminary experiment
we were able to achieve a 5-fold speedup by substi-
tuting A+ functions with equivalent .NET methods.
Additionaly, we have also shown how A+ scripts can
be embedded into C# code, thus exploiting the expres-
siveness of A+ in financial computations.

For the future, several steps are already seen
ahead. We would like to focus on three major ar-
eas, each consisting of several research and/or devel-
opment topics.

The first area is the enhancement of the runtime.
First of all, we would like to improve the runtime to
support all language features of A+ (some minor de-
ficiencies still exist). Furthermore, besides extending
the compatibility of our implementation, we also wish
to investigate the possibilities of improving its perfor-
mance. This latter topic, i.e., speeding up script en-
gines, is a huge research area on its own.

The second area we would like to focus on is
the analysis and comparison of the two implementa-
tions, i.e., the reference interpreter and the .NET run-
time. By analysing both systems and computing sev-
eral maintainability and modularizability metrics, and
by evaluating their performance on a broader bench-
mark set, we will be able to assess the costs and gains
of porting legacy interpreter implementations to new
platforms.

The third area of our interest is language design.
We would like to develop A+ into a modern program-
ming language of the .NET framework. This will re-
quire the extension of the language with several con-
cepts, like classes and objects, to foster the interoper-
ability between A+ scripts and the host environment.
Moreover, we will have to define a restricted but still
useful subset of the language that is compilable ahead

of execution time. Last but not least, to aid efficient
programming, we plan to provide IDE support for the
A+ language.

ACKNOWLEDGEMENTS

The authors would like to thank Csaba Bátori for his
valuable help in the development of the .NET port of
A+.

REFERENCES

Black, F. and Scholes, M. (1973). The pricing of options
and corporate liabilities.Journal of Political Econ-
omy, 81(3):637–654.

Blaze, J. (2009). Prior and current versions of VisualAPL.
APL2000 Developer Network Forum,http://
forum.apl2000.com/viewtopic.php?t=447 (Ac-
cessed 5 June 2012).

Chiles, B. and Turner, A. (2009).Dynamic Language Run-
time. http://dlr.codeplex.com/documentation
(Accessed 26 April 2012).

Clayton, L., Eklof, M. D., and McDonnell, E. (2000).
ISO/IEC 13751:2000(E): Programming Language
APL, Extended. Internation Standards Organization.

Fugate, D. (2010). IronPython performance comparisons.
http://ironpython.codeplex.com/wikipage?
title=IronPython%20Performance (Accessed 26
April 2012).

Hammond, M. (2000).Python for .NET: Lessons learned.
ActiveState Tool Corporation.

Hugunin, J. (1997). Python and Java – the best of both
worlds. In Proceedings of the 6th International
Python Conference, pages 11–20, San Jose, CA, USA.

Hugunin, J. (2004). IronPython: A fast Python implemen-
tation for .NET and Mono. InPyCON 2004, Wash-
ington, DC, USA.

Hugunin, J. (2007). A dynamic language
runtime (DLR). http://blogs.msdn.
com/b/hugunin/archive/2007/04/30/
a-dynamic-language-runtime-dlr.aspx (Ac-
cessed 26 April 2012).

Implementation�of�an�A+�Interpreter�for�.NET

301

Kromberg, M., Manktelow, J., and Scholes, J. (2010). APL#
- an APL for Microsoft.Net. InConference USB stick
of APL2010, Berlin, Germany.

Mascarenhas, F. and Ierusalimschy, R. (2004). LuaInter-
face: Scripting the .NET CLR with Lua.Journal of
Universal Computer Science, 10(7):892–909.

Morgan Stanley (1995–2008).A+ Language Reference.
http://www.aplusdev.org/Documentation/ (Ac-
cessed 26 April 2012).

Parr, T. (2007). The Definitive ANTLR Reference: Build-
ing Domain-Specific Languages. Pragmatic Program-
mers. Pragmatic Bookshelf, first edition.

Sun Microsystems (2006).JSR-223: Scripting for the Java
Platform.

Sun Microsystems (2011).JSR-292: Supporting Dynami-
cally Typed Languages on the Java Platform.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

302

