
Testing Temporal Logic on Infinite Java Traces

Damián Adalid, Alberto Salmerón, Marı́a del Mar Gallardo and Pedro Merino

Dpto. de Lenguajes y Ciencias de la Computación, University of Málaga, Málaga, Spain

Abstract. This paper presents an approach for testing reactive and concurrent
Java programs which combines model checking and runtime monitoring. We use
a model checker for two purposes. On the one hand, it analyzes multiple pro-
gram executions by generating test input parameters. On the other hand, it checks
each program execution against a linear temporal logic (LTL) property. The pa-
per presents two methods to abstract the Java states that allow efficient testing of
LTL. One of this methods supports the detection of cycles to test LTL on poten-
tially infinite Java execution traces. Runtime monitoring is used to generate the
Java execution traces to be considered as input of the model checker. Our cur-
rent implementation in the tool TJT uses Spin as the model checker and the Java
Debug Interface (JDI) for runtime monitoring. TJT is presented as a plug-in for
Eclipse and it has been successfully applied to complex public Java programs.

1 Introduction

LTL is usually employed to check complex behaviors over infinite traces, which are the
traces produced by reactive and/or concurrent software. The analysis of a LTL formula
along one or several potential infinite execution paths requires the use of algorithms
based on automata, like Büchi automata, to recognize special cycles. If cycle detection
is avoided, then the kind of formulas that can be checked are restricted to a subset, or
their semantics must be adapted to finite executions, like in JavaPathExplorer [1]. In
the context of testing and verification of programming languages, the ability to detect
cycles depends on the way of storing the global states, which are much larger than
in modeling languages. The proposals in [2][3] avoid storing the states at all, so they
can perform a partial analysis of very large systems with little memory consumption.
Unfortunately, this stateless approach does not allow the analysis of LTL for infinite
traces. State-full approaches, like the implemented in Java PathFinder (JPF) [4] and
CMC [5], keep a stack with the current execution trace to control backtracking, produce
counter examples and detect cycles, in order to check LTL on infinite traces. However,
at the time of writing this paper the public distribution of JPF does not detect all infinite
loops and cannot check full LTL for any program.

In this paper we propose a method to convert a Java execution trace into a sequence
of states that can be analyzed by the model checker Spin [6]. As far as Spin implements
the analysis of LTL formulas by translation to Büchi automata, we can check the for-
mulas on Java programs with potential cycles. The Spin stuttering mechanism to deal
with finite execution traces allows us to deal with any kind of program without redefin-
ing the semantics of LTL. Our conversion of Java traces into Spin oriented traces is

Adalid D., Salmerón A., del Mar Gallardo M. and Merino P..
Testing Temporal Logic on Infinite Java Traces.
DOI: 10.5220/0004127700370047
In Proceedings of the 10th International Workshop on Modelling, Simulation, Verification and Validation of Enterprise Information Systems and 1st
International Workshop on Web Intelligence (MSVVEIS-2012), pages 37-47
ISBN: 978-989-8565-14-3
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

based on two efficient abstraction methods of the full state of the program. The counter
projection abstracts the Java state by preserving the variables in the LTL formula and
adding a counter to distinguish the rest of the state. As long as we do not keep all the
information, the counter projection is very efficient at the price of being useful only for
a limited subset of LTL. The hash projection abstracts each Java state with the variables
in the formula plus a hash of the whole state. The way of constructing the hash makes
negligible the probability of conflict for two different states, so we can trust in the Spin
algorithm to check LTL based on cycle detection.

Our approach has been implemented in TJT, a tool that combines runtime moni-
toring and model checking and allows Java application developers to check complex
requirements represented with temporal logic in a transparent way.

The rest of the paper is organized as follows. Section 2 presents the architecture
of TJT to combine model checking and runtime monitoring. The formalization of the
abstraction approach is presented in Section 3. Experimental results of case studies are
summarized in section 4. In Section 5 we compare our tool with related proposals.
Finally, Section 6 presents some conclusions.

2 Architecture and Features

TJT is divided in two modules, the test control module and the monitoring module, plus
an Eclipse plug-in1. Figure 1 shows an overview of this architecture and the workflow
of the tool. The programmer must supply two inputs in this workflow: the Java pro-
gram being tested and a test specification. The latter provides the relevant information
for carrying out the tests, including the LTL property that will be checked against ex-
ecution traces of the program. The test control module, implemented using the model
checker Spin, prepares the test and generates a series of test inputs for the Java pro-
gram as instructed by the test specification. A series of Java Virtual Machines (JVMs)
are then launched to test the execution of the program under each generated test input.
The executions are controlled by the monitoring module, which detects and reports the
events that are relevant to check the LTL formula. Spin processes the information re-
ported by the monitoring module for each execution of the program, and checks if the
LTL property stated in the test specification is verified or violated. We discuss some
specific issues in the rest of this section, while Section 3 presents a formalization of this
approach.

The core of the tool is the test control module, which is implemented with the Spin
model checker. While Spin is generally used to check program specifications written
in its own Promela language, TJT uses a special Promela specification that can com-
municate with the monitoring module through sockets. This Promela specification also
contains the logic to generate test inputs according to the test specification and launch
new program executions. Tests inputs are then generated until all possible combinations
that can be inferred from the test specification have been considered. The module then
launches the Java program being tested with the given test input under the supervision
of the monitoring module. This module uses JDI to watch the events relevant to the

1 The plug-in and examples are available from http://www.lcc.uma.es/�salmeron/tjt/

38

Fig. 1. TJT architecture and workflow.

specified property and sends the information back to the test control module, which
reconstructs the current Java execution trace in Spin. Other events such as program
termination, exceptions or deadlocks are also communicated through the socket.

Spin checks every execution path using a depth-first search algorithm that maintains
a stack of program states (“Spin States” in Figure 1). The state of the Büchi never claim
automata, which is used to track the satisfaction of an LTL property, is also stored as
part of the global state. Each state in Spin is composed of variables v0i, which are an
abstraction of the Java states vi, and variables bi from the Büchi automata. The values
of the v0i variables are obtained from the information sent by the runtime monitoring
module. Although the execution of a Java program results in a linear sequence of states,
the addition of the Büchi automata may result in several branches that must be explored
exhaustively. To support this backtracking, variable values received from the runtime
monitoring module are first stored in a Java trace stack (“Java Trace” in Figure 1) and
then retrieved from there as needed.

Our tool can check LTL properties on finite traces, deadlocks, uncaught exceptions
and some types of cycles. The LTL property can reference class variables present in the
Java program, thrown exceptions or breakpoints set in specific locations in the code.
The latter are available using the default variables exception and location. The user
may select the intention of the temporal formula, i.e. whether the tests passes when
all, none or any of the traces check the property. As the Java executions are usually
finite, we take advantage of the stuttering mechanism implemented in Spin [6], and
we assume the semantics derived from considering the last state of the trace repeated
forever. In that way, we have no limitations to use the LTL formulas supported by Spin.
In addition, deadlocks can be detected by the monitoring module by checking the status
of every thread before processing each event.

3 Formalization of the Abstraction of Java Traces

Let Prog be a Java program and Var a numerable set of variable names used by Prog.
Variables names may be recursively constructed by appending the name of class mem-
bers to object identifiers. For instance, if o is a reference to an object of class C, and f
is an instance variable of C, o:f is the name of variable recording the value of field f in
the object instance o.

39

Values of Java variables may belong to a Java primitive data type (int;char; : : :) or
may be a reference if the variable is an object. Let A and S be the set of possible mem-
ory references and the set of all possible values of Java primitive data types. A state of a
Java program is a function s : Var! A [S that associates each variable with its value.
Let us denote with States the set of possible states of a Java program Prog. Assume that
if h is a variable referencing a thread, then s(h:cp) 2 int represents the position of the
program counter of h in s.

Each possible execution of Prog may be represented as an infinite sequence of states
t = s0 �! s1 �! s2 �! : : : 2 Statesw, Statesw being the infinite set of all possible se-
quences of elements from States, called traces. If the sequence is finite, we assume that
the last state is infinitely repeated.

Java traces represent possible executions of a given program. However, we do not
intend that Spin analyzes complete Java traces. Instead, Spin will be given projections of
traces, where states are not completely stored. Only, the part of the state that is involved
in the evaluation of the formula is transferred to the model checker. We now describe
how the projection of Java states is constructed and the correctness relation between the
evaluation results regarding the original traces, and the projected ones on Spin.

Definition 1. Given a subset of variables V � Var, we define the projection of a state
s onto V as the function rV (s) : V ! A [S such that 8v 2 V:rV (s)(v) = s(v). Now,
given a Java trace t = s0 �! s1 �! s2 �! : : :, we define the projection of t onto V �Var
as rV (t) = rV (s0)�! rV (s1)�! rV (s2)�! : : :

We now recall the syntax and semantics of LTL. Let P rop a set of atomic proposi-
tions. The set of LTL temporal formulas may be inductively built using the elements of
P rop, the standard Boolean operators, and the temporal operators: next “
”, always
“�”, eventually “�”, and until “U”.

We assume that given a Java state s, and an atomic proposition p 2 P rop, s j= p
represents the result of evaluating p on s, that is, s j= p holds iff s satisfies p. In what
follows, given a Java trace t = s0 �! s1 � � � , we denote with ti = si �! �� � the suffix of t
starting at state si. Consider p 2 P rop, and f and g two LTL formulas. We inductively
define j= over traces and LTL formulas as follows.

(1) ti j= p iff si j= p (2) ti j= :p iff si 6j= p
(3) ti j= p_q iff ti j= p or ti j= q (4) ti j=
 f i f f ti+1 j= f
(5) ti j=� f iff si j= f and ti+1 j=� f (6) ti j= � f iff 9 j � i:(t j j= f)
(7) ti j= f U g iff 9 j � i:(t j j= g and 8i� k < j:[tk j= f])
In the following, given a LTL formula, we denote the set of variables in f as var(f).

Proposition 1. Given a Java trace t and a temporal formula f , if V = var(f) � Var
then t j= f () rV (t) j= f .

In the rest of the paper, we use the same LTL semantics as Spin, without the next
operator as usual. Note that in t j= f , t may be a prefix of a complete Java trace, i.e. the
whole trace may not need to be generated in order to check the satisfaction of a property.
As described in section 2, temporal formulas can be used in testing with different use
cases. In contrast with model checking, testing works with a subset of program traces
instead of every possible trace. Test cases may pass when a property is checked in all,

40

some or none of the given traces. Thus we extend j= for sets of traces and the 8 and 9
quantifier operators.

Definition 2. Given a temporal formula f and a set of traces T ,

T j= 8 f ,8t 2 T:t j= f ; T j=6 9 f ,6 9t 2 T:t j= f ; T j= 9 f ,9t 2 T:t j= f (1)

3.1 Dealing with Cycles

Due to the elimination of most program variables in the projected states, it is very likely
that a projected trace rV (t) contains many consecutive repeated states. This represents
a problem to the model checker since it can erroneously deduce that the original trace
has a cycle due to the nested depth first search (DFS) algorithm used by Spin to check
properties. Note that this does not contradict Proposition 1, since in this result we do
not assume any particular algorithm to evaluate the property on the projected trace. In
the following sections, we use relation j=s to distinguish between the LTL evaluation
carried out by Spin through the DFS algorithm, and relation j= defined above.

To correctly eliminate the consecutive repeated states in traces, we propose two
techniques discussed now with their effects regarding the preservation results.

State Counting. A simple solution would be to add a new counter variable c to the set
of visible variables V . This counter is increased for every new state, thus removing the
possibility that Spin erroneously deduce a cycle. Observe that this also precludes Spin
from detecting real cycles present in the Java program. We extend the notion of trace
projection given in Definition 1, by adding the state counter variable as follows:

Definition 3. Given a subset of visible variables V � Var, we define the i-th counter
projection of a state s as function ri

V (s) : V [fcg ! A [S defined as ri
V (s)(v) =

rV (s)(v), for all v 2V , and ri
V (s)(c) = i. Now, given a Java trace t = s0 �! s1 � � � , the

counter projection of t onto V is rc
V (t) = r0

V (s0)�! r1
V (s1) � � � .

Figure 2 (left) shows the projection of a trace with the addition of the state counter.

State Hashing. In this section, we assume that Java states have a canonical represen-
tation, which makes it possible to safely check if two states are equal. We know that
canonical representation of states in languages that make an intensive use of dynamic
memory is not trivial. We are currently using an extension of the memory representation
described in [7], but the actual representation is not relevant for the results obtained in
this section. We only need to assume that given two logically equal Java states s1 and
s2, there exists a matching algorithm able to check that they are equal.

We use a proper hash function h : State! int to represent each state in the projected
trace. It is worth noting that since the whole Java states s do not have to be stored at
all we may assume that function h is very precise, producing a minimum number of
collisions. That is, h(s1) = h(s2) =) s1 = s2, with a high degree of probability.

Now, we extend the notion of state projection given in Definition 1, by adding the
codification of the non-visible part of state as follows:

41

Fig. 2. Trace projection with state counting and state hashing.

Definition 4. Given a subset of visible variables V �Var, we define the hash projection
rh

V (s) of a state s onto V using the hash function h as pair rh
V (s) = hrV (s);h(s)i.

Figure 2 (right) shows the projection of a trace with the addition of the state hash.
Only projected states rh

V (s) are transferred to Spin. If the model checker detects that
two states rh

V (s1) and rh
V (s2) are equal, then we can infer that the original states s1

and s2 are equal with a high degree of probability.

Preservation of Results. We now discuss how the results are preserved regarding the
satisfaction of temporal properties in Java and in the projected traces. Here we assume
the the algorithm for checking the satisfaction of a property uses the double depth search
algorithm as implemented by Spin.

Proposition 2. Given a temporal formula f using only the eventually “�” and until
“U” temporal operators, if V = var(f)�Var then t j= f () rc

V (t) j=s f .

Counter projection rc
V guarantees that no cycle can be deduced by Spin in the pro-

jected trace. Thus, properties that do not require the detection of cycles (i. e. those that
use only operators eventually “�” and until “U”) can be properly checked over this
projection. In contrast, since properties that use the always “�” temporal operator are
checked by Spin by searching for cycles, they cannot be analyzed over rc

V (t).

Proposition 3. Given a temporal formula f , if V = var(f)�Var then

(1) rh
V (t) j=s f =) t j= f with the degree of probability allowed by h, and

(2) t j= f =) rh
V (t) j=s f

This proposition asserts that any temporal formula which is satisfied in the hash
projection of a Java trace t, it is also satisfied in the original trace. The converse, while
generally true for practical purposes, is limited by the quality of the hash function h.
In addition to projecting the variables in f , as established in Proposition 1, the hash
projection includes an variable computed by h that identifies the global state and is used
to detect cycles in the trace. Our implementation uses the well-known MD5 hashing
algorithm for this purpose.

3.2 Folding Consecutive Repeated States

In this section we propose an optimization approach to minimize the number of states
of the projected trace that need to be generated and transferred to Spin. To do this, we

42

slightly modify transition relation �! defined above by labeling transitions as follows.
A Java trace is now given by a sequence of states

t = s0
M0�! s1

M1�! s2
M2�! : : : 2 Statesw (2)

where each label Mi � Var is the set of variables which are modified by the Java sen-
tence that produced the transition.

Recall that counter and hash projections of Java traces t (rc
V (t) and rh

V (t)) discard
all program variables except the ones in V , which are the only ones needed to check
a temporal formula f , (V = var(f)), while the rest of the state is collapsed into a sin-
gle variable. However, Spin does not need to know about states in which none of the
variables in V change since they do not affect the evaluation of temporal formulas as
described in Propositions 2 and 3. Thus, we propose removing these states from the
final projection given to Spin. We call this removed states folded states.

Definition 5. Given an Java trace t as defined in (2), we define the folded counter/hash
projection f�V (t) of t onto V � Var, where symbol � stands for c or h, as f�V (t) =
r�V (si0) �! r�V (si1) �! r�V (si2) �! : : : such that i0 = 0, and 8k � 1, if ik�1 � j < ik
then M j \V = /0.

That is, we only project to Spin those states where some visible variable has just
modified. However, this definition of folding is not enough to allow a precise cycle
detection. If an infinite cycle happens in the folded states, Spin will not be not aware of
it, and thus the Java program may loop endlessly. To avoid this, we define the limited
folding of a counter/hash projection, where limited means that the folding between two
non-folded states has a limit. To balance the optimization of folding with the needs of
cycle detection we introduce a timeout mechanism. After a specified number of folded
Java states, we project every Java state onwards, until a non-folded state is reached and
the timer is reset. After this limit is reached, the projection behaves like the counter/hash
projections in Definitions 3 and 4. An implementation may choose to use a timer as limit
instead of a state counter, which does not affect the results given below.

Definition 6. Given an Java trace t as defined in (2) and a limit l, we define the limited
folded counter/hash projection f

�;l
V (t) of t onto V � Var, where � stands for c or h,

as f
�;l
V (t) = r�V (si0) �! r�V (si1) �! r�V (si2) �! : : : such that i0 = 0, and ik� ik�1 > l or

8k � 1, if ik�1 � j < ik then M j \V = /0.

Figure 3 shows an example of a limited folded hash projection, with limit l = 1.
This limit ensures that only one state can be folded consecutively. In the figure, a bold
Mi label indicates that Mi \V 6= /0, i.e. i-th transition modifies one or more variables
of V . In this example, the limit forces the projection of states s4 and s5, which should
have been folded, resulting in the projected states si2 and si3 . Also, the limit is reset
after projecting states s2 and s6, which are states where variables in V have changed.

Proposition 4. Given a temporal formula f using the eventually “�” and until “U”
temporal operators, then if V = var(f)�Var then t j= f () f

c;l
V j=s f :

43

Fig. 3. Example of the limited folded hash projection of a Java trace.

This result is not affected by the folding in the projection, because i) folded states
are not required to evaluate boolean temporal formula, and ii) folded states are not
required for cycle detection as discussed in Section 3.1.

Proposition 5. Given a temporal formula f , if V = var(f)�Var then

(1) f
h;l
V (t) j=s f =) t j= f with the degree of probability allowed by h, and

(2) t j= f =) f
h;l
V j=s f

This result is not affected by the folding thanks to the limit, which covers the de-
tection of cycles in the folded states. If there is a infinite cycle in a sequence of states
whose transition labels contain no variable in the formula under test, the limited folding
only removes a prefix of the sequence, projecting the cycle which will be detected by
Spin.

4 Experimental Results

TJT has been successfully used with real Java applications, some of which were also
evaluated in [8]. These applications include two servers for FTP and NFS2. It is worth
noting that, in order to test these servers, we had to implement dummy clients to sim-
ulate the behavior required by each test. The temporal formulas used in each test are
shown on Table 1. The first application is a concurrent FTP server. One possible test
would be to check if the server reacts correctly internally to a poorly implemented
client that sends the CDUP command (go to parent directory) several times, trying to es-
cape the root of the FTP server. In that case, the server must throw an FTPDException
and continue attending other requests, as specified in F1. We can also test that a STOR
operation can only be carried out if the client is authenticated, using F2. We also have
tested a NFS server implemented in Java using a client that tries to mount a directory
provided by the server. We can test some conditions related with an incorrect or unau-
thorized request, by checking if some internal error fields are updated (F3) or specific
exceptions are thrown (F4, F5).

Counter Projection. First, we perform these tests using the folded counter projection.
The properties used in these tests can be checked using this projection, as they do not
require the detection of cycles over infinite traces or can be resolved via stuttering.
The results are summarized in the left half of Table 2, averaged over a series of test
executions. The third column shows number of projected Java states, while the fourth
column indicates the number of state transitions in Spin. The last two columns show
the size of a Spin state and the total time of analysis.

2 From http://peter.sorotokin.com/ftpd and http://www.void.org/�steven/jnfs/

44

Table 1. Formulas and atomic propostions for the examples.

(a) Formulas

F1 = all: <>(cdup AND <>(exL1

AND exT1))

F2 = none: <> (stor AND nAuth)

F3 = any: <>[]error

F4 = all: <>(error AND <>exL2)

F5 = none: nError U exL2

F6 = all: []<>one

(b) Atomic propositions

cdup = ftpd.FTPDConnection.status.equals(CDUP)

exL1 = location.equals(ftpd.FTPDConnection:470)

exT1 = exception.equals(FTPDException)

stor = ftpd.FTPDConnection.status.equals(STOR)

nAuth = ftpd.FTPDConnection.authentified.equals(false)

error = nfsServer.MountdHandler.err > 0

nError = nfsServer.MountdHandler.err == 0

exL2 = location.equals(nfsServer.MountdHandler:95)

one = numElements==1

Table 2. Test results using folded counter and hash projections.

Counter projection Hash projection
Application Formula Java states Transitions State size Time Java states Transitions State size Time

FTPD F1 43.7 1027 48 bytes 9.7 s 43 205 76 bytes 16.0 s
F2 59 647 48 bytes 9.5 s 59 265 76 bytes 17.6 s

Java NFS server
F3 15.3 94.3 40 bytes 5.1 s 17.6 99 68 bytes 10.8 s
F4 5 140 40 bytes 22.9 s 5 140 68 bytes 27.1 s
F5 4 14 40 bytes 4.6 s 4 14 68 bytes 5.2 s

Lists F6 - - - - 6 33 68 bytes 0.7 s

Hash Projection. We now present the results of applying the folded hash projection
to the same tests. Although the hash projection is not needed to perform any of these
tests, it is interesting nonetheless to compare the performance of these two projections.
The right half of Table 2 shows these results. The table shows that the hash projection
is generally slower, due to the computation penalty associated with visiting the whole
Java program state and computing its hash. As these results suggests the tests with more
Java states are the ones where the test time is increased the most. To show the usefulness
of the hash projection we analyzed a program that adds and removes elements to a list.
We check that the list has always exactly one element (F6). This behavior requires the
detection of cycles, which is only possible under the hash projection.

5 Comparison to Related Work

The most remarkable tools to analyse Java programs using some variant of full-state
based model checking are Bandera [9], JavaPathExplorer and JPF. Bandera is a model
extraction based tool that requires the Java program to be transformed into a model
composed by pure Promela plus embedded C code. This model is optimized applying
a data abstraction mechanism that provides and approximation of the execution traces.
As Bandera uses Spin as the model checker, it can check LTL on infinite traces and
preserve correction results according to the approximation of the traces. Compared with
Bandera, TJT only checks a set of traces. However the use of runtime monitoring avoid
model transformation, and the two abstraction methods guarantee the correctness of the
results. JavaPathExplorer [1] uses the rewriting-logic based model checker Maude to
check LTL on finite execution traces of Java programs. The authors provide a different

45

semantics for LTL formulas in order to avoid cycle detection. We share with them the
idea of using of the model checker to process the stream of states produced by Java.
However, our use of Spin allows us to check infinite execution traces.

JPF [10] is a complete model checker for Java programs that performs a complete
coverage of a program. In contrast, TJT analyzes each trace in isolation without check-
ing if several traces share already visited states. However due to the implementation
approach, we still can take some advantages of reusing the well known model checker
Spin instead of building a new one from scratch. Some realistic Java examples of
reactive software are not well suited to be verified by JPF. For instance, we tried ana-
lyzing our elevator problem with JPF, but it ran out of memory after 58 minutes. The
verification of LTL with JPF-LTL in JPF is still under development and has a limited
visibility of the program elements to write the formula. According to the information
in the JPF-LTL web site, the tool only considers entry to methods in the propositions,
and it requires the user to explicitly declare whether the formula should be evaluated
for infinite or finite traces. TJT allows a richer set of propositions to be used in the
formulas and, due to the stuttering semantics used by Spin, the user does not need to
declare whether the trace is finite.

Full-state on-the-fly explicit model checking, as implemented in Spin, requires two
main data structures to manage global states. The stack is used to store states to support
the whole state space exploration using with backtracking, and to find cycles. The hash
table is used to store all unique states produced when executing instructions in order to
prevent wasting computational resources when exploring the state space. The standard
distribution of Spin and recent extensions implement many optimizations for these data
structures. Our tool TJT inherits these optimizations in the context of Java programs,
but we still do not take advantages of the hash table. As our hash projection method
produces an almost univocal abstraction, in further works we plan to employ this re-
duced representation of the Java states in Spin’s hash table in order to avoid revisiting
previously explored states. So, TJT could be considered as a first step towards the whole
verification of Java with Spin avoiding the transformation of Java into Promela neces-
sary in tools like Bandera. It is worth noting that our method to produce the stream of
states from the real Java execution can be also employed for other programming lan-
guages, so the same approach could be useful to extend Spin in order to verify other
programming languages apart from the current support for C programs.

6 Conclusions and Future Work

We have presented TJT, a tool for checking temporal logic properties on Java programs.
This tool is useful to test functional properties expressed as LTL on both sequential and
concurrent programs with finite and infinite execution traces. The formalization of the
abstraction approach guarantees the preservation of the results, and the experimental re-
sults confirm the applicability to realistic software. Our tool chain includes well known
software packages, like the model checker Spin, the JDI API and the well known de-
velopment environment Eclipse.

Future work will focus on two directions. The first one is to increase the amount of
information stored in the Spin’s hash table of visited states and the control of scheduling

46

in Java programs in order to move towards having Spin as model checking tool for
Java. The second one is applying our approach to test Android applications, to extend
its domain of application. Although these applications are written in Java, the Android
JVM does not support some JDI features on which we rely.

Acknowledgements

Work partially supported by projects P07-TIC-03131 and WiTLE2. We thank Franco
Raimondi and Michelle Lombardi for their help regarding JPF-LTL.

References

1. Havelund, K., Roşu, G.: An overview of the runtime verification tool java pathexplorer.
Form. Methods Syst. Des. 24 (2004) 189–215

2. Godefroid, P.: Model checking for programming languages using verisoft. In: Proceedings
of the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
POPL ’97, New York, NY, USA, ACM (1997) 174–186

3. Stoller, S. D.: Model-checking multi-threaded distributed Java programs. International Jour-
nal on Software Tools for Technology Transfer 4 (2002) 71–91

4. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs. Automated
Software Engg. 10 (2003) 203–232

5. Musuvathi, M., Park, D. Y. W., Chou, A., Engler, D. R., Dill, D. L.: Cmc: A pragmatic
approach to model checking real code. In: OSDI. (2002)

6. Holzmann, G. J.: The SPIN Model Checker : Primer and Reference Manual. Addison-Wesley
Professional (2003)

7. Gallardo, M. D. M., Merino, P., Sanán, D.: Model checking dynamic memory allocation in
operating systems. J. Autom. Reason. 42 (2009) 229–264

8. Fu, C., Milanova, A., Ryder, B. G., Wonnacott, D. G.: Robustness testing of java server
applications. IEEE Trans. Softw. Eng. 31 (2005) 292–311

9. Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., Pasareanu, C., Robby, Zheng, H.: Ban-
dera: extracting finite-state models from java source code. In: Software Engineering, 2000.
Proceedings of the 2000 International Conference on. (2000) 439–448

10. Havelund, K., Pressburger, T.: Model checking java programs using java pathfinder. STTT
2 (2000) 366–381

47

