
Data Mining Service Architecture
An Exploration on Self-organizing Software

Junpeng Bao, Bin Tao, Jie Su and Hui He

Department of Computer Science & Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China

Keywords: Software as a Service (Saas), Self-organizing Software (SOS), Data Mining, Service Composition, Service

Oriented Architecture (SOA).

Abstract: Software as a Service (SaaS) becomes a very important trend in software engineering. In order to practice

the principles of SasS and Service Oriented Architecture (SOA), we introduce a concept of Self-Organizing

Software (SOS) and a simple prototype implementation, called Data Mining Service Architecture (DMS

Arc) in the paper. SOS implies that the software will automatically build and accomplish the executive

entity according to the user requirements. The DMS Arc is a knowledge based service composition system

that aims to encapsulate basic Data Mining functions into meta services and automatically combine those

services according to the stored knowledge models to fulfil a specific Data Mining requirement. We present

some key issues that place in the SOS service cycle. The DMS Arc project is still on developing, and will be

published as a public facility in a Cloud Computing environment.

1 INTRODUCTION

It is a significant problem to increase automatic level

in the software engineering and reduce those

repeated work assigned to human. A computer can

not originally create software by itself, but it can

automatically fulfill some task again and again by

some rules. We present the concept of

Self-Organizing Software (SOS) in order to develop

an automatic software product scheme by means of

assembling a group of basic software service to

accomplish the given requirements. SOS is a model

driven auto-build software process that

automatically constructs software from basic

software units according to user requirement models

and stored knowledge models. SOS pursues the

principles of Service Oriented Architecture (SOA)

and Software as a Service (SaaS) (Papazoglou et. al,

2007; Gold et. al, 2004; Staab et. al. 2003). The

contributions of SOS are that the basic services can

be assembled automatically according to preserved

rules in the system. However, those basic services

will originally developed by human, but them will

be cyclically used automatically.

In this paper, we introduce a SOS prototype,

named as Data Mining Service Architecture (DMS

Arc). Obviously, The DMS Arc encapsulates some

basic steps and functions of Data Mining so as to

combine them to support some simple Data Mining

applications. The DMS Arc is designed for Cloud

Computing environment. The basic services can be

deployed at the different computing nodes, and the

whole architecture will develop to a piece of Data

Mining service cloud that will be published as a

public facility.

2 DATA MINING SERVICE

ARCHITECTURE

2.1 Service Architecture

The DMS Arc uses Service Knowledge Model to

drive service composition. A hypothesis is that it is

not difficult to search a service, and all services are

registered in a unified Service Registration Center

(SRC). The system fetches service requirements in

terms of the knowledge model and user’s

description. Indeed, a service is directly searched in

the SRC by matching the service description with

the user’s requirement description. The user

requirements may match multiple candidate services

so that the DMS Arc has to select the optimal

service composition.

In the traditional architecture, a user has to bind

with the service supplier. It implies that the user is

463Bao J., Tao B., Su J. and He H..
Data Mining Service Architecture - An Exploration on Self-organizing Software.
DOI: 10.5220/0004126504630467
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 463-467
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: The data flow diagram of the software service process in the DMS Arc.

involved in the service process so that is not fit for

thoroughly automatic service composition and

execution. The traditional architecture is useful for

the human-computer interactive applications, such as

Web Game, Social Network. But the Data Mining

services focus on large scale data processing that

usually does not expect human involvement.

Therefore, in the DMS Arc, the actions of a user are

only submitting requirements and waiting for service

results.

There are 3 extern roles in the architecture: the

service requester (i.e. the user), the knowledge model

expert and the service supplier. The inner roles have

2: the Service Registration Center (SRC) and the

Knowledge Registration Center (KRC). The user

submits the requirements and take the final service

results. The expert input knowledge into the KRC.

The service supplier registers the meta service in the

SRC with detail service information. Hence, the

Service Composition Center is an intelligent agent,

which automatically assembles meta services into an

executable entity according to knowledge models and

accomplishes the entire service process.

In the DMS Arc, a user submits requirements so

as to trigger a system service action. The DMS Arc

will parse the user requirements at the first step. That

needs some respective knowledge models in order to

infer the set of candidate meta services that satisfy

the user requirements. At the reasoning step, the

system will find out not only meta services, but also

the assembling pattern of those meta services (i.e. the

service composition model). Since the number of the

satisfied meta services may be more than one, the

system has to retrieve all eligible meta service and

then selects the optimal service composition

according to the service composition model. After

input the service data, the service combining is over.

At last, the system starts the respective service,

administrates those services’ life cycle. When the

whole service procedure is finished, the results will

be sent to the user, and the service executive entities

are dismissed. This is an entire life cycle of a SOS

service, as shown in the figure 1.

2.2 Design of the DMS Arc

2.2.1 Key Issues

The DMS Arc faces the following 7 issues in a SOS

service cycle.

(1) To define and parse the user requirements;

(2) To define and register a knowledge as well as

the organization of the knowledge repository;

(3) To define and register a meta service as well

as the organization of the meta service repository;

(4) To reason and match a knowledge;

(5) To query and match a service;

(6) To compose and verify services;

(7) To execute and administrate services.

When all of these issues are thoroughly settled,

the DMS Arc will be completely built. Now, the

project is just at the beginning, and we would like to

introduce our ideas and a draft implementation of the

DMS Arc in this paper.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

464

2.2.2 User Requirement Definition

It is natural for a user to describe requirements in a

natural language but it is very hard for a computer to

precisely understand and parse the semantic

information from natural language texts. Now a user

has to fill a detail form to define a requirement that

includes:

R=(Name, Des, Pre, In, Exp, Qos, K)

where R denotes a requirement. Name is a name

of the requirement. Des is a short description of the

requirement content. Pre is the pre-condition that has

to be satisfied before the requirement. In presents the

input data. Exp presents the expectation of the result.

Qos is the quality of the service, which is a reserved

interface and not considered at the present. K is the

knowledge model about the service composition. In

order to avoid any ambiguous understanding about

the semantic information of the requirement, the user

has to explicitly choose a rule from the knowledge

repository as the start of the inference.

2.2.3 Knowledge Model Definition

A knowledge model in the DMS Arc is a Directed

Acyclic Graph that defines a transition process

among a set of meta services. In a knowledge model,

a node presents a meta service that is a component of

a combined complex service, an edge presents the

link between two meta services, i.e. the transition of

messages from one meta service to the other. A

knowledge model is used to indicate which service is

deployed and how to assemble those services in order

to fulfil a specific task. A knowledge model is

explicitly defined as follows:

K=(Name, Des, Pre, In, Af, Ao, Out, Post, Qos,

DAG)

Where K is a knowledge model. Name is a name

of the knowledge. Des is a short description of the

knowledge. Pre is the pre-condition that has to be

satisfied before the knowledge is used. In denotes the

input data. Af denotes the effect of the knowledge.

Ao denotes the objects that will be affected by the

knowledge. Out denotes the output data. Post is the

post-condition of the knowledge model. Qos is the

quality of the service, which is a reserved interface

and not considered at the present. DAG is the

directed acyclic graph of the knowledge model,

which is defined as follows:

DAG=(Start, End, [From1, To1], [From2,To2]…)

where Start denotes the start service. End denotes

the end service. [From1, To1] denotes an edge from

the node From1 to the node To1. Every node in the

DAG describes a meta service.

At present, all knowledge models are created and

maintained by expert. They are described in Xml and

stored in the KRC.

2.2.4 Knowledge Matching

If a user does not appoint the start knowledge in the

requirement definition, the system will parse the user

requirement so as to find an appropriate knowledge

model from the KRC to satisfy the requirement. That

is the knowledge matching process. Now we use a

simple matching principle:

R.PreK.Pre  R.InK.In  R.ExpK.Out 

R.QosK.Qos

Where R denotes a user requirement and K

denote a knowledge model. R.PreK.Pre means the

pre-condition of the knowledge can be inferred from

that of the requirement. R.InK. means the input

data of the requirement covers the input of the

knowledge. R.ExpK.Out means the output of the

knowledge contains the expectation result of the

requirement. QosK.Qos means the quality

constraints of the knowledge satisfies that of the

requirement.

2.2.5 Meta Service Definition

There are many widely used service description

scheme, such as Web Services Description Language

(WSDL) (Kona et. al, 2007), Service Composition

Description Language (SCDL) (Yue et. al. 2007) and

Web Ontology Language (OWL)(Ren et. al., 2011).

WSDL is supported by many compile and browser

tools, but it lacks of attributes description, constraint

of service behaviour and context of the service

composition. SCDL supports the context description

of service composition, pays attention on the

constraint of Web service behaviour, but it lacks of

some non-functional properties including quality of

the se

The Xml structure encoding service encodes a

well-formed xml text into a rvice. OWL uses an

explicit computer-understanding markup language to

describe Web service, tries to realize automatic and

intelligent service composition according to semantic

description and logic reasoning.

In DMS Arc, we use QWSDL(Hu et. al, 2005) to

define and describe a meta service. QWSDL is a

modified WSDL, which absorbs some features of

SCDL and expands its capabilities to define a service

with more precise description. In fact, a meta service

is explicitly defined as follows:

Data Mining Service Architecture - An Exploration on Self-organizing Software

465

S=(Name, Des, Pre, In, Af, Ao, Out, Post, Qos)

where S is a meta service. Name is a name of the

service. Des is a short description of the service. Pre

is the pre-condition that has to be satisfied before the

service is used. In denotes the input data. Af denotes

the effect of the service. Ao denotes the objects that

will be affected by the service. Out denotes the

output data. Post is the post-condition of the service.

Qos is the quality of the service, which is a reserved

interface and not considered at the present.

2.2.6 Service Querying and Matching

Service querying is the process to find all meta

services that can satisfy the requirement. Since the

number of eligible services may be more than one.

Service matching is the process to select the optimal

meta services from those candidate services

according to the knowledge model. Then the selected

meta services will be combined to a whole complex

service to fulfil the user’s task.

In a knowledge model DAG, each node is a

service description so that a node will match a

registered meta service. If a service Ks that is

described in a knowledge model DAG’s node is

matched with a registered meta service Sr, they must

satisfy the follows:

Ks.PreSr.Pre  Ks.InSr.In  Ks.Af=Sr.Af 

Ks.Ao=Kr.Ao  Ks.OutSr.Out 

Sr.PostKs.Post  Ks.QosSr.Qos

The DMS Arc service adapter will find the

optimal registered meta service for each node in a

knowledge model.

3 A TEST CASE

3.1 Xml Similarity Detection

We have implemented a simple Xml similarity

detection application to test the DMS Arc prototype.

The basic steps of similarity detection include: Data

Cleaning, Text Encoding, Feature Selecting and

Similarity Calculating. Obviously, there are many

optional algorithms at each step. The detection

strategy is various according to different algorithm

combination. So we cut the whole similarity

detection process into 4 services, i.e. one step one

service. Then a variety of algorithms is encapsulated

into different meta services. As a result, these

services are ready to be published in the Cloud

Computing environment and will be a public facility

to easily rebuild a new detection approach or

compare with different methods.

The DMS Arc is running on the Apache Axis2

framework, which is the second SOAP engine with a

new Xml processing kernel named AXIOM (AXIs

Object Model). In order to expand the flexibility and

scalability of the DMS Arc as well as quick service

development, we use several languages to implement

different services. In fact, the cleaning services are

written in Java, encoding services are written in

Python, the feature selecting services and similarity

calculating services are written in Matlab. There

meta services are deployed on 2 servers. Our meta

services also comply with OSGi (Open Service

Gateway Initiative) specification because it is helpful

to system stability and efficiency.

There is only one knowledge model in the Xml

similarity detection application. The knowledge

defines the basic services (i.e. steps) and their

relationships in the detection process.

Table 1: A Xml structure encoding service.

Attribute Value

Name S_Xml_Structure_Encoding

Des This service encodes a well-formed

Xml document into a sequence of

code by means of multi-level

encode method according to the

Xml document’s structural

information.

In Set(Xml document)

Out Set(code sequence)

Af Method= Multilevel_Encoding

Ao Null

Pre Xml document is well-formed

Post Null

Qos Null

3.2 A Meta Service Example

The Xml structure encoding service encodes a

well-formed xml text into a sequence of code

according to the Xml structure information. Namely,

this service converts a Xml document into a code

series so that some series analysis methods, such as

Fourier Transform and Wavelet Transform (Su and

Bao, 2012), can be applied to Xml documents. There

is a variety of structure encoding methods, for

example, Trivial Encoding, Multilevel Encoding,

Pairwise Encoding and Linear Encoding.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

466

4 CONCLUSIONS

SaaS is a very important trend in the software

engineering. We introduce an ongoing project of a

SOS system prototype to practice the principles of

SaaS. The ideas of the DMS Arc are that the basic

functions in Data Mining are encapsulated into meta

services and a service composition route is defined

by a knowledge model. As a result, services can be

extracted from a user requirement and automatically

combined into a complete executive process

according to the stored knowledge model. We

believe that the DMS Arc will develop to a real SOS

system when the knowledge models and meta

services are enriched enough in the future.

ACKNOWLEDGEMENTS

This research is supported by National Natural

Science Foundation of China (Grant 60903123), the

Fundamental Research Funds for the Central

Universities and the Baidu Theme Research Plan on

Large Scale Machine Learning and Data Mining.

REFERENCES

C. Atkinson, P. Bostan, O. Hummel, D. Stoll, 2007. A

Practical Approach to Web Service Discovery and

Retrieval. IEEE ICWS 2007, Salt Lake City, Utah,

USA. pp. 241-248.

N. Gold, A. Mohan, C. Knight, M. Munro, 2004.

Understanding service-oriented software. IEEE

Software, 21(2):71-77.

J. Q. Hu, P. Zou, H.M. Wang, B. Zhou, 2005. Research on

Web Service Description Language QWSDL and

Service Matching Model. Chinese Journal of

Computers. 28(4):505-512.

S. Kona, A. Bansal, G. Gupta, 2007. Automatic

Composition of Semantic Web Services. IEEE ICWS

2007, USA, pp. 150-158.

M. P. Papazoglou, W. J. Van Den Heuvel, 2007. Service

Oriented Architectures: Approaches, Technologies and

Research Issues. VLDB Journal, 16(3):389-415.

K. J. Ren, N. Xiao, J. J. Chen, 2011. Building Quick

Service Query List Using WordNet and Multiple

Heterogeneous Ontologies toward More Realistic

Service Composition. IEEE Transactions on Services

Computing. 4(3):216-229.

J. Su, J. P. Bao, 2012. A Wavelet Transform Based

Structural Similarity Model for Semi-structured Texts.

Advance in Intelligent and Soft Computing.

135:159-167.

S. Staab, et. al. 2003. Web Services: Been There, Done

That? IEEE Intelligent Systems, 18:72-85.

K. Yue, et. al. 2007. SCDL: An Object-Oriented Web

Services Composition Description Language. Journal

of Yunnan University, 29(1):24-31.

Data Mining Service Architecture - An Exploration on Self-organizing Software

467

