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Abstract: Network Calculus (NC) offers powerful methods for performance evaluation of queueing systems, especially
for the worst-case analysis of communication networks. It is often used to obtain QoS guarantees in packet
switched communication systems. One issue of nowadays’ research is the applicability of NC for multiplexed
flows, in particular, if the FIFO property cannot be assumed when merging the individual flows. If a node
serves the different flows using another schedule than FIFO, the terms ’strict’ or ’non-strict’ service curves
play an important role. In this paper, we are dealing with the problems of strict and non-strict service curves
in connection with aggregate scheduling. In the literature, the strictness of the service curve of the aggregated
flow is reported as a fundamental precondition to get a service curve for the single individual flows at demul-
tiplexing, if the service node process the input flows in Non-FIFO manner. The important strictness-property
is assumed to be a unique feature of the service curve alone. But we will show here that this assumption is
not true in general. Only the connection with the concrete input allows to classify a service as curve strict or
non-strict.

1 INTRODUCTION

For systems with hard real time requirements,timeli-
nessplays an important role. This quality of service
(QoS) requirement can be found in all kinds of em-
bedded systems that permanently exchange data with
their environment, like automotive applications, real
time networks etc.

A mathematic-analytical performance evaluation
of such systems cannot be based on stochastic model-
ing like traditional queueing theory: the knowledge of
mean values is not enough. Worst-case performance
parameters like maximum delay of service times are
needed. In other words, one needs a mathematical
tool that guarantees performance figures in form of
bounding values which are valid in any case. Such a
tool isNetwork Calculus(NC), as a novel system the-
ory for deterministic queueing systems (Cruz, 1991),
(Le Boudec and Thiran, 2001).

The most important modeling elements of NC are
thearrival curveandservice curvetogether with the
min-plus convolution. – We only present some fun-
damental definitions, more details can be found in
(Le Boudec and Thiran, 2001).

Let F be a flow of data (bits, messages, packets,
etc.) into a systemS, let x(t) be the amount of data of
F arriving in time interval[0, t] andy(t) the amount
of data leavingS in time [0, t]. F is constrained by

an upper envelope and has thearrival curve α iff
x(t)− x(s) ≤ α(t − s) for all 0 ≤ s≤ t, whereα is
a non-negative, non-decreasing function.
A service curveβ describes a lower bound for the out-
put y(t) and is offered byS iff β is a non-negative,
non-decreasing function withβ(0) = 0 and y(t) ≥
(x⊗g)(t) := inf0≤s≤t{x(s)+β(t− s)}.
⊗ is theconvolution operator. The constraints given
by the arrival and service curves for a flow suffice to
calculate upper bounds on delay, backlog and output
of service nodes.

A commonly used arrival curve is thetoken bucket
constraintαr,b(t) = b+ rt for t > 0 and zero other-
wise.αr,b provides an upper limit for traffic flowsx(t)
with average rater and instantaneous burstb.

A very important service curve is therate-latency
functionβ(t)= βR,T(t) =R· [t−T]+ :=R·max{0;t−
T}. The rate-latency function reflects a service ele-
ment which offers a minimum service of rateR af-
ter a worst-case latency ofT. Worst-case perfor-
mance evaluation allows to abstract from the schedul-
ing strategies of complex systems.
In figure 1, the blue graph shows a token bucket ar-
rival curve αr,b and the green one reflects a rate-
latency service curveβR,T(t).

If the node or system serves the incoming data of
a flow in FIFO order, the following bound is com-
putable:
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Theorem 1 (Delay Bound). Assume a flow con-
strained by arrival curveα(t) is passing a system with
service curveβ(t). The maximum virtual delay d is
given as the supremum of all possible virtual delays
of data, i.e. it is defined as the supremum of the hor-
izontal deviation between arrival curve and service
curve:

d ≤ sups≥0{inf{τ : α(s) ≤ β(s+ τ)}}.

The output flow is constrained by the arrival curve
α∗(t) = α⊘β := sups≥0{α(t + s)−β(s)}
Figure 1 depicts this delay boundd andα∗.

Figure 1: Example for the bounds.

2 AGGREGATE SCHEDULING

Until now, we have only considered the service of a
single flow. But in real systems,aggregate scheduling
arises in many cases (Ying et al., 2008). In (Charny
and Le Boudec, 2000), delay bounds for general FIFO
networks are given.

When not only one single flow but many input
flows enter some kind of data processing system and
are then handled as a whole stream of data, we speak
of aggregate scheduling.

The main goal is to derive end-to-end bounds
(Schmitt et al., 2007). Important examples are Differ-
entiated Service domains (DS) of the Internet. In or-
der to address such class-based networks, we have to
consider multiplexing and aggregate scheduling. As-
sume thatn flows enter a system or system node and
are scheduled by aggregation. According to (Fidler
and Sander, 2004), the aggregate input flow and ar-
rival curve are defined by addition of the input func-
tions respective arrival curves. Whenn = 2, the ag-
gregated input flow isx(t) = x1(t)+ x2(t) and
α(t) = α1(t)+α2(t).

Figure 2 illustrates some important questions: Is
it possible to apply the same analysis, e.g. to calcu-
late the maximum delay using theorem 1 to the single
flows xi? Does there exists a service curveβi for the

Figure 2: Multiplexing of flows: inputxi , outputyi , arrival
& service curveαi , β = βaggr.

individual flow xi that allows us to use theorem 1 to
find the maximum delay for the single flowsxi , when
we assume that the aggregate flow is serviced and sub-
sequently demultiplexed?

The answers to these questions depend on the type
of multiplexing, i.e. in which manner the aggregate
scheduling is done: FIFO (as e.g. in (Rizzo, 2008)),
priority-scheduling, multiplexing by unknown arbi-
tration between the flows etc. Together with the par-
ticular scheduling strategy, one has to take the ser-
vice curve of the aggregate flow into consideration.
For instance in case of FIFO, the family of func-
tionsβ1

θ(t) := [β(t)−α2(t − θ)]+ if t > θ (otherwise
β1

θ(t) := 0) is a service curve for the single flowx1:
y1 ≥ x1 ⊗ β1

θ, wherey1 is the output of flowx1 (as-
sumedα2 is arrival curve of flowx2, θ ≥ 0, β1

θ is non-
negative and non-decreasing).

However, if no knowledge about the choice of ser-
vice between the flows is present, then we speak of
arbitrary multiplexing (Schmitt et al., 2008) orblind
multiplexing, and the situation is more complex. Now,
the distinction betweenstrict andnon-strictaggregate
service curves plays an important role (Le Boudec and
Thiran, 2001).

Theorem 2 (Blind Multiplexing.). Consider a node
serving the flows x1 and x2, with some unknown arbi-
tration between the two flows. Assume the node guar-
antees a strict service curveβ to the aggregate of the
two flows and that flow x2 is bounded byα2. Define
β1(t) := [β(t)−α2(t)]+. If β1 is wide-sense increas-
ing, then it is a service curve for flow x1.

A service curve is called strict when the following
definition holds:

Definition 1 (Strict Service Curve). A system S offers
a strict service curveβ to a flow if during any back-
logged period[s, t] of duration u= t − s the output y
of the flow is at least equal toβ(u), i.e. y(t)− y(s) ≥
β(t − s), or equivalently y(z)≥ β(z) ∀z∈ [s, t].

Of course, any strict service curve is also a regular
service curve.
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Figure 3: Strict and non-strict server.

Example 1. Figure 3 shows a token bucket-like in-
put x= rt +b and a service curveβ(t) = R· t on the
left-hand side. Here, the output y(u) ≥ β(u) in all
backlogged periods u less than or equal to the busy
period. Thus, in this scenario, the service curveβ is
strict.

If we change the service curveβ(t) = R· t to the
rate-latency service curveβR,T(t) = R· [t−T]+ at the
right-hand side of figure 3, we get anon-strict service
curve. The backlogged time starts at time zero, but
never ends, since all input data ofx remains within
the system for timeT before leaving with rateR. The
definition of the service curve specifies the outputy
asy(t)≥ (x⊗β)(t). Indeed, it is valid that the output
y(u0)≥ βR,T(u0), but this is not guaranteed regarding
the backlogged periodu> u0. Thus, it is possible that
y(u) 6≥ βR,T(u) as(x⊗βR,T)(u)−(x⊗βR,T)(0) = (x⊗
βR,T)(u)< βR,T(u) = βR,T(u)−βR,T(0) if T > 0. In
this scenario, the service curveβ is non-strict.

Example 1 already provokes the question: Is there
a class of service functions that always have the prop-
erty of beingstrict or non-strict? In the literature,
the service curveβR,T(t) = R· [t −T]+ (or even any
convex service curve) is often used as strict service
curve per se, for instance in (Bouillard et al., 2007).
But we will see that thestrictnessor non-strictnessis
not based on the service curve or a class of service
curves alone, but it depends on both the service curve
β and the respective input flowx. That means that we
have to check whether the strictness is given for the
aggregated input flow before applying the important
theorem 2 in many aggregated flow-situations, i.e. we
need to proof the condition
y(t)≥ β(t), ∀t ∈ backlogged periodu.

Concerning this matter now, at least for most prac-
tical applications using token bucket like input flows
and rate-latency service curvesβR,T , we will provide
here some characterizations.

Theorem 3 (Non-strict Functions.). Consider a sys-
tem with rate-latency service curveβR,T and token
bucket arrival curveαr,b, holding the conditions r<R
and T> 0. The service curveβR,T cannot be strict, if
the input flow x(t) is a strictly increasing function.

Proof: AssumeβR,T is strict.
α∗(t) = α ⊘ β := sups≥0{α(t + s) − β(s)}, here
α∗(t) = r(t+T)+b. Becauser <R, there is a point in
timets ,such thatβR,T(ts)=α∗(ts) andβR,T(t)>α∗(t)
if t > ts, i.e. ∀ t0 > ts : βR,T(t0)−α∗(ts) ≥ α∗(t0)−
α∗(ts) ⇒ ∆βR,T = βR,T(t0) − βR,T(ts) ≥ α∗(t0) −
α∗(ts) = ∆α∗.
Since x is strictly increasing, and latencyT > 0, it
holds for anyt0 > ts: u := t0− ts is a backlogged pe-
riod.
βR,T is supposed to be strict, so outputy(u) ≥
βR,T(u) = βR,T(t0) − βR,T(ts) ≥ α∗(t0) − α∗(ts) =
α∗(t0− ts). But this is a contradiction toα∗ being an
arrival curve for outputy. Therefore, the assumption
is wrong, i.e.βR,T is non-strict.2

Unfortunately, the feature of being a non-strictly
increasing inputx is not a sufficient condition for a
strict service curveβR,T : Using the same token bucket
arrival curveαr,b and rate-latency service curveβR,T ,
one can find non-strictly increasing input functionsx
that make the service curveβR,T both strict and non-
strict. The following examples will show this.

Example 2. Be αr,b := 1,5t + 5 for t > 0 and zero
else andβR,T := 2(t − 2)+. Be the input x such that
it is first identical withαr,b and then stagnates at time
t ′. Here, the parameter t′ is computed using the equa-
tion αr,b(t) = βR,T(t + T). This guarantees that no
displacement of theβR,T-graph within the convolution
graph of x⊗ βR,T occurs: 1,5t + 5= 2((t + 2)− 2).
t = t ′ = 10 fulfills this equation. So, we define the
input as

x :=







0 : t ≤ 0
1,5t+5 : t ≤ 10

20 : else

Result: The service curveβR,T is strict.
Next, only the inputx is changed a little bit from

x to a x̃, and the service curveβR,T = 2(t − 2)+ is
automatically transformed to be non-strict:

Be x̃ :=







0 : t ≤ 0
0,75t+2,5 : t ≤ 10

10 : else

(x̃ is still monotonous and non-strictly increasing.)
Result: βR,T is non-strict now with this input ˜x.

Figure 4 demonstrates both situations.
Due to the previous demonstration, the following
characterization of input functions can be given:

All input functionsx of the form (or multiple pat-
tern of this)

x :=

{

mt+n : t ≤ t0 ≤ t́
const : else
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Figure 4: Inputx changed to ˜x causes non-strictness.

cause the service curveβR,T to be strict, when the
constant part ofx starts within the red-dashed trian-
gle with the corner points 0bP or on the edge of as
shown in figure 5.

Here,ub is the begin andue the end of the back-
logged period,b is the burst size of the arrival curve
αr,b andP= P(t́, ý) with t́: αr,b(t́) = βR,T(t́ +T), i.e.
the intersection ofαr,b with the parallel line toβR,T ,
given by the curvey= Rt.

Figure 5: Input area makingβR,T strict.

3 CONCLUSIONS

In this paper, we illustrated one particular problem
that arises in situations of blind multiplexing when
using the methods of network calculus: The construc-
tion of a service curve for the single output after de-
multiplexing an aggregated flowx = x1+ x2 requires
the strictness of the aggregated service curve.

In publications like (Bouillard et al., 2007) or
(Schmitt et al., 2008) and others, it is assumed that
the rate latency service curve (often used as an aggre-
gated service curve) fulfills the strictness property.
However, we showed that the feature of beingstrict or
non-strictis not a unique feature of the service curve

alone. Only in combination with the concrete input or
at least with a special class of inputs, we can decide
whether a service curve is strict or non-strict.
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