
EMF on Rails

Rosa López-Landa1, Julieta Noguez1, Esther Guerra2 and Juan de Lara2

1Computer Department, Tecnológico de Monterrey, Mexico City Campus, Mexico City, Mexico
2Computer Science Department, Universidad Autónoma de Madrid, Madrid, Spain

Keywords: Model-driven Engineering, Spring Roo, Code Generation.

Abstract: In this paper we propose leveraging existing frameworks for automated web application development, in the
style of Ruby on Rails, Grails and Spring Roo, for their use within a Model-Driven Engineering process. Our
approach automates the construction of domain-specific generators for web applications in particular domains.
These generators are able to synthesize web applications using Spring Roo, starting from annotated models.
In this way, designers of web applications do not need to be proficient in web automation frameworks, but
they can benefit from the use of domain-specific, intuitive models. We illustrate our approach by generating
an application to edit Eclipse Modelling Framework (EMF) models through the web.

1 INTRODUCTION

Web applications have become popular recently be-
cause, unlike standalone systems, they are distributed
and accessible to a large number of users. Struc-
turally, web applications are based on a client-server
architecture where clients make requests to one or
more service and resource providers. Rapid Applica-
tion Development (RAD) is a methodology that im-
proves the productivity of software development by
allowing the construction of new systems from ex-
isting components (Poulin, 1993). Reusing software
components eliminates the need of investing time and
effort in developing components that can be generated
automatically. This reduces development costs.

The rapid changes and the obvious results of the
globalization have forced web applications to adopt
new technologies, methodologies and approaches.
In this context, Model-Driven Engineering (MDE)
(Völter and Stahl, 2006) effectively helps in improv-
ing the overall maintenance of web applications and
promotes a better manageability of the technological
changes they may go through. MDE relies on model
abstractions of the applications rather than on imple-
mentation details. Developers are provided with cus-
tomized domain-specific languages, tailored to a spe-
cific concern, which promotes higher levels of pro-
ductivity. From these domain-specific models, the fi-
nal application is generated, so that the developers do
not need to deal with low-level, accidental details of
the systems.

Recently, several frameworks for the automated
development of web applications have been pro-
posed, built on top of general-purpose languages like
Java (Spring Roo1), Ruby (Ruby on Rails2), Python
(Django3) and Groovy (Grails4). They accelerate web
development by using convention over configuration
(i.e., using sensible defaults for every aspect of the ap-
plication), freeing the developer from repetitive tasks,
and by generating skeleton code from higher level
commands. However, they still require the developer
to be proficient in the base language they are built
upon, and the different technologies used, in order to
complete the generated skeleton code.

To alleviate this situation, we propose leveraging
those powerful, but still low-level frameworks for its
use in combination with MDE. Our approach is to
use these frameworks (in particular Spring Roo) as
back-end for web application development. For this
purpose, we propose an MDE architecture that au-
tomates: (1) the model-based construction of code
generators for families of web applications, and (2)
the construction of web applications using the pre-
vious generators, starting from domain-specific mod-
els. The advantage of our approach is that it helps in
the construction of domain-specific code generators,
from which different web applications of a given do-
main can be easily generated from models. Instead,

1http://www.springsource.org/spring-roo
2http://rubyonrails.org
3https://www.djangoproject.com
4http://grails.org

273López-Landa R., Noguez J., Guerra E. and de Lara J..
EMF on Rails.
DOI: 10.5220/0004123202730278
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 273-278
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

using web application frameworks like Spring Roo
eases the construction of one particular application,
but not families of applications for the same domain.

The rest of the paper is organized as follows. Sec-
tion 2 introduces MDE and Spring Roo. Next, sec-
tion 3 describes EMF on Rails, our MDE approach to
develop web applications. Section 4 presents a usage
example of this tool. In section 5, we discuss some
related work. Finally, section 6 concludes.

2 BACKGROUND

2.1 Model-driven Engineering

Model-Driven Engineering (MDE) is a software de-
velopment paradigm that promotes an active use of
models to conduct the different phases of software
projects. Hence, models are used to specify, anal-
yse, verify, test and generate code for the final ap-
plications. In MDE, models are frequently built us-
ing Domain-Specific Languages (DSLs) that gather
abstractions and primitives of the domain. These
domain-specific models describe the systems from the
problem domain perspective, instead of focussing on
the technological solution space. The syntax of DSLs
is normally defined through a model, called meta-
model, which describes the primitives, abstractions
and relations of the domain. The manipulation of
models, e.g., for simulation or optimization purposes,
is defined using model transformation programming
languages. Moreover, DSLs are complemented with
code generators to produce most or all the code for
the final application.

Similar to annotations for Java, models can be an-
notated with elements providing extra information,
conveying special semantics to particular elements.
Annotations are frequently used as a previous step to
code generation. They are defined in so-called pro-
files, which can be seen as an extension mechanism
for models. Profiles have been widely used to an-
notate the UML language, and have been recently
proposed as an extension mechanism for DSLs as
well (Langer et al., 2011).

The Object Management Group (OMG) supports
a flavour of MDE, called Model-Driven Architec-
ture (MDA) (Kleppe et al., 2003). MDA uses stan-
dards like the MetaObject Facility (MOF) for meta-
modelling, and the QVT (Query/View/Transforma-
tions) language (OMG, 2005) for model transfor-
mations. Widely used (partial) implementations of
the MOF exist, most notably the Eclipse Modeling
Framework (EMF) (Steinberg et al., 2008), which in-

deed is the de-facto standard meta-modelling frame-
work for MDE.

While EMF is very successful, there are currently
no widely adopted QVT implementations. Thus, in
this work, we use the Atlas Transformation Language
(ATL) (Jouault et al., 2008) as it is one of the most
popular transformation languages nowadays. ATL
is a rule-based declarative model transformation lan-
guage, where transformations are specified by map-
ping object patterns from the source model into pat-
terns of the target model.

2.2 Spring Roo

Spring Roo (Long, 2011; Rimple and Penchikala,
2012) is a Java productivity tool for building enter-
prise applications. This project provides a command-
line shell where special commands can be issued to
automatically create high quality web applications.
The importance of this project lies in its ability to fa-
cilitate the development of high quality web applica-
tions, based on a set of architecture patterns and best
practices, just in minutes.

The aim of Spring Roo is to improve Java devel-
oper productivity without compromising the integrity
or flexibility of the solution (Spring Source Commu-
nity, 2012). Figure 1 depicts the Spring Roo ap-
proach, where developers type commands that shape
the web application (a). These commands are inter-
preted by the command-line shell (b) to produce a
Java web application (c) with a database (d). If there
are special requirements, such as securing the access
to the web application, developers need to use add-
ons. Spring Roo is based on a modular architecture
that supports the installation of third-party add-ons.
In this way, users can extend the capabilities of the
project (Spring Source Community, 2012). Each add-
on incorporates a set of commands and functions to
the shell of Spring Roo that allow building different
types of applications depending on the used modules.
If an application has special requirements for which
there is no add-on available, then developers must
create their own add-ons (e) and add their own com-

���� ���

��		
��

���� ���

��		
��

����

�����
����

����

�����
����
�����������

��		
��������
����

� �

�

�
�
�

�

�

������������������ �������

������

�������

������

�
�
�
�

�

Figure 1: Web application development with Spring Roo.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

274

Annotations

(Profile)

Add-on Model

Roo Add-on

(Skeleton)

Model

transformation

& code generation

Designer

of the

Customized

Web Generator

Meta-Model of

the Domain

Repository of
commands

a

b

c

d

Figure 2: Step 1: Building a customized web generator.

mands to the script of Spring Roo (f). Then, these
commands can be used to produce a web application
that takes into account the special requirements.

3 PROPOSED ARCHITECTURE

The aim of MDE is to develop software from mod-
els and model transformations, rather than by hand-
crafted code. Taking this into consideration, we pro-
pose EMF on Rails, an approach for web application
development that is integrated within the Spring Roo
project and the Eclipse Modeling Framework. In this
way, we consider the automated development of cus-
tomized environments and generators for families of
web applications (see Figure 2). Such generators are
then used to automatically generate web applications
for specific domains, as can be seen in Figure 4.

Figure 2 shows the envisioned architecture of our
proposal. In particular, the design of a customized
web generator comprises building a meta-model or
DSL of the domain (e.g., of an e-learning system), as
well as an add-on model with specific commands that
the code generation using Spring Roo will need. The
DSL (marked as (a) in the figure) will be used later
to build models from which the final web application
will be generated. The add-on model (marked as (b)
in the figure) includes a description of the domain-
specific functionality (commands) used by the web
applications to be generated.

Figure 3 depicts the meta-model that permits
building add-on models. This is made of:

Addon. This class contains the metadata of the
Spring Roo add-on. It has a name which corre-
sponds to the add-on identifier, the URI of the
Ecore meta-model of the domain that is being
used, and a set of commands.

Command. This class represents a command of the
Spring Roo shell. Each command has a name, a
category, a help message, an eObjectType and a
set of parameters. The name and the category de-
termine how the command will be typed on the

Figure 3: Meta-model for Spring Roo add-ons.

shell. The eObjectType stores the relationship be-
tween the command and an object from the meta-
model.

Param. This class represents a parameter of a com-
mand. Each parameter has a name, a type, a help
message and a boolean flag to indicate if the pa-
rameter is required or not.

From the add-on model, we use an ATL transfor-
mation and a code generator to produce: a profile that
will be used to automatically annotate the models de-
fined by the user of the generator framework (see (c)
in Figure 2), and a set of Java classes with a skeleton
of the Roo add-on that will be used for code genera-
tion (see (d) in Figure 2). The generated Java classes
are skeletons that the designer needs to complete by
hand with the specific functionality. We foresee hav-
ing a repository of typical Roo commands that can be
reused when designing a new generative framework.
Such a repository is currently being developed.

Once the domain-specific generative framework is
built, it can be used to generate families of web appli-
cations within a particular domain, as Figure 4 shows.
The designer of the web application only needs to de-
scribe the application using a model, which is an in-
stance of the meta-model of the domain (see (a) in
Figure 4). Then, this model is automatically anno-

Roo Script

Final Application

User of

the Customized

Web Generator

Model of the Domain

User of

Web Application

Automatic
annotation

Automatic
code

generation

Spring Roo
+

generated
add-on

a

c

d

Annotated Model

b

Figure 4: Step 2: Using the customized web generator to
synthesize the final web application.

EMF�on�Rails

275

Figure 5: Add-on model of the EMF web editor. This model
is an instance of the meta-model shown in Figure 3.

tated using the profile that was generated from the
add-on model (see (b) in the figure), and a Roo script
is subsequently generated based on these annotations
(see (c) in the figure). The Roo script utilizes the add-
on previously defined, and is used to synthesize the
final web application using Spring Roo (see step (d)
in the figure). The automatic annotation process and
the Spring Roo script generation are detailed on the
Model2Roo project (Castrejón et al., 2011).

4 EXAMPLE

To test the EMF on Rails approach, we have devel-
oped an editor for building models through a web ap-
plication. The application allows the instantiation of
meta-models, as well as the serialization of models as
XMI files in the same way as it is done within Eclipse
using EMF. Additionally, the application stores mod-
els in a database, so that model objects can be easily
reused across different models. This has the advan-
tage that not only models, but also model fragments,
can be serialized into XMI files. Indeed, this func-
tionality goes beyond what is available in the standard
EMF model tree editor.

As explained in the previous section (Figure 2), to
develop this application we needed to define (a) the
meta-model of the domain and (b) the add-on model
of the EMF web editor. Step (a) was not necessary
in this case because we directly used the meta-meta-
model of EMF, so that the user of the customized web
generator can generate web applications from Ecore
meta-models (step (a) in Figure 4). For step (b), we
built an instance of the add-on meta-model shown in
Figure 3. Figure 5 shows this instance, which defines
(1) a command to generate the Java classes from an
Ecore meta-model; and (2) a command to serialize,
within the web application, instances of a meta-model
in XMI format.

Starting from the add-on model, we generated the
annotations profile (see Figure 6) and the code skele-
tons of the two Spring Roo commands that make up
the add-on. Then, we added the code for the Java
classes of the Spring Roo add-on commands. With
these two steps, we were able to generate the cus-
tomized web generator for the family of web editors

Figure 6: Annotations from the EMF web editor.

for EMF models.
To test the web generator, we have developed

a meta-model for describing e-learning systems that
include an Intelligent Tutoring Systems (ITS) (Self,
1999; Devedzic and Harrer, 2005). This corresponds
to step (a) in Figure 4. Intelligent tutoring systems are
tools that incorporate artificial intelligence techniques
to help students gain knowledge during the teaching-
learning process. Figure 7 shows the most significant
elements of our tutor, which is composed of learning
objects (such as lessons and tests) and Bayesian net-
works (Pearl, 1988; Jensen, 2001) to infer knowledge.

Once we had an initial version of the ITS meta-
model, it was automatically annotated using the anno-
tations generated previously. This step corresponds to
(b) in Figure 4. Finally, we executed the transforma-
tion that generates the Spring Roo script (step (c) in
Figure 4). The transformation transforms the annota-
tions into Spring Roo commands, including the com-
mands defined in the EMF add-on model described
at the beginning of this section. Then, this script was
processed within the Spring Roo command-line shell
(step (d) in Figure 4) to produce the final web appli-
cation shown in Figure 8. Altogether, each class of

Figure 7: Most significant elements in the tutor model.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

276

Figure 8: Graphical user interface generated by Spring Roo.

the tutor model was transformed into an element of
the menu (1). Moreover, Spring Roo generated op-
erations to create (2), read (3), update (4) and delete
(5) objects. The layout of the generated web applica-
tion is the same for any application built with Spring
Roo. However, as a result of using the EMF add-on,
the generated web applications can generate XMI files
(6) from the data stored in the database.

Figure 9 shows an instance of the tutor meta-
model generated using the EMF web editor, which
comprises two learning objects. It can be seen that
our web editor is equivalent to use the EMF editor,
in the sense that both editors generate the same XMI
files. Nevertheless, with the database of the web ap-
plication generated with Spring Roo, users can easily
reuse object instances. Also, if the web application is
deployed on a web server (such as Tomcat, Glassfish
or Jetty), users can edit it through mobile devices and
share model objects.

To summarise, once the generator is built, we can
use it to synthesize a customized web application for
any Ecore meta-model. It should be noted that the
generation of the web application from the tutor meta-
model shown in Figure 7 did not require any cod-

Figure 9: A tutor instance generated with the web editor and
shown through the EMF editor.

ing or developer intervention. Users of the generator
are only required to provide the model of the domain
(step (a) in Figure 4). In this way, EMF on Rails expe-
dites and facilitates the development of web applica-
tions providing significant savings in time and effort
without requiring expertise in system development.

5 RELATED WORK

There has been a lot of supporting work for models
to source code transformations. Regarding web ap-
plication development, we can mention the work of
Hou et al (Hou et al., 2006), where a modelling ap-
proach for web applications models, based on UML
extensions, is proposed. We can also highlight the
work described by Abdella (Daissaoui, 2010) where
an approach based on the extension of UML class di-
agrams, and the use of the EMF framework to build
Java web applications, is proposed.

Several authors have proposed domain-specific
languages for web modelling, like WebML (Ceri
et al., 2000), WSDM (Troyer and Leune, 1998), OO-
METHOD (Pastor et al., 2001) or Labyrinth (Dı́az
et al., 2001). Apart from the last proposal, the other
modelling languages include a dedicated language to
model the concepts of the domain, and follow model-
driven approaches to generate the final application
from models describing different aspects of the ap-
plication, such as presentation and navigation.

Our work differs from the previous ones in that we

EMF�on�Rails

277

support the automated construction of generators for
families of web applications, and not only single web
applications.

6 CONCLUSIONS

In this paper, we have proposed an approach that
combines MDE with automation frameworks for web
development like Spring Roo. Our approach auto-
mates the creation of code generators for families of
web applications. This enables the rapid generation
of domain-specific web applications from annotated
models by generating Spring Roo scripts. We have
illustrated our approach with the generation of a web
application for editing EMF models, thus enabling,
e.g., editing models through mobile devices. Simi-
larly we have shown that EMF on Rails provides sig-
nificant savings in time and effort for web application
development.

EMF on Rails is currently in development. There-
fore, the future work includes (1) adding a command
library that facilitates the reuse of commands; (2) de-
veloping an add-on to propagate evidence and infer
knowledge in Bayesian networks; and (3) improving
the tutor model.

ACKNOWLEDGEMENTS

This work was supported by a grant provided by
CONACyT and Tecnológico de Monterrey, Mexico
City Campus. This research is part of the project ”Dy-
namic Probabilistic Graphical Models and their Ap-
plications”, number 95185, funded by CONACyT and
the European Union through FONCICyT. This work
is also supported by the Spanish Ministry of Econ-
omy and Competitivity (TIN2011-24139) and the
R&D programme of the Madrid Region (S2009/TIC-
1650).

REFERENCES

Castrejón, J. C., López-Landa, R., and Lozano, R. (2011).
Model2Roo: A model driven approach for web ap-
plication development based on the Eclipse Modeling
Framework and Spring Roo. In CONIELECOMP’11,
pages 82 –87.

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web model-
ing language (WebML): a modeling language for de-
signing web sites. Computer Networks, 33(1-6):137–
157.

Daissaoui, A. (2010). Applying the MDA approach for the
automatic generation of an MVC2 web application. In
RCIS’10, pages 681 – 688.

Devedzic, V. and Harrer, A. (2005). Software patterns in
ITS architectures. Int. J. Artif. Intell. Ed., 15(2):63 –
94.

Dı́az, P., Aedo, I., and Panetsos, F. (2001). Modeling the
dynamic behavior of hypermedia applications. IEEE
Trans. Software Eng., 27(6):550–572.

Hou, J., Wan, J., and Yang, X. (2006). MDA-based model-
ing and transformation approach for web applications.
In ISDA’06, pages 867–874. IEEE CS.

Jensen, F. V. (2001). Bayesian Networks and Decision
Graphs. Springer-Verlag New York, Inc.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I.
(2008). ATL: A model transformation tool.
Science of Computer Programming, 72(1-
2):31 – 39. See also http://www.emn.fr/z-
info/atlanmod/index.php/Main Page. Last accessed:
Nov. 2010.

Kleppe, A. G., Warmer, J., and Bast, W. (2003). MDA
Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing
Co., Inc.

Langer, P., Wieland, K., Wimmer, M., and Cabot, J. (2011).
From UML profiles to EMF profiles and beyond.
In TOOLS’11, volume 6705 of LNCS, pages 52–67.
Springer.

Long, J. (2011). Getting Started with Roo. O’Reilly.
OMG (2005). MOF QVT Final Adopted Specification. Ob-

ject Modeling Group.
Pastor, O., Gómez, J., Insfrán, E., and Pelechano, V. (2001).

The OO-method approach for information systems
modeling: from object-oriented conceptual modeling
to automated programming. Inf. Syst., 26(7):507–534.

Pearl, J. (1988). Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kauf-
mann Publishers Inc., San Mateo, California.

Poulin, J. S. (1993). Integrated support for software reuse
in computer-aided software engineering (case). SIG-
SOFT Softw. Eng. Notes, 18(4):75–82.

Rimple, K. and Penchikala, S. (2012). Spring Roo in Action.
Manning Publications.

Self, J. (1999). The defining characteristics of intelligent
tutoring systems research: Itss care, precisely. Int. J.
Artif. Intell. Ed., 10:350 – 364.

Spring Source Community (2012). Spring roo project.
http://www.springsource.org/spring-roo/.

Steinberg, D., Budinsky, F., and Paternostro, M. (2008).
EMF: Eclipse Modeling Framework. The Eclipse Se-
ries. Addison-Wesley Professional, second edition.

Troyer, O. D. and Leune, C. J. (1998). WSDM: A user
centered design method for web sites. Computer Net-
works, 30(1-7):85–94.

Völter, M. and Stahl, T. (2006). Model-driven software de-
velopment. Wiley.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

278

