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Abstract: This short paper presents a preliminary analysis of the impact of model parameter uncertainty on the accu-
racy of solution algorithms for the scheduling problems with the learning effect. We consider the maximum
completion time minimization flowshop problem with job processing times described by the power functions
dependent on the number of processed jobs. To solve the considered scheduling problem we propose heuristic
(NEH based) and metaheuristic (simulated annealing) algorithms. The numerical experiments show that NEH
and simulated annealing are robust for this problem with respect to model parameter uncertainty.

1 INTRODUCTION This paper is organized as follows. Next section
contains the problem formulation. Approximation al-
Classical flowshop scheduling problems are perceivedgorithms with the analysis of their efficiency are given
to be more interesting in a theoretical context than as subsequently. The last section concludes the paper.
a practical research (Gupta and Stafford, 2006). It fol-
lows from observations that algorithms constructed
on the basis of the classical models usually provide 2 PROBLEM FORMULATION
unsatisfactory (unstable) solutions for real-life flow-
shop problems, since these models do not take intoy,
consideration additional factors such as the learning
effect that is significant in practice (Biskup, 2008), qicts of a seD — {O1},...,0Om;j} of m operations.
(Lee and Wu, 2004), (Rudek, 2011). _ Each operatioiD, j has to be processed on machine
A schedule for a real-life problem (e.g., in man- M, (z=1,...,m). I\/’Ioreoveroperatioﬁ)H” may start
ufacturing or computer systems) is calculated on the only if O is completed. It is assumed that machines

basis of a model and values of its parameters. Duepaye (o process jobs in the same order, i.e., a permuta-
to the possible differences between estimated and realjgp, flowshop, and each machine can process one op-
values of problem parameters (€.g., shape of the learn-gra1ion at a time. There are no precedence constraints
ing curve, job processing times), the algorithms that penyeen jobs, operations are non-preemptive and are
are efficient for the modelled problem do not have 5y qilable for processing at time 0 &fy. Further, in-

to b(_a accurate for the real problem. Therefore, it is giaqq of operatiofd, , we say jobj on machine,.
crucial to evaluate how values of parameters (uncer-  p e to the learning effect the processing time

tainty) affect the quality of solutions provided by such (2 L .
algorithms, thereby determine their usefulness. Fj” (V) Of_ job | proces_sed as theh N a sequence
Thus, in this paper, we will analyse the impact of on machineM;, is described by a non-increasing pos-
values of parameters on the accuracy of solution algo- itive function depgndent on the ”“.mber qf_pre_\nously
rithms for the scheduling problems with the learning processed operatlom?— 1z))~ I-€.,on 'ts_' positiowin .a
effect. In particular, we will consider the maximum Sequence. The functhmﬁ (v) of the job processing
completion time minimization flowshop problem with ~ time that models the learning effect is called the learn-
job processing times described by the power functions ing curve. Moreover, each jojds characterized by its
dependent on the number of processed jobs. normal processinggg time on machind; that is de-

ere are given a se&t={1,...,n} of n jobs andm
achines, namelyl ={Mg,...,Mn}. Each jobj con-
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fined as the time required to perform a job if the ma- without the learning effect fom > 3, and it seems
chine is not affected by |earning, |@§‘Z) A ﬁSZ)(l) to be Strongly NP-hard fom = 2 with the |earning

Following (Mosheiov and Sidney, 2003), in this effect. _ _ _
paper, we focus on a problem, where the processing  1he extensive search algorithm (ESA) is an exact
time of job j processed as thgh on machineV; is method that searches the total solution space, which
described by: size isO(n!).

The random schedule algorithm (RND) provides a
ﬁ@ (V) = p@v"g 1) random schedule (permutation) as a solution; its com-
J J ’ plexity is O(n).

The shortest processing time (SPT) rule constructs
the solution according to the non-decreasing order of
the normal processing times of jobs on macHimg

e, p%”; its computational complexity i©(nlogn).

where pi? anda!? are the normal processing time
and the learning index, respectively, of jplon ma-
chine M. Moreover, we will analyse the problem

with the special cases of (1), whe 2 _ g for
P @) Dé The NEH algorithm (Algorithm 1) is based on

j=1,...,nandz=1,...,m. .
For the mmachinepermutationflowshop prob- the method |nt.rqd.uced by (Nawaz et al., 198.3)' It
starts with an initial solutiormitiay that determines

lems the schedule of jobs on the machines can be un-

ambiguously defined by their sequence (permutation).ﬂr:e ordelr_of jObIS th;are f]ulralseq#entl_y inserteclj into
Letmi— (1(1), .., (i),..., 1(n)) denote the sequence the resulting solutiont* such that the criterion value

(permutation) of then jobs wherer(i) is the job in Qmax(Tf*_) IS mm_|m|ze_:d. S ORI O N -
positioni of T Also, letT be the set of all job per- 1Y Of this algorithm isO(mr?).

mutations. Thus, for each jaf(i), i.e., scheduled in
theith position intt, we can determine its completion

Algorithm 1: NEH.
1. Deternmine the initial sequence of jobs

. Z . .
tlmeC,(T()i) on machineM; as follows: in Tiya and set T =0
! 2: CGet the first job j from Titial
chZ()” = maX{Cﬁ[Z(B )’CT(TZi—l)}+ﬁ1('[Z()i)(i>’ (2) 3:  Insert jin such a positionin Tt

for which Cmax(1t*) is mninal
0 _~@ _ _ 1V _ 4: Remove | from Tintal
whereCnm = Cn(o> =0forz= 1,...,mandcn(i> = 5 If Ty £0 Then go to Step 2
Sie1 f’1(11(|))(|> is the completion time of a job placed 6: The pernutation 7 is the given solution
in positioni in the permutationt on M;. On this ba- _
sis, the maximum completion time (makespan) for the Algorithm 2 SA.

giventtcan be defined EGmax(T[):C(m)- 1: Deternine initial solution Tnit
e BETTE _ m(n) and =Tt =Ty, T=To
The objective is to find such a schedule ,. ro' i_1 to Iterations
" of jobs on the machines that minimizes 3.  oose 7 by a random i nterchange of

the maximum completion time (makespan): two jobs in T
™ £ argminken {Cmax(n)}. For convenience, 4 Assign m=1{ with probability

— 1 cmax(n/)_cmax(n)
the problem according to the three field no- P(T, 10,10 = min {1, exp( - T )}

tation schemeX | Y | Z will be denoted as 'Tf7Cm$X(“)<Cma"(ﬁ) Then T =Tt

- . : . . : T
Fm(fj(v) = pjV*i|Cmaxand its special case(&):a) 7: The perTmt ation T is the given solution
asFm|p;(v) = pjV*|Cmax.

The presented simulated annealing (SA) algo-
rithm (Algorithm 2), that is based on (Kirkpatrick
3 ALGORITHMS et al., 1983), starts with an initial solutiathiz and
generates in each iteration a new permutatidrmased
In this section, we will briefly describe the algo- ©n the current solutiortby interchanging of two ran-
rithms that are analysed in the further part of this domly chosen jobs it This new solutionrt’ re-
paper. Namely, we present the extensive searchPlacesr (i.e., = 17) with the following probability
algorithm (ESA), the random schedule algorithm P(T,Tt,m) = min{1, exp( — Sma(M_Cna(W)1 \here
(RND), the shortest processing time (SPT) rule, NEH T is the temperature that decreases in a logarithmical
(Nawaz et al., 1983) and simulated annealing (SA) mannerT = JT and the values of the initial tem-
(Kirkpatrick et al., 1983). Note that the problem peraturelp and of the parameteérare chosen empir-
Fm|fj(v) = pjV%i|Cmax is strongly NP-hard even ically. The solutionrt* with the minimal found cri-
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terion valueCmax(Tt") is also stored. The algorithm  {10,25,50} andme {2,3}, 100 random instances are
stops aftetterationssteps, thus, its overall computa- generated from the uniform distribution in the fol-

tional complexity isO(Iterations- mn). lowing ranges of parameter33§2> € [1,10], GSZ) c
[-0.51,-0.15 for j=1,....nandz=1,...,m. In
all experiments in this papemp; are integers and

a;j are rational values with accuracy of two deci-

mal place, e.g., focx%a €[-0.51,-0.15itis C(SZ) €

In practice, a schedule for a real-life problem (e.g., {~0.51,-0.50,-0.49,...,~0.15}. The values of
in manufacturing systems) is calculated on the basis _(; _/ ’ T

of a model and values of its parameters. Due to the aj” € [_*0'51’*0'15] corresp;)nds to t?e Iea_rnlng
possible differences between estimated and real val-Curves in range betwgen 7.(% and 90%, which are
ues of problem parameters (e.g., shape of the learning™0St common in practice (Biskup, 2008).

curve, job processing times), the algorithms that are 1 ne values of the normal processing times for ES-
efficient for the modelled problem do not have to be TIM are p'? = DEZ)(1+Ap), whereA;, is the estima-
accurate for the real problem. Therefore, it is crucial tion error, which allows us to control precision of pa-
to evaluate how uncertain values of parameters affectrameters for the analysis; it simulates the estimation
the quality of solutions provided by such algorithms. Pprocess. The values af, andd are provided for par-
Some of the analysed algorithms were described in ticular experiments in Table 1.

(Rudek, 2011). Let Ar = {ESA ESAnay RND,SPT,NEH, SA}

Let REAL denote the flowshop problem denote the algorithms that calculate the schedule for
Fm/pj(v) = pjV¥i|Cnax, Where job processing the problem REAL, where ES# is the algorithm
times are described by (1) and the values of the that calculates the schedule with the maximum pos-
job parametersp(jz), O((_Z)) are precise. However, in sible criterion value (opposite to ESA). ESA and
practice it is usually difficult to obtain such accurate ESAmax clearly show the place of the errors provided
values and solution methods are based on uncertainP¥ the analysed algorithms in reference to the opti-
(estimated) values. Following this, let ESTIM denote Mum and the worst criterion values. Note that the
the flowshop scheduling problem, where the exact &90rithms RND provide the same solution (sched-

4 NUMERICAL ANALYSIS

values of job parameters are unknown. In this case,

ule) for REAL and ESTIM. On the other hand, let

job parameters are estimated, and we assume that joi\e = {ESA SPT,NEH,SA} denote the correspond-

processing times are described /ﬁ\glz) (V) = ﬁgz)va ,

wherebf-z) andd are the estimated values p?‘z) and
aﬁz), respectively.
In the further part of this section, we provide the
numerical analysis of the presented algorithms con-
cerning the impact of the imprecise model on their
efficiency. It is done according to the following steps.
First, we draw values of job parameters for the prob-
lem REAL. Next, we solve the problem REAL us-
ing an algorithmA, which find a schedulet with
criterion valueCmax(1). Based on the parameters
of the problem REAL, we draw or determine values
of parameters for the problem ESTINFif|fj(v) =
P;jV*|Cmax), Which simulates their estimation. Next,
we use the algorithnA to calculate a schedulefor
the problem ESTIM. For this schedule, we calcu-
late the corresponding criterion valGgax(Ti) for the
problem REAL. The differenc@mnax(Tt) — Cmax(TT) in-
forms about the usefulness of the algoritlrm case
of imprecise values of job parameters. Algorithms
with smaller differences are more stable (robust), than
those with greater.

The values of parameters for the problem REAL
are generated as follows. For each pair &

ing algorithms fromAg that calculate the schedule for
the problem ESTIM.

The initial solution for NEH and SA is a random
permutation (in this case natural) and values of the
parameters of SA were chosen empirically as follows:
Iterations= 1000000, = 1000000 anc =0.011

The algorithms are evaluated, for each

instance |, according to the relative error
Sa(l) = (&%) — 1) - 100% where Crad(Te)

denotes the criterion value provided by algorithm
A € {Ar,Ag} for instancel and Cnax(TY) is the
optimal solution of instancé (if n=10) or the best
found solution of instance (if n> 25) provided by
the considered algorithms. The optimal solution is
provided by ESA for the problem REAL. The results
concerning the percentage values of mean, minimum
and maximum relative errors and mean criterion
values Cnax (rounded to integer) provided by the
analysed algorithms are presented in Table 1.

First, we discuss the results provided by the
heuristic and metaheuristic algorithms for the prob-

1Al algorithms were coded in C++ and simulations
were run on PC, Intél Core™i7—2600K Processor and
8GB RAM.
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Table 1: The impact of model parameter uncertainty on REAL). It can be seen in Table 1 (for= 10), that

the errors of the algorithms fopgﬁ € [1,10, a§2> c SA is more robust with respect to model parameter
[-0.51,-0.15, Ap € [-0.25,0.25], & = —0.322. uncertainty than ESA. Namely, solutions obtained for
_ ESTIM by SA have lower criterion values (in refer-
n m | Algorithms | Cpax Errors . =
viean T ™ T Wax ence to RE_AL) than provided tESA._ Note that the
0 2 | EsA 36 1 0001 000 000 mean relative errors of NEH and SA increase about 3-
ESAn 54 | 4435 | 21.37 | 74.72 04 i i i
E A AR R _SA) if modgl parameters are uncertain. The exception
SPT 39 | 520| 0.00] 18.63 is SPT, which is robust to the analysed model param-
SEH 31 Leo) 900 809 eter uncertainty, however, it provides solutions with
ESA 38 | 3.09| 000| 16.41 relative errors greater thadEH andSA. Note that
=5 B2 3% a5 anrs the considered algorithms calculate schedules that are
SA 38 | 3.05| 0.00] 16.41 significantly lower than a random solution (RND).
3 | ESA 41 0.00 0.00 0.00 . .
ESAnax 62 | 49.64 | 2856 | 80.89 From the numerical analysis follows that NEH and
RND 52 | 21.85 6.16 | 48.14 e i i
apT s | o | o354l 3430 SA can be efficiently qpplled to solve the considered
NEH 43 | 220| 0.00| 10.15 real-life problemeven if the model parameters are un-
SA 41 0.01 0.00 0.44 certain
ESA 43 | 4.31| 0.00]| 16.21 )
SPT 46 | 10.93 0.25 | 30.58
NEH 43 | 521 | 057 19.90
SA 43 4.18 0.00 | 16.21
25 [ 2 | RND 82 | 19.57 7.95 | 32.41
SPT 75 6.65 0.10 | 19.38 5 CONCL USI ONS
NEH 72 2.34 0.12 5.82
— ;g g'gg 8'22 12‘23 In this paper, we analysed the impact of model pa-
NEH 73 | 493 | 055 12.76 rameter uncertainty on the accuracy of solution al-
SA 73 3.90 0.26 | 13.73 H inimi 7
T TRND a1 15271 T 330 4110 gonthmg for the make_spa}n m|n|m|zaF|on flowshop
SPT 77 | 1277 | 4.96 | 29.46 scheduling problem with job processing times de-
SEH el ol 1o scribed by the power functions dependent on the num-
SPT 78 | 12.90 | 5.05 | 28.37 ber of processed jobs. We showed that the considered
EH B L38) 2111 1988 algorithms are efficient even if the values of problem
50 | 2 | RND 129 | 19.32| 9.61 | 31.39 parameters are not precisely identified.
SPT 119 9.35 0.20 | 20.08
NEH 113 3.09 0.12 7.18
SA 109 0.00 0.00 0.00
SPT 118 9.44 0.43 | 20.15
NEH 116 | 6.47| o051 1304 REFERENCES
SA 113 4.19 0.42 | 11.86
3 | RND 141 | 20.41 | 10.33 | 31.11 . .
SPT 133 | 14.21 | 5.87 | 28.94 Biskup, D. (2008). A state-of-the-art review on schedul-
NEH 122 3.78 1.02 7.41 i i i _
SA 117 | 500! ooo! 600 |nt_g W|t|hRIearn|ng egfgcétlssEljgr(ZJgean Journal of Oper
SPT 134 | 13.93| 6.46 | 3050 ational Researchl88:315-329.
NEH 125 | 7.66 | 2.95| 15.01 Gupta, J. N. D. and Stafford, J. E. F. (2006). Flowshop
SA 125 | 596 | 1.40] 1429 scheduling research after five decadeg&uropean

Journal of Operational Researchh69:699—-711.
lem REAL, for which the exact values of model pa- Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Op-
rameters are known. It can be seen in Table 1 that timization by simulated annealin&cience220:671—
SA finds solutions with criterion values close to the
optimum. On the other hand, the differences between
the mean relative errors provided by SA and NEH is

Lee, W.-C. and Wu, C.-C. (2004). Minimizing total com-
pletion time in a two-machine flowshop with a learn-
ing effect. International Journal of Production Eco-

about 3.5% and for the maximum errors 10%; for SPT nomics 88:85-93.

it is about 14% for mean and 35% for maximum er- \josheiov, G. and Sidney, J. B. (2003). Scheduling with
rors. The random solution is usually equally between general job—dependent learning curve€uropean
the optimal and the worst case+£ 10) and provides Journal of Operational Research47:665-670.

mean and maximum errors (in reference to SA) about Nawaz, M., Enscore, J. E. E., and Ham, 1. A. (1983). A
20% and 45%, respectively. heuristic algorithm fom-machine n-jobs Flow-shop

sequencing problemOmega 11:91-95.

However, if the applied algorithms are based on _ ) _
ek, R. (2011). Computational complexity and solution

; Rud
luncertam Valuis of rr?qdel parameters (solve t.he p;0b_ algorithms for flowshop scheduling problems with the
em ESTIM), then their accuracy decreases in refer- learning effect. Computers & Industrial Engineering
ence to the criterion value found by the algorithms, 61:20—31.
which are based on exact values (solve the problem
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