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Abstract: This short paper presents a preliminary analysis of the impact of model parameter uncertainty on the accu-
racy of solution algorithms for the scheduling problems with the learning effect. We consider the maximum
completion time minimization flowshop problem with job processing times described by the power functions
dependent on the number of processed jobs. To solve the considered scheduling problem we propose heuristic
(NEH based) and metaheuristic (simulated annealing) algorithms. The numerical experiments show that NEH
and simulated annealing are robust for this problem with respect to model parameter uncertainty.

1 INTRODUCTION

Classical flowshop scheduling problems are perceived
to be more interesting in a theoretical context than as
a practical research (Gupta and Stafford, 2006). It fol-
lows from observations that algorithms constructed
on the basis of the classical models usually provide
unsatisfactory (unstable) solutions for real-life flow-
shop problems, since these models do not take into
consideration additional factors such as the learning
effect that is significant in practice (Biskup, 2008),
(Lee and Wu, 2004), (Rudek, 2011).

A schedule for a real-life problem (e.g., in man-
ufacturing or computer systems) is calculated on the
basis of a model and values of its parameters. Due
to the possible differences between estimated and real
values of problem parameters (e.g., shape of the learn-
ing curve, job processing times), the algorithms that
are efficient for the modelled problem do not have
to be accurate for the real problem. Therefore, it is
crucial to evaluate how values of parameters (uncer-
tainty) affect the quality of solutions provided by such
algorithms, thereby determine their usefulness.

Thus, in this paper, we will analyse the impact of
values of parameters on the accuracy of solution algo-
rithms for the scheduling problems with the learning
effect. In particular, we will consider the maximum
completion time minimization flowshop problem with
job processing times described by the power functions
dependent on the number of processed jobs.

This paper is organized as follows. Next section
contains the problem formulation. Approximation al-
gorithms with the analysis of their efficiency are given
subsequently. The last section concludes the paper.

2 PROBLEM FORMULATION

There are given a setJ= {1,. . .,n} of n jobs andm
machines, namelyM={M1,. . .,Mm}. Each jobj con-
sists of a setO= {O1, j , . . . ,Om, j} of m operations.
Each operationOz, j has to be processed on machine
Mz (z=1,. . .,m). Moreover operationOz+1, j may start
only if Oz, j is completed. It is assumed that machines
have to process jobs in the same order, i.e., a permuta-
tion flowshop, and each machine can process one op-
eration at a time. There are no precedence constraints
between jobs, operations are non-preemptive and are
available for processing at time 0 onM1. Further, in-
stead of operationOz, j , we say jobj on machineMz.

Due to the learning effect the processing time

p̃(z)j (v) of job j processed as thevth in a sequence
on machineMz is described by a non-increasing pos-
itive function dependent on the number of previously
processed operations(v−1), i.e., on its positionv in a

sequence. The function ˜p(z)j (v) of the job processing
time that models the learning effect is called the learn-
ing curve. Moreover, each jobj is characterized by its

normal processing ˜p(z)j time on machineMz that is de-
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fined as the time required to perform a job if the ma-

chine is not affected by learning, i.e.,p(z)j , p̃(z)j (1).
Following (Mosheiov and Sidney, 2003), in this

paper, we focus on a problem, where the processing
time of job j processed as thevth on machineMi is
described by:

p̃(z)j (v) = p(z)j vα(z)
j , (1)

where p(z)j and α(z)
j are the normal processing time

and the learning index, respectively, of jobj on ma-
chine Mz. Moreover, we will analyse the problem

with the special cases of (1), whereα(z)
j = α for

j = 1, . . . ,n andz= 1, . . . ,m.
For the m-machinepermutationflowshop prob-

lems the schedule of jobs on the machines can be un-
ambiguously defined by their sequence (permutation).
Let π =

〈
π(1), ...,π(i), ...,π(n)

〉
denote the sequence

(permutation) of then jobs whereπ(i) is the job in
position i of π. Also, let Π be the set of all job per-
mutations. Thus, for each jobπ(i), i.e., scheduled in
the ith position inπ, we can determine its completion

timeC(z)
π(i) on machineMz as follows:

C(z)
π(i) = max

{
C(z−1)

π(i) ,C(z)
π(i−1)

}
+ p̃(z)π(i)(i), (2)

whereC(0)
π(1) = C(z)

π(0) = 0 for z= 1, . . . ,m andC(1)
π(i) =

∑i
l=1 p̃(1)π(l)(l) is the completion time of a job placed

in positioni in the permutationπ on M1. On this ba-
sis, the maximum completion time (makespan) for the

givenπ can be defined asCmax(π)=C(m)
π(n).

The objective is to find such a schedule
π∗ of jobs on the machines that minimizes
the maximum completion time (makespan):

π∗ , argminπ∈Π

{
Cmax(π)

}
. For convenience,

the problem according to the three field no-
tation schemeX | Y | Z will be denoted as

Fm|p̃ j(v) = p jvα j |Cmax and its special case (α(z)
j =α)

asFm|p̃ j(v) = p jvα|Cmax.

3 ALGORITHMS

In this section, we will briefly describe the algo-
rithms that are analysed in the further part of this
paper. Namely, we present the extensive search
algorithm (ESA), the random schedule algorithm
(RND), the shortest processing time (SPT) rule, NEH
(Nawaz et al., 1983) and simulated annealing (SA)
(Kirkpatrick et al., 1983). Note that the problem
Fm|p̃ j(v) = p jvα j |Cmax is strongly NP-hard even

without the learning effect form≥ 3, and it seems
to be strongly NP-hard form= 2 with the learning
effect.

The extensive search algorithm (ESA) is an exact
method that searches the total solution space, which
size isO(n!).

The random schedule algorithm (RND) provides a
random schedule (permutation) as a solution; its com-
plexity isO(n).

The shortest processing time (SPT) rule constructs
the solution according to the non-decreasing order of
the normal processing times of jobs on machineM1,

i.e., p(1)j ; its computational complexity isO(nlogn).
The NEH algorithm (Algorithm 1) is based on

the method introduced by (Nawaz et al., 1983). It
starts with an initial solutionπinitial that determines
the order of jobs that are subsequently inserted into
the resulting solutionπ∗ such that the criterion value
Cmax(π∗) is minimized. The computational complex-
ity of this algorithm isO(mn3).

Algorithm 1: NEH.

1: Determine the initial sequence of jobs
in πinitial and set π∗ := /0

2: Get the first job j from πinitial
3: Insert j in such a position in π∗

for which Cmax(π∗) is minimal
4: Remove j from πinitial
5: If πinitial 6= /0 Then go to Step 2
6: The permutation π∗ is the given solution

Algorithm 2: SA.

1: Determine initial solution πinit
and π=π∗=πinit, T=T0

2: For i = 1 to Iterations
3: Choose π′ by a random interchange of

two jobs in π
4: Assign π = π′ with probability

P(T,π′,π) = min
{

1,exp
(
− Cmax(π′)−Cmax(π)

T

)}

5: If Cmax(π)<Cmax(π∗) Then π∗ = π
6: T = T

1+λT
7: The permutation π∗ is the given solution

The presented simulated annealing (SA) algo-
rithm (Algorithm 2), that is based on (Kirkpatrick
et al., 1983), starts with an initial solutionπinitial and
generates in each iteration a new permutationπ′ based
on the current solutionπ by interchanging of two ran-
domly chosen jobs inπ. This new solutionπ′ re-
placesπ (i.e., π = π′) with the following probability

P(T,π′,π) = min
{

1,exp
(
− Cmax(π′)−Cmax(π)

T

)}
, where

T is the temperature that decreases in a logarithmical
mannerT = T

1+λT , and the values of the initial tem-
peratureT0 and of the parameterλ are chosen empir-
ically. The solutionπ∗ with the minimal found cri-
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terion valueCmax(π∗) is also stored. The algorithm
stops afterIterationssteps, thus, its overall computa-
tional complexity isO(Iterations·mn).

4 NUMERICAL ANALYSIS

In practice, a schedule for a real-life problem (e.g.,
in manufacturing systems) is calculated on the basis
of a model and values of its parameters. Due to the
possible differences between estimated and real val-
ues of problem parameters (e.g., shape of the learning
curve, job processing times), the algorithms that are
efficient for the modelled problem do not have to be
accurate for the real problem. Therefore, it is crucial
to evaluate how uncertain values of parameters affect
the quality of solutions provided by such algorithms.
Some of the analysed algorithms were described in
(Rudek, 2011).

Let REAL denote the flowshop problem
Fm|p̃ j(v) = p jvα j |Cmax, where job processing
times are described by (1) and the values of the

job parameters (p(z)j , α(z)
j ) are precise. However, in

practice it is usually difficult to obtain such accurate
values and solution methods are based on uncertain
(estimated) values. Following this, let ESTIM denote
the flowshop scheduling problem, where the exact
values of job parameters are unknown. In this case,
job parameters are estimated, and we assume that job

processing times are described bŷ̃p(z)j (v) = p̂(z)j vα̂,

wherep̂(z)j andα̂ are the estimated values ofp(z)j and

α(z)
j , respectively.

In the further part of this section, we provide the
numerical analysis of the presented algorithms con-
cerning the impact of the imprecise model on their
efficiency. It is done according to the following steps.
First, we draw values of job parameters for the prob-
lem REAL. Next, we solve the problem REAL us-
ing an algorithmA, which find a scheduleπ with
criterion valueCmax(π). Based on the parameters
of the problem REAL, we draw or determine values
of parameters for the problem ESTIM (Fm|p̃ j(v) =
p jvα|Cmax), which simulates their estimation. Next,
we use the algorithmA to calculate a schedulêπ for
the problem ESTIM. For this schedule, we calcu-
late the corresponding criterion valueCmax(π̂) for the
problem REAL. The differenceCmax(π̂)−Cmax(π) in-
forms about the usefulness of the algorithmA in case
of imprecise values of job parameters. Algorithms
with smaller differences are more stable (robust), than
those with greater.

The values of parameters for the problem REAL
are generated as follows. For each pair ofn ∈

{10,25,50} andm∈ {2,3}, 100 random instances are
generated from the uniform distribution in the fol-

lowing ranges of parameters:p(z)j ∈ [1,10], α(z)
j ∈

[−0.51,−0.15] for j = 1, . . . ,n andz= 1, . . . ,m. In
all experiments in this paper,p j are integers and
α j are rational values with accuracy of two deci-

mal place, e.g., forα(z)
j ∈ [−0.51,−0.15] it is α(z)

j ∈

{−0.51,−0.50,−0.49, . . .,−0.15}. The values of

α(z)
j ∈ [−0.51,−0.15] corresponds to the learning

curves in range between 70% and 90%, which are
most common in practice (Biskup, 2008).

The values of the normal processing times for ES-

TIM are p̂(z)= p(z)j (1+∆p), where∆p is the estima-
tion error, which allows us to control precision of pa-
rameters for the analysis; it simulates the estimation
process. The values of∆p andα̂ are provided for par-
ticular experiments in Table 1.

Let AR = {ESA,ESAmax,RND,SPT,NEH,SA}
denote the algorithms that calculate the schedule for
the problem REAL, where ESAmax is the algorithm
that calculates the schedule with the maximum pos-
sible criterion value (opposite to ESA). ESA and
ESAmax clearly show the place of the errors provided
by the analysed algorithms in reference to the opti-
mum and the worst criterion values. Note that the
algorithms RND provide the same solution (sched-
ule) for REAL and ESTIM. On the other hand, let
AE = {ÊSA, ŜPT, N̂EH, ŜA} denote the correspond-
ing algorithms fromAR that calculate the schedule for
the problem ESTIM.

The initial solution for NEH and SA is a random
permutation (in this case natural) and values of the
parameters of SA were chosen empirically as follows:
Iterations=1000000,T0=1000000 andλ=0.01.1

The algorithms are evaluated, for each
instance I , according to the relative error

δA(I) =
(Cmax(πA

I )
Cmax(π∗I )

− 1
)
· 100%, where Cmax(πA

I )

denotes the criterion value provided by algorithm
A ∈ {AR,AE} for instanceI and Cmax(π∗

I ) is the
optimal solution of instanceI (if n=10) or the best
found solution of instanceI (if n≥ 25) provided by
the considered algorithms. The optimal solution is
provided by ESA for the problem REAL. The results
concerning the percentage values of mean, minimum
and maximum relative errors and mean criterion
values C̄max (rounded to integer) provided by the
analysed algorithms are presented in Table 1.

First, we discuss the results provided by the
heuristic and metaheuristic algorithms for the prob-

1All algorithms were coded in C++ and simulations
were run on PC, Intelr CoreTM i7–2600K Processor and
8GB RAM.
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Table 1: The impact of model parameter uncertainty on

the errors of the algorithms forp(z)j ∈ [1,10], α(z)
j ∈

[−0.51,−0.15], ∆p ∈ [−0.25,0.25], α̂ =−0.322.

n m Algorithms C̄max Errors

Mean Min Max

10 2 ESA 36 0.00 0.00 0.00
ESAmax 54 44.35 21.37 74.72
RND 44 19.58 4.05 46.09
SPT 39 5.20 0.00 18.63
NEH 37 1.60 0.00 8.09
SA 36 0.00 0.00 0.00

ÊSA 38 3.09 0.00 16.41
ŜPT 39 5.60 0.15 21.73
N̂EH 38 3.45 0.00 17.11
ŜA 38 3.05 0.00 16.41

3 ESA 41 0.00 0.00 0.00
ESAmax 62 49.64 28.56 80.89
RND 52 21.85 6.16 48.14
SPT 45 10.31 0.54 34.50
NEH 43 2.20 0.00 10.15
SA 41 0.01 0.00 0.44

ÊSA 43 4.31 0.00 16.21
ŜPT 46 10.93 0.25 30.58
N̂EH 43 5.21 0.57 19.90
ŜA 43 4.18 0.00 16.21

25 2 RND 82 19.57 7.95 32.41
SPT 75 6.65 0.10 19.38
NEH 72 2.34 0.12 5.82
SA 70 0.00 0.00 0.00

ŜPT 75 6.74 0.32 18.47
N̂EH 73 4.93 0.55 12.76
ŜA 73 3.90 0.26 13.73

3 RND 84 22.71 3.30 41.19
SPT 77 12.77 4.96 29.46
NEH 71 3.51 0.51 7.61
SA 70 0.00 0.00 0.00

ŜPT 78 12.90 5.05 28.37
N̂EH 75 7.53 2.11 19.88
ŜA 75 6.10 1.12 18.19

50 2 RND 129 19.32 9.61 31.39
SPT 119 9.35 0.20 20.08
NEH 113 3.09 0.12 7.18
SA 109 0.00 0.00 0.00

ŜPT 118 9.44 0.43 20.15
N̂EH 116 6.47 0.51 13.04
ŜA 113 4.19 0.42 11.86

3 RND 141 20.41 10.33 31.11
SPT 133 14.21 5.87 28.94
NEH 122 3.78 1.02 7.41
SA 117 0.00 0.00 0.00

ŜPT 134 13.93 6.46 30.50
N̂EH 125 7.66 2.95 15.01
ŜA 125 5.96 1.40 14.29

lem REAL, for which the exact values of model pa-
rameters are known. It can be seen in Table 1 that
SA finds solutions with criterion values close to the
optimum. On the other hand, the differences between
the mean relative errors provided by SA and NEH is
about 3.5% and for the maximum errors 10%; for SPT
it is about 14% for mean and 35% for maximum er-
rors. The random solution is usually equally between
the optimal and the worst case (n= 10) and provides
mean and maximum errors (in reference to SA) about
20% and 45%, respectively.

However, if the applied algorithms are based on
uncertain values of model parameters (solve the prob-
lem ESTIM), then their accuracy decreases in refer-
ence to the criterion value found by the algorithms,
which are based on exact values (solve the problem

REAL). It can be seen in Table 1 (forn = 10), that
SA is more robust with respect to model parameter
uncertainty than ESA. Namely, solutions obtained for
ESTIM by ŜA have lower criterion values (in refer-
ence to REAL) than provided bŷESA. Note that the
mean relative errors of NEH and SA increase about 3-
5% if model parameters are uncertain. The exception
is SPT, which is robust to the analysed model param-
eter uncertainty, however, it provides solutions with
relative errors greater than̂NEH andŜA. Note that
the considered algorithms calculate schedules that are
significantly lower than a random solution (RND).

From the numerical analysis follows that NEH and
SA can be efficiently applied to solve the considered
real-life problem even if the model parameters are un-
certain.

5 CONCLUSIONS

In this paper, we analysed the impact of model pa-
rameter uncertainty on the accuracy of solution al-
gorithms for the makespan minimization flowshop
scheduling problem with job processing times de-
scribed by the power functions dependent on the num-
ber of processed jobs. We showed that the considered
algorithms are efficient even if the values of problem
parameters are not precisely identified.
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