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Abstract: Flash memory based Solid State Drives (SSDs) are gaining momentum toward replacing traditional Hard Disk
Drives (HDDs) in computers and are now also generating commercial interest from enterprise data storage
companies. However, storage locations in Flash memory devices degrade through repeated programming and
erasing. As the storage blocks within a Flash device deteriorate through use, their ability to retain data while
powered off over long periods also diminishes.
Currently there is no way to predict whether a block will successfully retain data for a specified period of
time while powered off. We detail our use of Genetic Programming (GP) to evolve a binary classifier which
predicts whether blocks within a Flash memory device will still satisfactorily retain data after prolonged use,
saving considerable amounts of testing time. This is the first time a solution to this problem has been proposed
and results show an average of over 85% correct classification on previously unseen data.

1 INTRODUCTION

Solid State Drives (SSDs) (Chen et al., 2009) store
data electronically using solid state memory, and are
gaining momentum towards eventually replacing the
traditional Hard Disk Drives (HDDs) used to store
data in computers. Since SSDs are based on solid
state memory (normally Flash memory), they do not
contain any moving parts and are faster, lighter, gen-
erate less noise, and emit less heat than their elec-
tromechanical counterparts.

The strengths of SSDs are all due to the NAND
Flash memory (Pavan et al., 1997) upon which they
are based. Advantages of Flash include low power
consumption, non-volatility, speed, small size, low
heat emission, and durability. The two main weak-
nesses of Flash memory are known as endurance and
retention. These are concerned with memoryblocks,
the smallesterasable1 unit in Flash, and refer to their
finite lifetime (measured in number of writes) and
ability to retain contents without power.

The bit error rate (BER) (Mielke et al., 2008) is
calculated by counting the number of incorrect bits
when the data written to a block is compared to the
data read back from the same block. A single error
occurs when the data bit stored at a location changes

1As described in Section 2.1, there are different sized
regions which can be accessed, depending on the operation.

value. Error Correction Codes (ECC) (Yaakobi et al.,
2010) identify and correct these errors, with the de-
vices tested as part of this research capable of correct-
ing 12 bits per 528 bytes. Blocks are marked as bad
and removed from service when the BER exceeds the
maximum number of bits correctable through ECC.

Over time, through repeated writes, generally re-
ferred to as programming and erasing (p/e cycling),
blocks degrade and the BER increases until the accu-
mulating errors can no longer be corrected through
ECC and the location becomes unreliable. This is
known as theenduranceof the device and is quan-
tified by manufacturers as the number of p/e cycles
each block can reliably complete.

Although Flash memory is non-volatile, it is not
perfect, and the contents of storage locations will
slowly degrade if left powered off, i.e. the charge
stored can leak, making it increasingly more difficult
to establish whether a location contains a 1 or 0. The
longer a device is left powered off, the higher the BER
will be. It is possible for a device to be left without
power for too long, resulting in the BER increasing
above the ECC level. Theretentionof a device spec-
ifies the length of time for which a block can reliably
store data.

A trade-off exists between the endurance and
retention characteristics of Flash memory devices
meaning that devices with higher endurance will have
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lower retention and vice versa. Devices must meet
both the endurance and retention specifications out-
lined by the manufacturer, but tests to evaluate actual
endurance and retention are hugely time consuming.
It is important to test the worst-case retention of a de-
vice – i.e. the retention when blocks have already
been significantly degraded through p/e cycling, since
the device must meet the specified retention require-
ment regardless of the number of cycles completed.

To examine the retention period of a block within
a Flash device, the block is first cycled at high tem-
perature (Mielke et al., 2006) to simulate real-world,
lifetime usage. Following this, a predefined data pat-
tern is written to the device before it is placed in a
high temperature oven2. After a fixed period of time
the previously stored data is then read from the test
block and the corresponding BER is calculated, al-
lowing evaluation of the retention ability of the de-
vice. In total, this test process takes almost eight days.

There is currently no method to predict the dete-
rioration of data stored in a Flash memory block over
a fixed period of time. In this paper, we use Genetic
Programming (GP) (Koza, 1992; Poli et al., 2008) to
evolve aRetention Period Classifierwhich predicts
whether Flash memory blocks will retain data for the
required length of time. This binary classifier deter-
mines whether the number of errors following the re-
tention period will exceed a predetermined decision
boundary, allowing us to determine quickly blocks
which will not correctly retain data over the course
of a retention period without having to complete the
time consuming assessment itself.

Analysis of the data points acquired from destruc-
tive tests on actual Flash devices shows the difficulty
of the problem while the results of classification tests
performed on previously unseen data show its poten-
tial for real world application. We show that, in spite
of this analysis revealing inconsistencies and even
contradictions in the data, we evolve a classifier that
can correctly predict the result of a retention period
assessment over 85% of the time, across a variety of
cycling conditions on previously unseen data.

The remainder of this paper is structured as fol-
lows. Section 2 will provide more information on
SSDs and Flash memory while Section 3 introduces
research related to this topic. Section 4 gives de-
tails of the experiments used to gather the retention
data and also our GP configuration while Section 5
presents our results. We then give an overview of our
proposed future work in Section 6 before concluding
the paper in Section 7.

2Arrhenius’ Equation is the standard technique used to
determine the variable values (duration and temperature) for
temperature accelerated tests.

2 BACKGROUND

2.1 Flash Memory

Flash memory is a non-volatile, electrically erasable
programmable read only memory (EEPROM). Non-
volatility is achieved through a floating gate transis-
tor (Kahng and Sze, 1967) which utilises an insulat-
ing oxide layer in order to maintain the floating gate’s
charge. The quantity of charge stored on the gate is
read to determine the data stored at that location.

There are two main forms (Brewer and Gill, 2008)
of Flash memory that are named after the organisa-
tion of the arrays of floating gates within the devices,
namely, NOR Flash and NAND Flash, which operate
in different ways, making them suitable for different
applications. NOR Flash cells are connected in paral-
lel which allows the cells to be read and programmed
individually while the NAND Flash memory configu-
ration is based on cells in series. NOR Flash is ideal
for code storage and execution applications while the
NAND Flash memory configuration makes it denser
and therefore cheaper than NOR memory. NAND
Flash memory is used in data storage applications and
is the standard form of memory used in SSDs.

The traditional method of storing data in Flash
cells is to store a single bit per floating gate transis-
tor. This is the fastest and most reliable method and
is referred to as single level cell (SLC) Flash. In or-
der to increase the density of cells and decrease the
costs of Flash, multilevel cell (MLC) technology has
emerged which lowers the cost of Flash devices by
storing multiple bits per floating gate.

MLC Flash SSDs are more appealing to con-
sumers due to their lower cost and higher capacity
but do not offer the same performance (in terms of
endurance, speed or retention) as SLC based drives.
However, Flash manufacturers are focusing more on
the consumer MLC market, since these devices are
approximately half the cost of SLC devices to produce
and their performance in general is good enough for
the consumer market, e.g. mobile devices, memory
sticks, and so on. However, this has led to a signif-
icant reduction in the number of SLC devices being
manufactured, effectively raising the price of SLC,
with SLC devices selling for up to 6 times the price
of MLC devices (Shread, 2009).

NAND Flash memory is composed of accessible
regions known as pages (comprised of arrays of cells)
and blocks with the size of these areas varying be-
tween devices due to factors such as storage capacity.
In the MLC devices tested as part of this research, a
page contains 4096 bytes for storage and an additional
224 spare bytes (not visible to the user) which are typ-
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ically used for error correction and other meta-data,
while a block is composed of 128 pages with 16384
blocks on the chip. Read and program operations can
occur at page level with a block being the smallest
area that can be erased. An important characteristic
of programming Flash memory is that locations must
be erased before they can be programmed.

Unlike NOR Flash, which is required to be error-
free, ECC is essential for NAND Flash memory,
working at the page level and correcting a small num-
ber – for example 12 bits per 528 bytes – of single
bit errors per page. NAND chips may also ship with
some bad blocks which are identified during the man-
ufacturing process. These blocks are recorded on the
device and not used, allowing far more chips to be
shipped, lowering chip cost.

2.1.1 Endurance versus Retention

One of the main characteristics of Flash memory is
the degradation (Aritome et al., 1993) through re-
peated p/e cycling of the oxide layer insulating each
floating gate. This leads to blocks having a finite life-
time, termedendurance, generally quantified by man-
ufacturers as a maximum number of p/e cycles before
the block will become unreliable or fail completely.

A second important characteristic of Flash mem-
ory, known asretention, is the ability of stored bits
within the device to retain their state over long peri-
ods of time. Retention errors occur due to leakage of
electrons (Aritome et al., 1990) from a cell over time
and can be accelerated by increased temperature and
wear (through p/e cycling).

A typical manufacturer’s specification for SLC
NAND Flash endurance is 100,000 cycles, while
MLC endurance is generally far less and usually in
the region of 5,000 to 10,000 cycles. Specified reten-
tion for MLC NAND consumer grade devices is typi-
cally 10 years while the retention of enterprise devices
ranges from 3 months up to 1 year. The difference be-
tween the retention rating of consumer and enterprise
devices is due to the endurance / retention trade-off as
enterprise devices accept a lower retention rating in
order to gain a higher endurance specification.

2.1.2 Operating Parameters

Flash memory devices contain a number of control
registers, which store the various operating parame-
ters required by the device including values to rep-
resent voltage levels and timings for read, program,
and erase operations. Many of these values are in-
terdependent and all are set before the device leaves
the manufacturing plant, remaining unchanged for the
lifetime of the device.

2.2 Solid State Drives

SSDs are designed to mirror HDDs in terms of their
external attributes such as size, form factor and com-
munication interface. Since SSDs do not contain
any moving parts, their latency (the delay between
requesting and receiving data) is typically orders of
magnitude better than HDDs and they also perform
much faster, due to their large amount of internal
parallelism, with many Flash components providing
data at the same time. SSDs use far less energy than
HDDs, which leads to longer battery life in mobile
devices and, in enterprise situations, can lead to huge
savings on cooling expenditure since using less power
generates less heat.

Momentum is now growing towards using SSDs
in enterprise environments for large scale data stor-
age. However, consumer grade SSDs favour cost over
performance, so MLC NAND Flash memory is the
standard memory for them, while the performance
demands of an enterprise data storage environment
require that the more expensive SLC NAND Flash
memory is used. Enterprise data storage companies
are hopeful that the improvement of MLC NAND
Flash performance will continue so that it will soon
be capable of meeting the demands of an enterprise
storage device.

3 RELATED RESEARCH

(Sullivan and Ryan, 2011) reported on their applica-
tion of an Evolutionary Algorithm (EA) to the prob-
lem of Flash memory degradation. Their research
investigated the viability of developing a hardware
platform to facilitate the use of an EA to automati-
cally discover improved operating parameter settings
within NOR Flash memory. The results of their exper-
iments showed an average endurance improvement of
between 250% and 350% with a maximum achieved
improvement of 700%.

Information is not available as to how manufac-
turers set these operating parameters, but Sullivan and
Ryan’s research has shown that they are not optimal.
This is in agreement with our view that a GA can be
used to adjust them in order to improve the endurance
of MLC NAND Flash memory and will be discussed
further in Section 6.

Research by (Grupp et al., 2009) determined that
the performance of Flash memory varies significantly
between devices. Their results showed that program
operations on certain pages within blocks are faster
than others. These pages perform approximately 5
times faster than the rest of the pages. MLC NAND
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program performance was found to have increased on
average by 10-15% over the lifetime of each block, in-
dicating that, as the devices degrade, it becomes easier
to program them. This is due to the fact that the in-
sulating oxide layer has deteriorated, resulting in less
resistance to the tunnelling of electrons through it.

The work by Grupp et al. found that even devices
made by the same manufacturer can perform at differ-
ent levels. This reinforces our belief that tests must be
performed on a number of devices, and in particular,
on a number of Flash memory devices of the same
specification and model, in order to generate results
which can be generalised to all devices of that type.

(Desnoyers, 2010) found that the actual lifetimes
of blocks in a Flash memory device vary greatly with
some lasting up to 100 times longer than the man-
ufacturers’ specifications. Endurance was tested by
repeatedly p/e cycling a single page within a block
with all zeros. Desnoyers also reported that program
time decreases with block usage, while erase time in-
creases as the block wears.

Tests performed by Desnoyers show that manufac-
turers’ specifications are extremely conservative since
the endurance of many test blocks was two orders of
magnitude greater than the specified rating. Pages
within blocks perform at different levels and in or-
der to stress the complete block, our experiments pro-
grammed all pages within each block and assessed the
combined error count for the entire block.

4 EXPERIMENTAL DESIGN

The data required for the GP portion of this research
was accumulated through the destructive testing of
four NAND Flash memory devices. Blocks in each
Flash device were initially p/e cycled over a period of
one week in an oven which simulated real world usage
for the devices. Following this simulation of usage,
a 12 hour retention period was observed. This tem-
perature accelerated phase of the process simulates 3
months real world retention. Data was gathered by
performing error counts immediately before and af-
ter the retention period. Following this series of tests,
the data acquired was used by GP to evolve our Re-
tention Period Classifier. The procedures mentioned
above will now be discussed in more detail.

4.1 Hardware

A purpose built hardware platform was constructed to
facilitate the issuing of commands from a PC to per-
form detailed tests on Flash chips. A software pro-
gram was then developed to use this hardware to per-

form detailed endurance cycling and retention period
evaluations on NAND Flash memory devices. All de-
tails of the tests and data acquired from the tests were
saved to a database for future reference.

4.2 Testing

Due to the time consuming nature of these tests and
the number of available Flash testing units, four chips
of the same model from the same manufacturer were
tested. One requirement of the week long simula-
tion of usage test is to allow blocks some recovery
time between programs. This is because the speed
with which a device degrades is directly related to the
speed with which it is being cycled; a drive that is
completely rewritten ten times in a single day will ac-
cumulate considerably more damage than one that is
completely rewritten ten times in one week.

Table 1: Blocks were cycled to a number of different levels
in order to gain a wide range of test data. Intervals of 5,000
cycles were used in the range of 5,000 to 30,000 cycles.

Target Cycles Test Blocks

5,000 Cycles 11 Blocks

10,000 Cycles 11 Blocks

15,000 Cycles 11 Blocks

20,000 Cycles 11 Blocks

25,000 Cycles 11 Blocks

30,000 Cycles 11 Blocks

Taking this into account, as well as our aim of ac-
quiring data at varying levels of cycling across many
chips, 66 blocks were tested per device. These blocks
were randomly chosen and divided into six cycling
groups as shown in Table 1. The test software was
written to balance the cycling rate throughout the
week so that all cycling groups would run for the full
duration of the process regardless of their target num-
ber of cycles. This meant, for example, that blocks
with a target of 5,000 p/e cycles would have more re-
covery time between cycles than blocks completing
30,000 cycles.

Error counts were performed by writing a prede-
fined pattern (a hexadecimal string) to a block and
then reading it back, counting the number of errors
introduced by storing the data in the block. During
the temperature accelerated parts of the process, the
blocks were cycled by iterating through a group of six
pre-determined random hexadecimal string patterns.
The pattern used to perform error counts at the end
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Table 2: The testing procedure produced three inputs and oneoutput for use with GP. Blocks were cycled for one week at
temperature before the retention period was evaluated.

Step Duration Temperature Operation(s) Result

1 1 Week 85◦C Repeated cycling of 66 blocks using a number of
pre-defined random patterns. 1 cycle was per-
formed on each block before moving on to the
next block in the sequence. This allows some
recovery time between cycles on each individual
block.

Number of cycles
completed is GP
input 1.

2 — 85◦C At the end of step 1, an error count was performed
on all blocks using the difficult pattern.

Number of errors is
GP input 2.

3 — 25◦C Prior to the start of the 12 hour retention period,
the chip was cooled to room temperature, with an
error count performed on all blocks using the ran-
dom pattern.

Number of errors is
GP input 3.

4 12 Hours 85◦C The chip remained idle for the duration of the re-
tention period.

—

5 — 25◦C Following the 12 hour idle time, the chip was
cooled to room temperature, and an error count
was performed on all blocks using the random pat-
tern.

Number of errors is
GP output.

of the week long cycling phase was supplied to us
by our industrial partners. This pattern is referred to
as the difficult pattern3, and stressed blocks far more
than regular data patterns due to the arrangement of
bits (and in turn the charge stored in adjacent cells)
required to represent the pattern. The pattern used
to determine the number of errors in each block im-
mediately before and after the retention period was a
pre-determined random pattern.

The steps required during the overall process are
listed in Table 2. All four test devices were placed
in an oven and, when the oven temperature had sta-
bilised at 85◦C, the week long temperature acceler-
ated cycling was initiated. During this period, data
such as error counts and read, program, and erase
times were recorded every 1,000 cycles for future ref-
erence. At the end of the week-long test, the difficult
pattern was written to each test block and the corre-
sponding error count was recorded.

The temperature accelerated retention period re-
quired that the blocks be programmed and read at
room temperature. Following the completion of the
week long test, the oven was cooled to 25◦C and
the pre-retention random pattern error count was per-
formed. The oven was then reheated to 85◦C and the

3We have not included the hexadecimal string used in
the difficult pattern due to a Non Disclosure Agreement
with our partners in industry.

chips were left idle at this temperature for 12 hours.
Upon completion of this, the data was then read from
all test blocks, and error counts performed, when the
chips had cooled to 25◦C once more.

The four chips successfully completed this series
of procedures, each providing data from 66 blocks
for use in our GP experiments. The fact that it took
eight days and the destruction of blocks on a number
of Flash memory devices to accumulate just 264 data
points stresses just how expensive this form of testing
is in terms of both time and hardware.

Table 3: The input parameters for the GP system are the
number of cycles performed and two error counts, each us-
ing a different pattern. A single output is produced.

Parameter Description

Input 1 Cycles Completed

Input 2 Pre-Retention ‘Difficult Pattern’
Error Count

Input 3 Pre-Retention ‘Random Pattern’
Error Count4

Output Post-Retention ‘Random Pattern’
Error Count

4Input 3 was later removed from the dataset as all values,
regardless of cycles completed were 0.
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(a) Pre-retention Errors.
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(b) Post-retention Errors.

Figure 1: The error counts before and after the retention period. The different scales are to be expected as the number of
post-retention errors should far exceed the number of pre-retention errors. The number of cycles has a significant effect on
both the number of pre-retention and post-retention errors.

4.3 Test Data

In order to evolve our Retention Period Classifier, we
determined that the inputs and output for the GP sys-
tem should be those shown in Table 3, since these are
the quantifiable characteristics of the test blocks be-
fore and after the retention period. The first input is
the number of cycles completed by the block at the
end of the seven day temperature accelerated simu-
lation of usage. The other two inputs are both error
counts performed on the test block.

As expected (based on trial runs and related re-
search), the data acquired before and after the reten-
tion period was extremely noisy, meaning experimen-
tal data points containing similar, or even identical in-
puts produced varied outputs. Furthermore, the pre-
retention random error pattern resulted in zero errors
on every test so this column was removed from our
data set, leaving us with the other two inputs and one
output already described.

Figure 1 shows the data acquired from the earlier
tests. This shows the levels of variation in the data
acquired from the temperature accelerated retention
periods. For example, the pre-retention error rates at
30,000 cycles vary in the range of 5 to 112 errors,
while the post-retention error rates for blocks cycled
to 30,000 cycles vary from 136 to 1974 errors.

The Flash devices under test have a specified en-
durance of 5,000 cycles and a specified retention of 10
years. As mentioned previously, a trade-off exists be-
tween these two characteristics which is why devices
cycled to higher levels than 5,000 (and up to 30,000)
can reasonably be expected to successfully retain data
over the relatively short time period of three months.

4.4 Decision Boundary for Binary
Classifier

In a Flash memory device, a block is marked as bad
(and removed from service) when the number of sin-
gle bit errors is greater than the number of errors
correctable by the on chip ECC. This is calculated
as 11,9155 correctable single bit errors for the MLC
NAND Flash device described in Section 2.1.

For the purposes of this paper we have chosen 200
post-retention errors as the point at which a block
is deemed to have failed. This number was chosen
as our tests did not cycle any blocks to the level re-
quired to generate error counts of the magnitude of
the maximum correctable bit rate. A decision bound-
ary of 11,915 would lead to all blocks being classified
as successfully retaining their data beyond the reten-
tion period and would not provide any useful data for
training our GP system.

Using a 200 bit error point of failure results in all
but one data point successfully passing the retention
period up to and including 15,000 cycles. Most data
points pass at 20,000 cycles, while most fail at 30,000.
The 25,000 cycle data points are generally the most
difficult to classify as approximately half the points
fail and do not retain their data. These pass / fail rates
at a decision boundary of 200 errors provide a good
range of data to trial the evolution of our Retention
Period Classifier. Table 4 shows the pass and fail rates
for blocks when the decision boundary for correctable
bit errors is set at 200.

54096 bytes per page * 128 pages = 524288 bytes per
block. 12 bit correction per 528 bytes = 11915 correctable
bits per block.
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Table 4: The number of blocks which pass and fail at each
level of cycling when the maximum number of correctable
bit errors is set at 200.

Cycles Pass Blocks Fail Blocks

5,000 44/44 (100 %) 0/44 (0 %)

10,000 44/44 (100 %) 0/44 (0 %)

15,000 43/44 (97.73 %) 1/44 (2.27 %)

20,000 32/44 (72.73 %) 12/44 (27.27 %)

25,000 18/44 (40.91 %) 26/44 (59.09 %)

30,000 7/44 (15.91 %) 37/44 (84.09 %)

Total 188/264 (71.21 %) 76/264 (28.79 %)

4.5 Data Analysis

Analysis of the data set found that correctly clas-
sifying every point as being above (fail) or below
(pass) the predefined decision boundary was impos-
sible. This is due to the extremely noisy nature of the
data with identical inputs from multiple data points
resulting in differing outputs.

Data points which had identical inputs but outputs
which led to different results were labelledconflicting
data points. At 15,000 cycles, only one data point was
regarded as a fail (a post-retention error count above
the decision boundary of 200). However, this point
was a conflicting data point, as another point with
identical inputs resulted in a pass. This meant that
100% success when classifying data points at 15,000
cycles was impossible due to the existence of two con-
flicting data points as only one of them could be clas-
sified correctly.

Details of conflicting data points are shown in Ta-
ble 5. The first data row in this table states that two
data points contained identical inputs (15,000 cycles,
16 pre-retention errors) with one of the data points re-
sulting in a pass while the other data point failed. The
scale of this problem increased for greater levels of
cycling with a total of 18 conflicting points across six
sets of inputs (in some cases up to five data points had
identical inputs) at 20,000 cycles. This resulted in at
least seven data points which would be impossible to
classify correctly. A minimum of six points would be
impossible to classify correctly at 25,000 cycles while
at least five data points would always be incorrect at
30,000 cycles due to conflicting results.

Further analysis examined data points that showed
high potential for misclassification as they produced
a different result to their surrounding neighbours.Po-
tential misclassificationswere data points which pro-
duced different results to other data points which con-

Table 5: The number of conflicting data points at each level
of cycling. Conflicting data points make 100% correct clas-
sification impossible as identical inputs produced different
results. For example, the third data row in this table states
that 5 data points contained identical inputs (20,000 cycles,
8 pre-retention errors) with four of the data points resulting
in a pass while the other data point failed.

Inputs Result

Count Cycles Errors Pass Fail

2 15,000 Cycles 16 1 1

2 20,000 Cycles 5 1 1

5 20,000 Cycles 8 4 1

2 20,000 Cycles 10 1 1

5 20,000 Cycles 11 2 3

2 20,000 Cycles 14 1 1

2 20,000 Cycles 26 1 1

2 25,000 Cycles 8 1 1

2 25,000 Cycles 11 1 1

4 25,000 Cycles 14 3 1

5 25,000 Cycles 15 2 3

3 25,000 Cycles 21 1 2

2 30,000 Cycles 12 1 1

2 30,000 Cycles 14 1 1

2 30,000 Cycles 15 1 1

3 30,000 Cycles 16 2 1

2 30,000 Cycles 25 1 1

tained similar inputs. When the majority of data
points containing the same number of cycles and
within a range of 10 pre-retention errors all resulted
in the opposite classification to the point under review,
the point was regarded as a potential misclassification.

At 15,000 cycles, one data point was prominent
as a potential misclassification while at both 20,000
and 25,000 cycles this number increased to 12. The
number of potential misclassifications then decreased
to six at 30,000 cycles.

4.6 Genetic Programming

Rather than developing our own GP system, ECJ
(Luke, 2010), a Java based Evolutionary Computa-
tion system was employed. Prior to beginning our
GP runs, the data was randomly divided into 8 groups
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in preparation for (k-fold) cross validation. We did,
however, ensure that all cycling counts were evenly
represented in all data sets.

A small number of preliminary test runs were
completed in order to experiment with different GP
parameter settings and function sets. These runs ex-
amined the results for varying numbers of genera-
tions, population sizes, tree depths, and reproduction,
crossover and mutation rates. A number of combi-
nations of various operators in the function set were
also tested. Following these trial runs, the GP param-
eters listed in Table 6 were chosen. The GP function
set comprised seven functions, while the terminal set
comprised the two inputs discussed earlier and also
five constants.

Table 6: Tableau showing GP parameters and settings.

Parameter Details

Objective Correctly classify data
points as pass or fail using a
decision boundary of 200.

Terminal Set x, y, 2, 3, 5, 7, 11

Function Set +, -, *, /, sin, cos, tan

Fitness The percentage of data
points correctly classified.

Hits The number of data points
correctly classified.

Generations 100

Population 1000

Max Tree Depth 15

Crossover Rate 0.8

Mutation Rate 0.15

Reproduction Rate 0.05

The GP system operated as a binary classifier with
the fitness of each individual deemed to be the per-
centage of data points classified correctly. The num-
ber of correct classifications for each individual were
also recorded and are referred to as hits. Each data
point was classified by first calculating the projected
output using the evolved individual. If the individual
resulted in output greater than the decision bound-
ary of 200, the individual predicted a fail, while an
output of less than the decision boundary predicted a
pass. This was then compared to the actual output for
the data point to determine if the evolved individual’s
classification was correct.

In order to verify whether the proposed GP pro-
cess would generalise well across the cycling levels
tested, a variant ofk-fold cross validation was per-
formed. The standardk-fold cross validation tech-
nique requires that the available data is evenly divided
into k groups. Following this,k GP runs are per-
formed with a different group being used as valida-
tion data for each run while the remainingk-1 groups
are used as training data. The leads to the GP system
training onk-1 groups with the best individual from
each run being validated using the previously unseen
data group set aside for validation. Upon completion
of the k runs, the validation results from thebest-of-
run individuals are averaged to give a representation
of how well the system can generalise to solve the
specified problem.

5 RESULTS

As mentioned in the previous section, the 264 data
points were divided into eight groups. This resulted
in each group containing the same number of points.
A variation of the standardk-fold cross validation
was then used by splitting the training groups into
two parts. Having assigned one of the eight data
groups for validation in each data set, the remaining
seven groups were randomly divided into five train-
ing groups and two testing groups. This resulted in
each data set using 62.5% of the data for training,
12.5% for validating every individual from the final
population on unseen data, and 25% for testing of the
best-of-run individuals. The extra validating step as-
sessed the ability of the entire population at the end of
the run to generalise to previously unseen data points
since there is no guarantee that the individual which
performed best on the training data will also gener-
alise the best.

The best-of-run individual following the valida-
tion stage of the process was chosen to go forward to
the testing stage. In the case of a number of individu-
als achieving the same best-of-run result, the shortest
individual was chosen since it is expected that shorter
individuals will generalise better. Since 8-fold cross
validation requires a minimum of just 8 runs – 1 per
data set – 10 runs were performed per data set giving
a total of 80 runs.

Table 7 shows the results from the 8-fold cross val-
idation runs. An average of 79.09% data points were
classified correctly by the best-of-run individuals on
the previously unseen testing data across all 80 runs,
while an average of 85.79% data points were classi-
fied correctly by the best performing individuals from
each of the eight folds. Despite the difficulties posed
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Table 7: Results from 8-fold Cross Validation test. Data wasdivided into 62.5% training, 12.5% validation, 25% testingdata.
Fitness refers to the percentage of data points classified correctly while hits refers to the number of correct classifications. The
hits column also shows the total number of data points for each subset of the data. The last row in the table shows the average
number of data points classified correctly by the best-of-run individuals.

Training (62.5%) Validation (12.5%) Testing (25%)

Mean Pop Mean Pop Mean Best

Fold Fitness Hits Fitness Hits Fitness Hits Fitness Hits

0 87.24% 143.95/165 78.46% 25.89/33 78.03% 51.50/66 86.36% 57/66

1 89.30% 147.34/165 80.36% 26.52/33 76.36% 50.40/66 80.30% 53/66

2 86.30% 142.39/165 87.14% 28.76/33 76.97% 50.80/66 84.85% 56/66

3 89.76% 148.10/165 72.93% 24.07/33 76.82% 50.70/66 87.88% 58/66

4 87.79% 144.85/165 77.30% 25.51/33 83.79% 55.30/66 89.39% 59/66

5 87.25% 143.97/165 89.58% 29.56/33 80.30% 53.00/66 84.85% 56/66

6 87.86% 144.96/165 82.13% 27.10/33 83.33% 55.00/66 89.39% 59/66

7 87.67% 144.66/165 70.42% 23.24/33 77.12% 50.90/66 83.33% 55/66

8-fold Cross Validation Average: 79.09% 52.20/66 85.79% 56.63/66

by the data set (as discussed in Section 4.5), the over-
all best performing individual achieved 89.39% cor-
rect classification on previously unseen data.

Considering the extremely noisy nature of the data
points (potential misclassifications) and the fact that
some identical inputs produce differing classifications
(conflicting data points), these results show that the
GP process can be used to generate a Retention Period
Classifier which will correctly classify the majority of
test cases.

Since no other approaches to predict the retention
period for Flash memory blocks have been reported
in the literature, comparative evaluation with previous
results was not possible. Section 6 includes details
of plans to employ other machine learning techniques
to provide benchmarks against which the GP system
proposed in this paper can be compared.

The levels of correct classification achieved in this
first set of experiments show the huge potential of this
prediction technique. Future research will aim to fur-
ther validate and improve the initial results reported
here in order to develop a classifier suitable for real
world application.

6 FUTURE WORK

Taking into account what we have learned from this
research, we propose to perform another batch of ex-
periments but to focus on higher levels of cycling.

The maximum number of post-retention errors found
during the data acquisition phase of this experiment
was 1,974. In our next test, we will focus on intervals
of 5,000 cycles starting at 10,000 and proceeding up
to 50,000. Judging by our test data and the results ob-
tained, we believe that this will allow us to evolve an
improved Retention Period Classifier by allowing GP
to train the population using a real world number of
correctable bit errors.

As part of the next iteration of this research we
will also generate classifiers using a number of other
methods such as neural networks and support vector
machines. The results obtained will provide data al-
lowing a comparative evaluation between a number of
different machine learning techniques.

This is just one task of a larger research project.
The overall goal of our research is to improve the
performance of SSDs using EA techniques. We aim
to achieve this by improving the endurance of the
NAND Flash memory used by the vast majority of
these drives. A Genetic Algorithm (GA) will be
used to evolve optimised parameter settings for Flash
memory devices under test. As mentioned earlier,
there is a trade-off between endurance and retention.
The classifier evolved in this paper will be used in
forthcoming research to predict whether blocks will
pass a temperature accelerated retention period when
controlled by modified parameter settings. This will
potentially save a lot of time and avoid performing un-
necessary tests for parameter settings which will fail.
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7 CONCLUSIONS

This research set out to use GP to evolve a function to
aid the prediction of blocks that would not retain data
for a particular length of time. This has huge poten-
tial for use in SSDs as it aids the early identification of
blocks that are likely to lose their contents when pow-
ered off. Initial analysis of the data acquired through
the destructive testing of blocks within a Flash de-
vice showed the extremely noisy nature of the data
including conflicting data points and the huge poten-
tial for misclassification, making it impossible to cor-
rectly classify all data points.

A form of 8-fold cross validation was used to ver-
ify that our GP process could evolve individuals ca-
pable of generalising to unseen data. A data division
of 62.5% training, 12.5% validation, and 25% test-
ing was used and 80 runs were performed to generate
a variety of potential solutions. The best individual
from our set of potential solutions achieved 89.39%
correct classification on previously unseen data while
the average result was 85.79%. This highlights the
huge promise shown by this technique considering the
difficulty posed by the noisy data set.

Since no method to predict the deterioration of
Flash memory blocks over the course of a retention
period currently exists, we believe this classifier has
potential for real world application. We will continue
to expand on the research introduced in this paper and
build a more robust Retention Period Classifier by ac-
cumulating more data points at higher levels of cy-
cling for use by GP.

We have confirmed that it is possible to use EAs
to model Flash memory characteristics and now in-
tend to explore this area in greater detail. In future
research, we will progress to using EAs to improve
the endurance of Flash devices by optimising the op-
erating parameters for MLC NAND Flash memory.
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