
A Data-Centric Approach for Networking Applications

Ahmad Ahmad-Kassem1, Christophe Bobineau2, Christine Collet2, Etienne Dublé3,
Stéphane Grumbach4, Fuda Ma1, Lourdes Martinez2 and Stéphane Ubéda4

1INRIA, INSA-Lyon, Villeurbanne, France
2Grenoble Institute of Technology, Grenoble, France

3CNRS, Grenoble, France
4INRIA, Villeurbanne, France

Keywords: Declarative Networking, Programming Abstraction, Case-based Distributed Query Optimization.

Abstract: The paper introduces our vision for rapid prototyping of heterogeneous and distributed applications. It
abstracts a network as a large distributed database providing a unified view of "objects" handled in networks
and applications. The applications interact through declarative queries including declarative networking
programs (e.g. routing) and/or specific data-oriented distributed algorithms (e.g. distributed join). Case-
Based Reasoning is used for optimization of distributed queries by learning when there is no prior
knowledge on queried data sources and no related metadata such as data statistics.

1 INTRODUCTION

The trend towards complex distributed applications
is accelerated with wireless networking technologies
interconnecting an increasing number of
heterogeneous devices (mobile and wearable, energy
constrained, personalized), which generate large
amounts of data. Devices usually take part in
dedicated ad hoc networks, where applications
deployment, configuration and management are
tedious and require significant human involvement
and expert knowledge. To improve the application
programming there is a need for high-level
programming abstraction

Demonstration of portability, extensibility,
integration and pervasive adaptation have been done
with variants of the Datalog rule-based language
applied to express communication algorithms and
declarative overlays through queries (Loo et al.
2006; Condie et al., 2008; Chen et al., 2010).
Several systems, such as TinyDB (Madden et al.,
2005) or Cougar (Demers et al., 2003) sensor
network systems, use the relational model to
represent device features and application data and
offer SQL-like languages to manage data
application. These systems also offer solutions to
perform efficient data dissemination and query
processing (centralized but also distributed).

Our vision – materialized in the UBIQUEST
system -- is to go a step further than the promising
declarative networking approach providing a unified
view of "objects" handled in networks and
applications. The environment is perceived as a
distributed database and the applications interact
through declarative queries (Loo et al., 2006; Mao,
2010). However, some necessary adaptations have to
be made: (i) to localize data or define the scope of a
query, (ii) to consume, filter and aggregate data
(continuous queries), (iii) to consider query
operators that may correspond to protocols, (iv) to
revisit query optimization. For this later aspect we
propose to use Case-Based Reasoning (CBR) –
providing a way to optimize queries when there is no
prior knowledge on queried data sources and
certainly no related metadata such as data statistics.
This approach is well adapted to social systems (e.g.
games, social networks), where data is pushed or
pulled with incomplete knowledge in a dynamic
environment.

The paper is organized as follows. Section 2
gives an overview of our approach and Section 3
presents its key elements. Section 4 gives a general
presentation of the UBIQUEST system. Section 5
concludes the paper.

147Ahmad-Kassem A., Bobineau C., Collet C., Dublé E., Grumbach S., Ma F., Martinez L. and Ubéda S..
A Data-Centric Approach for Networking Applications.
DOI: 10.5220/0004111301470152
In Proceedings of the International Conference on Data Technologies and Applications (DATA-2012), pages 147-152
ISBN: 978-989-8565-18-1
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2 DATA-CENTRIC APPROACH

The declarative approach is used to abstract the
network as a large distributed database providing
unified view of "objects" handled by both the
networks and applications. Such a database stores
information about the declarative programs, routers
configuration, states and characteristics of the
network. Rule-based programs correspond to
network operations or protocols triggered by data
updates. Rules are evaluated over local data and may
communicate results to other nodes in the network
using communication primitives.

The UBIQUEST approach we propose merges
the strengths of two areas (i) databases, and (ii)
declarative networking. With this approach a
programmer can specify the behavior of the system /
application (the what) rather than having to describe
the details of the system (the how). This allows
going one step further in the overlapping approaches
for example with destinations of messages resulting
of a query.

Figure 1: The UBIQUEST approach.

An UBIQUEST system runs on a set of
computing devices interconnected through a wireless
network (Figure 1). Every device embeds a virtual
machine in charge of data management, processing
queries (data selection and updates) and messages
propagation. The UBIQUEST virtual machine (VM)
(see Figure 2) is composed of:
� a Local Data Manager System (DMS) to manage

application data, network data and additional
information for distributed query evaluation,

� an UBIQUEST Engine to efficiently process
queries and rule programs,

� APIs and Communication modules to exchange
queries and data between nodes.

Figure 2: UBIQUEST node components.

All exchanges between nodes related to
communication protocols, to resource discovery or
to any other applicative aspects are carried out by
queries and data. This blurs the traditional
distinction between communication and application
layers. Queries are defined using either rule-based
languages for network data query expressions or
declarative query languages for querying application
data with a global point of view. Query optimization
is based on a CBR-based approach and pseudo-
random query plan generation. The CBR paradigm
means that we learn the cost of query plans (case)
while executing them. These cases are used for
generating plans for further similar queries. If there
is no convenient case, we use classical heuristics and
random choice (e.g. when there is no statistics for
join ordering and selection of algorithms).

To illustrate our approach, let us consider an
application concerning a virtual world game divided
in areas and having some avatars that are located
within a single area at a time (see Figure 3). Each
node of an UBIQUEST system has information on
its own avatars and their neighbors (avatars located
in the same area). Such information is stored in an
Itemset data structure of type:
Positions(Avatar avatar{key}, Int Area, NodeID
owner)

Figure 3: Application scenario.

DATA 2012 - International Conference on Data Technologies and Applications

148

For example, at node D the Position table (see
Table 1) has two tuples showing that it is the owner
of the Grey avatar that is in the area 2; also the Blue
avatar is in the same area but owned by node I.

Table 1: Positions table at node D.

Such a Positions table is actually a fragment of a

virtual table that maintains the information on all the
avatars, giving for each of them, the area in which it
is and its owner node. Table 2 gives the virtual
global Positions table for our application example.

Table 2: Global Positions table.

Considering this global view, the query to select

all avatars in the virtual world and the zone where
they are located is: SELECT Area, Avatar

FROM Positions;
This query will be executed globally.

Let us assume now that the Yellow avatar, owned
by node G, is moved from area 7 (where avatar
Green owned by node J is localized) to area 8 where
the Red avatar (node E) is localized. Table 3 shows
the Positions table after this operation.

Table 3: Global Positions table after modification.

The movement is coded by several updates

executed at node G (owner of Yellow) for cleaning
area 7, changing the Area attributes of the avatar and
finally for storing the new area exploration. The
update for cleaning the area 7 is:

Delete from Positions
Where Area = (LOCAL Select Area

from Positions
where Avatar = 'Yellow')

and Area not in (LOCAL Select Area
from Positions
where Avatar <> 'Yellow'
and Owner = SELF)

Stored on SELF;

The keyword LOCAL indicates that the query
has to be evaluated by the node over local data only.
The sub-queries are local and the delete operation
too as it concerns only data stored on SELF. Such a
query is executed at the node level and processed in
a distributed way with the following principles:

1. No centralized control. Query processing is
performed in an environment that is highly
dynamic, and has to adapt to and recover from
the network evolution. The control needs to be
fully distributed over the network.

2. Scarce metadata. The network being highly
dynamic, there is no stable knowledge on the
data organization. Resource discovery is
combined with networking protocols.

3. Everything in the database. The network
management is done through queries.

To conclude there is a need for adapting query
expression and execution to network condition,
application needs and query load.

3 DATA STRUCTURES
AND LANGUAGES

Network and application data in UBIQUEST are
Itemsets (cf. Section 3.1). Data distribution is
discussed in Section 3.2 and nodes exchanged
messages in Section 3.3. Section 3.4 describes the
rule-based languages for writing programs that are
installed on each node, where they run concurrently.
Finally, Section 3.5 presents the SQL-like query
language for describing queries or updates.

3.1 Items and Itemsets

The item is the unit of data manipulation: rules (in
programs) are evaluated for each new item (new
fact), and a query is processed item by item
following the classical iterator model. An Item is
composed of a set of attribute/value couples, values
are taken in predefined data types including integer,
float, string, date and NodeId (node identifier type).
The predefined attribute LocalID value (of type
NodeId) is the identifier of the current node.

An Itemset is a set defined by a name and the
structure shared by its items, i.e. a set of attributes
(name, type). Key attributes are used to identify one
specific item. An example of Itemset is the Positions
table in our application example.

3.2 Data Distribution

UBIQUEST supports only horizontal fragmentation

A Data-Centric Approach for Networking Applications

149

of Itemsets. This means that a global Itemset is
distributed over several (maybe all) UBIQUEST
nodes. Any participant node stores a (local) Itemset
or a fragment with the same schema as the global
one. Each item of the global Itemset is actually
stored in one or more nodes. Data distribution is
application-driven: applications decide on which
node(s) items have to be stored. This is possible
using either rule-based programs or DLAQL updates
(see Sections 3.4 and 3.5).

3.3 Message Structure

A message is the unit of communication among
nodes. A message has two main parts: (i) a
networking information and (ii) a payload where the
content of the message (i.e. queries or items) is
embedded. The networking information may contain
a logical destination of the message defined as a
query.

The payload has three parts: (i) A tag identifying
the type of content (e.g. declarative query, query
results, facts); (ii) A ContentId identifying in a
unique way the content; (iii) The Content itself:
declarative queries or data (query results or facts).

3.4 Rule Languages

The proposed rule-based languages (Netlog and
Questlog) extend Datalog with communication
primitives, as well as aggregation and non-
deterministic constructs standard in network
applications. The computation of rule programs is
distributed and the facts deduced can be either stored
locally on an UBIQUEST node on which the rules
run, or sent to other nodes.

3.4.1 Netlog

Netlog (Grumbach and Wang 2010) programs are
sets of recursive rules of the form head:-body, where
the head is derived when the body is satisfied. Rules
are evaluated in forward chaining and are triggered
by insertion of new items in the database. The
execution of rules may lead to transmission of items
to neighboring node(s). For example, the following
Netlog rules that are deployed on all nodes, compute
all routes in the network:

�Route(SELF, dest, dest, 1):- Link(SELF, dest).
�Route(self, dest, neigh, l2):- Link(SELF, neigh),

 Route(neigh, dest, _, l1), l2 := l1 + 1.
The first rule computes trivial routes to

neighbors, stores them locally on the relation
Route(Self, destination, nextHop, numberOfHop),

and broadcasts them to neighbors. When received by
neighbors, the second rule is satisfied and new
routes with an increasing number of hops is
deduced, stored locally, and broadcasted to
neighbors. This process continues recursively until
getting a fix-point where no new route is obtained.

3.4.2 Questlog

Questlog programs are also sets of recursive rules
but evaluated in backward chaining to answer
queries coming from a local application or a distant
node. The execution may lead to a sub-query
emission to neighboring node(s), and may imply the
return of items as the result of queries.

For example, the following two rules can be used
to compute (on demand) routes between node orig
and dest; nh and l being free variables.

�route(@orig, dest, dest, 1) �� link(orig, dest).
If the destination is a neighbour, then the body is

satisfied, that results in a route stored locally and
sent back to the origin node of the query.

�route(@orig, dest, nh, l+1) � �link(orig,
dest); link(orig, nh); ?route(@nh, dest, _, l).

This rule is applied when the destination is not a
neighbor of the node “orig” (Ølink(orig, dest)). The
rule sends a sub-query to all neighbouring nodes to
ask them if they know a route to the destination
(Link(orig, nh), ?Route(@nh, dest, _, l)). The @
operator ahead of a variable represents the node
where the sub-query will be sent. When a sub-query
returns a result, the second rule is applied
recursively to propagate the result to the origin node.

3.5 Data Location Aware Query
Language

The Data Location Aware Query Language
(DLAQL) extends the well-known SQL2 data
manipulation language to conform to the data
distribution policy of UBIQUEST. This means that a
DLAQL expression may explicitly indicate on
which UBIQUEST node data has to be stored.

3.5.1 DLAQL as a Subset of SQL2

With DLAQL, one can express classical SELECT-
FROM-WHERE queries using nested sub-queries,
aggregation functions, arithmetic expressions, and
selection, join and union operations. However,
SELECT expressions in DLAQL cannot use: group
by/having clauses, nested queries except in the
WHERE clause, synchronous sub-queries, and

DATA 2012 - International Conference on Data Technologies and Applications

150

EXISTS and UNIQUE condition operators.

3.5.2 Scope of DLAQL Queries

A DLAQL expression is defined considering a global
schema of Itemsets. It is evaluated considering the
value of the Itemsets (union of the fragments). The
LOCAL clause can be used to indicate that only local
data has to be used to evaluate conditions (WHERE
clause). Furthermore, if LOCAL is used with update
queries, modifications are applied on local Itemset
fragments only. For example, the following query
updates only local avatars of the Positions Itemset
that are located in Area number 5.

LOCAL UPDATE Positions SET …
WHERE Area = 5;

3.5.3 DLAQL and Data Locality

The STORE ON clause can be used in INSERT /
DELETE / UPDATE query expressions to indicate
where the data has to be inserted, or where is the
deleted or updated data. The clause specifies a list of
node identifiers that are explicitly given (values of
type NodeIds) or calculated as the result of a query.

For example, the following DLAQL query
inserts the new item (‘MyAvatar’, 5, SELF) in the
Positions Itemset stored at the local node SELF (the
current node where the query is executed) and in the
Positions Itemset of any node owning an avatar in
the area number 5.

INSERT INTO Positions
VALUES (‘MyAvatar’, 5, SELF)
STORE ON SELF, (SELECT Owner FROM
Positions WHERE Area = 5);

4 THE UBIQUEST SYSTEM

An UBIQUEST node is a device equipped with an
UBIQUEST Virtual Machine (UBIQUEST VM)
complemented with a Device wrapper that allows
device/VM interaction. The UBIQUEST VM is
composed of: (i) a Local DMS, (ii) an UBIQUEST
API, and (iii) an UBIQUEST Engine responsible of
efficient execution of UBIQUEST programs/queries.

4.1 Local DMS

The Local DMS stores and manages data as
Itemsets: application data (e.g. sensed data), network
data (e.g. routing tables, neighbor table), rule-
programs (e.g. distributed algorithms that can be
dynamically loaded/removed to/from the system),

and internal data (e.g. device specific data) used for
running other UBIQUEST VM components.

Figure 4: UBIQUEST node components.

4.2 UBIQUEST API

The UBIQUEST API manages all interactions
between the UBIQUEST Engines and the rest of the
world: local applications, device sensors and other
UBIQUEST VM through message exchange

As shown in Figure 4, the API is composed of:
(I) the Application API, in charge of the interaction
with applications running on the local node, (ii) the
Reception and Emission modules to deal with
message exchange among UBIQUEST nodes, (iii)
the Sensing API that locally stores data coming from
sensors embedded in the physical device, and (iv)
the Payload Dispatcher, which manages Payload
exchange among UBIQUEST VM sub-components
according to their Tag.

4.3 Distributed Query Engine

The Distributed Query Engine evaluates DLAQL
queries. It is composed of: (i) a Query Scheduler, (ii)
a Query Optimizer and (iii) an Execution Engine.
The Query Scheduler rewrites a global query into a
set of sub-queries and schedules their evaluation
(e.g. an update global query is decomposed into a
sequence of select, delete and insert sub-queries to
read the old value, delete it and inserting the new
value). Moreover, this module rewrites a query
considering local and distant Itemset fragments
generating a query (or set of queries) equivalent to
the original one.

The Query Optimizer is based on the Case-Based
Reasoning (CBR) machine learning approach
(Stillger, Lohman, Markl and Kandil, 2001). It
retrieves and adapts query plans using the
experiences gained from the execution of past
similar queries. When no knowledge is available it
randomly generates query plans using classical
heuristics (Ioannidis 1996). Query plans are trees

A Data-Centric Approach for Networking Applications

151

with computation operators, classical data access
operators or rule-based program invocations.

The Execution Engine executes a query plan P
using the well-known Iterator model (Graefe 1993)
for the physical operators. It also coordinates the
local and distant sub-queries and constructs a final
result from sub-query results. During the execution,
the cost parameters (energy, time, memory etc.) are
measured and a new case is built.

4.4 Rule Program Engine

The Program Engine receives payloads from the
Payload Dispatcher and has to treat their Contents
containing items (new facts or query results) or
predicates corresponding to a query.

If a Content contains new facts, the Program
Engine identifies which rule-program has to be
triggered by comparing new facts with predicates in
the rule head, then it retrieves the corresponding
rules from the DMS and evaluates them in forward
chaining mode till a fixpoint is reached.

If a Content contains a predicate corresponding
to a query, the Program Engine identifies which
rule-program has to be triggered by comparing the
predicate with rule bodies, then it retrieves the
corresponding rules from the DMS and evaluate
them in backward chaining till the full query result is
computed. If a Content contains query results, these
results are exploited to continue query evaluation.

In addition, the Program Engine during
processing propagates new items or new queries to
other nodes, through the UBIQUEST API, and/or
stores new items in the DMS. The Program Engine
has some additional functions, such as timers,
necessary for networking protocols, it also uses
optimization techniques, such as the triggering of
rules by new facts, which avoid unnecessary
computations, when there are no changes in the
input of rules.

5 CONCLUSIONS

This paper proposes a unified abstraction for the
management of application and network data, which
abolishes the separation between application and
communication layers. Applicative data, network
management operations, even configuration are
treated as transactional queries or updates. The
integration between queries and communication
protocols is one of the fundamental contributions of
the approach.

This allows the definition of rule programs for

networking protocols, which optimize queries or
query optimization strategies, which optimize
network distribution.

We are currently working on a better integration
of the two kinds of languages and on the
implementation of an UBIQUEST system prototype.
We also develop a simulation and emulation
environment for a detailed analysis and evaluation of
queries for a large class of algorithms and protocols.

ACKNOWLEDGEMENTS

This work has been supported by the ANR-09-
BLAN-0131-01 UBIQUEST Project (http://ubiquest
.imag.fr), financed by the French National Research
Agency (ANR).

REFERENCES

Chen, X., Mao, Y., Z. Mao, M., Van der Merwe, J., 2010.
Decor: Declarative network management and
operation. SIGCOMM Comput. Commun. Rev., 40:61-
66.

Condie, T., Chu, D., Hellerstein, J. M., Maniatis, P., 2008.
Evita raced: metacompilation for declarative networks.
Proc. VLDB Endow., 1:1153-1165.

Demers, A. J., Gehrke, J., Rajaraman, R., Trigoni, A.,
Yao, Y., 2003. The cougar project: a work-in-progress
report. SIGMOD Record, 32(4):53-59.

Graefe, G. 1993. Query evaluation techniques for large
databases. ACM Computing Surveys, vol. 25, Issue 2.

Grumbach, S., Wang, F., 2010. NetLog, a rule-based
language for distributed programming. In M. Carro
and R. Pea, editors, PADL, volume 5937 of Lecture
Notes in Computer Science, pages 88-103.

Ioannidis, Y., 1996. Query optimization. ACM Comput.
Surv., 28(1):121-123.

Loo, B. T., Condie, T., Garofalakis, M. N., Gay, D. E.,
Hellerstein, J. M., Maniatis, P., Ramakrishnan, R.,
Roscoe, T., Stoica, I., 2006. Declarative networking:
language, execution and optimization. In ACM
SIGMOD International Conference on Management of
Data, Chicago, Illinois, USA.

Madden, S., Franklin, M. J., Hellerstein, J. M., Hong, W.,
2005. Tinydb: an acquisitional query processing
system for sensor networks. ACM Trans. Database
Syst., 30(1).

Mao, T., 2010. On the declarativity of declarative
networking. SIGOPS Oper. Syst. Rev., 43:19{24}.

Stillger, M., Lohman, G., Markl, V., Kandil, M., 2001.
Leo - db2's learning optimizer. In: Proceedings of the
27th International Conference on Very Large Data
Bases, pages 19-28, San Francisco, CA, USA.

DATA 2012 - International Conference on Data Technologies and Applications

152

Skyline Query Processing on Heterogeneous Data
A Conceptual Model

Nurul Husna Mohd Saad, Hamidah Ibrahim, Fatimah Sidi and Razali Yaakob
Department of Computer Science, Faculty of Computer Science and Information Technology,

Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
nhusna.saad@gmail.com, {hamidah, fatimacd, razaliy}@fsktm.upm.edu.my

Keywords: Data Heterogeneity, Probabilistic Skyline Query, Data Management.

Abstract: Skyline queries have been aggressively researched recently due to its importance in realizing useful and
non-trivial application in decision-making environments. However, existing researches so far lack methods
to compute skyline queries over heterogeneous data where each data can be represented as either a single
certain point or a continuous range. In this paper, we tackle the problem of skyline analysis on
heterogeneous data and proposed method that will reduce the number of comparisons between objects as
well as gradually compute the probabilistic skyline of each object to be a skyline object. Our model employs
two techniques (local pruning and global pruning) for probabilistic skyline query.

1 INTRODUCTION

In recent years, preference evaluation methods have
gained a tremendous popularity amongst the
database research community as they have been
found to be useful in decision-making environments.
Almost everybody, either in their daily lives or in
professional scenarios, will face with multiple
conflicting criteria that need to be evaluated in order
to make a decision. Users will find that cost or price
of an item or service is usually the main criteria to
be considered in any decision makings and most of
the time, it will be in conflict with some other
measure of quality, which is also typically another
criterion in making the decisions. The most
prominent example used in this research area is hotel
selection. In selecting a hotel, price, distance, and
rate may be some of the main criteria a user might
consider. Users mostly want a hotel that is cheap and
near to certain places, i.e., beaches. It is rare to have
the cheapest hotel to be the nearest hotel to the
beach. Thus, this is where the implementation of
preference evaluation methods will benefit the user
as it leads the process of decision makings to more
informed and better results.

Skyline query is one of the most popular
preference evaluation methods that had been
receiving various interests in the literature
(Börzsönyi et al., 2001; Papadias et al., 2003; Kian-
Lee et al., 2001; Kossman et al., 2002; Godfrey et

al., 2005; Lee et al., 2007). Skyline queries return a
set of interesting multi-dimensional (multiple-
criteria) objects. In n-dimensional objects, we say
object U is more interesting than another object V if
U is better than or equal to V in all dimensions and
U is also better than V in at least one dimension.
Normally, it will be assumed whether lower or
higher value is preferred for all dimensions.
However, most researches that have been done in
this area have only been focusing on homogeneous
data, but in a real world application, the existence of
heterogeneous data could not be avoided. The study
of heterogeneity of data in skyline queries would
usually by default make this study fall under the
scope of uncertainty in skyline queries.
Nevertheless, in our study so far, we have found that
this is not the case as the study of data uncertainty in
skyline queries did not fully incorporated the
heterogeneity of data in their research. Consider
Figure 1 which shows examples of homogeneity of
data in the studies of skyline queries for both certain
and uncertain data. Both of the data shown in the
figure obviously have the same structure of data in
both dimensions x and y, and while the data in
Figure 1b did not have the same structure in both of
its dimensions, still, all the data in dimension x have
the same structure, thus making the process of
skyline queries on this data quite straightforward
(although, it is still not as straightforward as the
conventional skyline query processing on certain

153

