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Abstract: A new strategy using Differential Evolution (DE) for Adaptive Plan System of Particle Swarm Optimization
(PSO) with Genetic Algorithm (GA) called DE-PSO-APGA is proposed to solve a huge scale optimization
problem, and to improve the convergence towards the optimal solution. This is an approach that combines the
global search ability of GA and Adaptive plan (AP) for local search ability. The proposed strategy incorporates
concepts from DE and PSO, updating particles not only by DE operators but also by mechanism of PSO for
Adaptive System (AS). The DE-PSO-APGA is applied to several benchmark functions with multi-dimensions
to evaluate its performance. We confirmed satisfactory performance through various benchmark tests.

1 INTRODUCTION

Several modern heuristic algorithms as population-
based algorithms Evolutionary Algorithms (EAs)
have been developed for solving complex numeri-
cal optimization. The most popular EA, Genetic Al-
gorithm (GA) (Goldberg, 1989) has been applied to
various multi-peak optimization problems. The va-
lidity of this method has been reported by many re-
searchers. However, it requires a huge computational
cost to obtain stability in the convergence to an op-
timal solution. To reduce the cost and to improve
stability, a strategy that combines global and local
search methods becomes necessary. As for this strat-
egy, Hasegawa et al. proposed a new evolutionary al-
gorithm called an Adaptive Plan system with Genetic
Algorithm (APGA) (Hasegawa, 2007).

Among the modern meta-heuristic algorithms, a
well-known branch is Particle Swarm Optimization
(PSO), first introduced by Kennedy and Eberhart
(2001). It has been developed through simulation
of a simplified social system, and has been found to
be robust in solving optimization problems. Never-
theless, the performance of the PSO greatly depends
on its parameters and it often suffers from the prob-
lem of being trapped in the local optimum. To re-
solve this problem, various improvement algorithms
are proposed for solving a variety of optimal proble-

ms (Clerc and Kennedy, 2002).
A new evolutionary algorithm known as Differen-

tial Evolutionary (DE) was recently introduced and
has garnered significant attention in the research liter-
ature (Storn and Price, 1997). Compared with other
techniques and EAs, it hardly requires any parameter
tuning and is very efficient and reliable. As PSO has
memory, knowledge of good solutions is retained by
all particles, whereas in DE, previous knowledge of
the problem is discarded once the population changes.
Moreover PSO and DE both work with an initial pop-
ulation of solutions. Therefore, combining the search-
ing ability of these methods seems to be a reasonable
approach (Das et al., 2008).

In this paper, we purposed a new strategy using
DE for Adaptive Plan system of PSO with GA to
solve a huge scale optimization problem, and to im-
prove the convergence to the optimal solution called
DE-PSO-APGA.

The remainder of this paper is organized as fol-
lows. Section 2 describes the basic concepts of DE,
Section 3 explains the algorithm of proposed strat-
egy (DE-PSO-APGA), and Section 4 discusses about
the convergence to the optimal solution of multi-
peak benchmark functions. Finally Section 5 includes
some brief conclusions.
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2 DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is an EA proposed by
Storn and Price (1997), also a population-based
heuristic algorithm, which is simple to implement,
requires little or no parameter tuning and is known
for its remarkable performance for combinatorial op-
timization.

2.1 Basic Concepts of DE

DE is similar to other EAs particularly GA in the
sense that it uses the same evolutionary operators such
as selection, recombination, and mutation. However
the significant difference is that DE uses distance and
direction information from the current population to
guide the search process. The performance of DE de-
pends on the manipulation of target vector and differ-
ence vector in order to obtain a trial vector.

2.1.1 Mutation

Mutation is the main operator in DE. For a D-
dimensional search space, each target vector Xi;G, the
most useful strategies of a mutant vector are:

DE/rand/1

Vi;G = Xr1;G +F � (Xr2;G�Xr3;G) (1)

DE/best/1

Vi;G = Xbest;G +F � (Xr2;G�Xr3;G) (2)

DE/target to best/1

Vi;G = Xi;G +F � (Xbest;G�Xi;G)
+F � (Xr2;G�Xr3;G) ;

(3)

DE/best/2
Vi;G = Xbest;G +F � (Xr1;G�Xr2;G)

+F � (Xr3;G�Xr4;G) ;
(4)

DE/rand/2
Vi;G = Xr1;G +F � (Xr2;G�Xr3;G)

+F �
�
Xr4;G�Xr5;G

�
;

(5)

where r1, r2, r3, r4, r5 2 [1;2; : : : ;NP] are mutually
exclusive randomly chosen integers with a initiated
population of NP, and all are different from the base
index i. G denotes subsequent generations, and F > 0
is a scaling factor which controls the amplification
of differential evolution. Xbest;G is the best individual
vector with the best fitness (lowest objective function
value for a minimization) in the population.

DE/rand/2/dir

Vi;G = Xr1;G +F=2 � (Xr1;G�Xr2;G�Xr3;G) (6)

DE/rand/2/dir (Feoktistov and Janaqi, 2004) incorpo-
rates the objective function information to guide the
direction of the donor vectors. Xr1;G, Xr2;G, and Xr3;G
are distinct population members such that f (Xr1;G)�
f f (Xr2;G) ; f (Xr3;G)g.

2.1.2 Crossover

To enhance the potential diversity of the population,
a crossover operation is introduced. The donor vec-
tor exchanges its components with the target vector to
form the trial vector:

U ji;G+1 =

�
Vji;G+1;(rand j �CR) or ( j = jrand)
X ji;G+1;(rand j �CR) and ( j 6= jrand)

(7)
where j = [1;2; : : : ;D]; rand j 2 [0:0;1:0]; CR is
the crossover probability takes value in the range
[0.0,1.0], and jrand 2 [1;2; : : : ;D] is the randomly cho-
sen index.

2.1.3 Selection

Selection is performed to determine whether the tar-
get vector or the trial vector survives to the next gen-
eration. The selection operation is described as:

Xi;G+1 =

�
Ui;G; f (Ui;G)� f (Xi;G)
Xi;G; f (Ui;G)> f (Xi;G)

(8)

2.2 Variants of DE

In this section, we discuss about an introduction of
the most prominent DE variants that were developed
and appeared to be competitive against the existing
best-known real parameter optimizers. Some of these
variants are:

DE using Arithmetic Recombination (Price et al.,
2005)

Vi;G = Xi;G + ki � (Xr1;G�Xi;G)

+F
0 � (Xr2;G�Xr3;G)

(9)

where ki is the combination coefficient, which can
be a constant or a random variable distribution from
[0.0,1.0], and F

0
= ki �F is a new constant parameter.

DE/rand/1/either-or

Vi;G =

�
Xr1;G +F � (Xr2;G�Xr3;G) ; randi(0;1)< pF
Xr0;G + k � (Xr1;G +Xr2;G�2Xr0;G)

(10)
Price et al. (2005) proposed the state-of-the-art where
the trial vectors that are pure mutants occur with a
probability pF and those that are pure recombinants
occur with a probability 1� pF (0:0 < pF < 1:0).
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Note that pF is a parameter that determines the
relative importance of a mutation and arithmetic
recombination schemes, Price et al. recommended a
value 0.4 for it, and the parameter k = 0:5 � (F +1) as
a good choice for a given F .

3 DE-PSO-APGA STRATEGY

With a view to global search, we proposed the new
algorithm using DE for Adaptive Plan system of
PSO with GA named DE-PSO-APGA. The DE-PSO-
APGA aims at getting the direction from PSO opera-
tor to adjust into adaptive system of APGA based on
alternative operators of DE scheme. In addition, for
a verification of APGA search process, refer to Ref.
(Hasegawa, 2007).

3.1 Algorithm

The proposed DE-PSO-APGA starts like the usual
DE algorithm up to the point where the trial vector is
generated. If the trial vector satisfies the conditions
given by (8), then the algorithm enters the PSO
operator to get the direction and generates a new
candidate solution with adaptive system of APGA.
The inclusion of APGA process turns helps in
maintaining diversity of the population and reaching
a global optimal solution.

Pseudocode of DE-PSO-APGA
begin

initialize population;
fitness evaluation;
repeat until (termination) do

DE update strategies;
PSO activated;
APGA process;

end do
renew population;

end.

DE Update Strategies

� DE-PSO-APGA1 by (1);

� DE-PSO-APGA2 by (2);

� DE-PSO-APGA3 by (3);

� DE-PSO-APGA4 by (4);

� DE-PSO-APGA5 by (5);

� DE-PSO-APGA6 by (6);

� DE-PSO-APGA7 by (9);

� DE-PSO-APGA8 by (10);

PSO Operator
We are concerned here with conventional basic model
of PSO (Kennedy and Eberhart, 2001). In this model,
each particle which make up a swarm has informa-
tion of its position xi and velocity vi (i is the index of
the particle) at the present in the search space. Each
particle aims at the global optimal solution by updat-
ing next velocity making use of the position at the
present, based on its best solution has been achieved
so far pi j and the best solution of all particles g j
( j = [1;2; : : : ;D], D is the dimension of the solution
vector), as following equation:

vG+1
i j = wvG

i j + c1r1
�

pG
i j�XG

i j
�
+ c2r2

�
gG

j �XG
i j
�
(11)

where w is inertia weight; c1 and c2 are cognitive ac-
celeration and social acceleration, respectively; r1 and
r2 are random numbers uniformly distributed in the
range [0.0, 1.0].

In our strategy, the concept of time-varying has
been adapted (Shi and Eberhart, 1999). The inertia
weight w in (11) linearly decreasing with the iterative
generation as below:

w = (wmax�wmin)
itermax� iter

itermax
+wmin (12)

where iter is the current iteration number while
itermax is the maximum number of iterations, the
maximal and minimal weights wmax and wmin are re-
spectively set 0.9, 0.4 known from experience.

The acceleration coefficients are expressed as:

c1 = (c1 f � c1i)
itermax� iter

itermax
+ c1i (13)

c2 = (c2 f � c2i)
itermax� iter

itermax
+ c2i (14)

where c1i, c1 f , c2i and c2 f are initial and final values
of the acceleration coefficient factors respectively.
The most effective values are set 2.5 for c1i and c2 f
and 0.5 for c1 f and c2i as in (Eberhart and Shi, 2000).

APGA Process
Adaptive Plan with Genetic Algorithm (APGA)
(Hasegawa, 2007) that combines the global search
ability of a GA and an Adaptive Plan (AP) with ex-
cellent local search ability is superior to other EAs,
Memetic Algorithms (MAs) (Smith et al., 2005). The
APGA concept differs in handling DVs from general
EAs based on GAs. EAs generally encode DVs into
the genes of a chromosome, and handle them through
GA operators. However, APGA completely separates
DVs of global search and local search methods. It en-
codes Control variable vectors (CVs) of AP into its
genes on Adaptive system (AS). Moreover, this sep-
aration strategy for DVs and chromosomes can solve
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MA problem of breaking chromosomes. The control
variable vectors (CVs) steer the behavior of adaptive
plan (AP) for a global search, and are renewed via ge-
netic operations by estimating fitness value. For a lo-
cal search, AP generates next values of DVs by using
CVs, response value vectors (RVs) and current values
of DVs according to the formula:

Xi;G+1 = Xi;G +AP(CG;RG) (15)

where AP(), X , C, R, and G denote a function of AP,
DVs, CVs, RVs and generation, respectively.

3.2 Adaptive Plan (AP)

It is necessary that the AP realizes a local search pro-
cess by applying various heuristics rules. In this pa-
per, the plan introduces a DV generation formula us-
ing velocity update from PSO operator that is effec-
tive in the convex function problem as a heuristic rule,
because a multi-peak problem is combined of convex
functions. This plan uses the following equation:

AP(CG;RG) = scale �SP �PSO � (ÑR) (16)

SP = 2 �CG�1 (17)

where ÑR denote sensitivity of RVs, constriction fac-
tor scale randomly selected from a uniform distribu-
tion in [0.1,1.0], and velocity update PSO by (11).

Step size SP is defined by CVs for controlling a
global behavior to prevent it falling into the local opti-
mum. C = [ci; j; : : : ; ci;p]; (0:0� ci; j � 1:0) is used so
that it can change the direction to improve or worsen
the objective function, and C is encoded into a chro-
mosome by 10 bit strings (shown in Figure 1). In ad-
dition, i, j and p are the individual number, design
variable number and its size, respectively.

0  0  0  1  0  1  0  0  0  0 0  0  0  0  0  1  0  1  0  0

ci,1= 80/1023 = 0.07820 ci, 2= 20/1023 = 0.01955

0  0  0  1  0  1  0  0  0  0

Individual i

Step size ci,1 of x1: Step size ci,2 of x2:

0  0  0  1  0  1  0  0  0  0 0  0  0  0  0  1  0  1  0  0

ci,1= 80/1023 = 0.07820 ci, 2= 20/1023 = 0.01955

0  0  0  1  0  1  0  0  0  0

Individual i

Step size ci,1 of x1: Step size ci,2 of x2:

Figure 1: Encoding into genes of a chromosome.

3.3 GA Operators

3.3.1 Selection

Selection is performed using a tournament strategy to
maintain the diverseness of individuals with a goal of
keeping off an early convergence. A tournament size
of 2 is used.

3.3.2 Elite Strategy

An elite strategy, where the best individual survives in
the next generation, is adopted during each generation
process. It is necessary to assume that the best indi-
vidual, i.e., as for the elite individual, generates two
behaviors of AP by updating DVs with AP, not GA
operators. Therefore, its strategy replicates the best
individual to two elite individuals, and keeps them to
next generation. As shown in Figure 2, DVs of one of
them (D symbol) is renewed by AP, and its CVs which
are coded into chromosome arent changed by GA op-
erators. Another one (� symbol) is that both DVs and
CVs are not renewed, and are kept to next generation
as an elite individual at the same search point.

 
0

f(x)

x
elite x

(x
elite
)f 

0

t generation t+1 generationf(x)

(x
elite
)f 

(x
new
)f 

x
elite
x
new x0

f(x)f(x)

x
elite x

(x
elite
)f (x

elite
)f 

0

t generation t+1 generationf(x)f(x)

(x
elite
)f (x

elite
)f 

(x
new
)f (x

new
)f 

x
elite
x
elite
x
new
x
new x

Figure 2: Elite strategy.

3.3.3 Crossover and Mutation

In order to pick up the best values of each CV, a single
point crossover is used for the string of each CV. This
can be considered to be a uniform crossover for the
string of the chromosome as shown in Figure 3(a).

Mutation are performed for each string at muta-
tion ratio on each generation, and set to maintain the
strings diverse as shown in Figure 3(b).

 

Step size c of x : Step size  c
i,2
of x

2
:

Crossover

0  0  0  1  0  1  0  0  0  0 0  0  0  0  0  1  0  1  0  0

Individual B

Individual A

0  0  0  1  0  0  1  1  1  0 0  0  0  1  1  1  0  0  0  1

0  0  0  1  0  1  1  1  1  0 0  0  0  0  0  1  0  0  0  1

Individual B

Individual A

0  0  0  1  0  0  0  0  0  0 0  0  0  1  1  1  0  1  0  0

i,1 1
: :

Crossover

:
i,2 2

:

Crossover

i,1 1
: :

Crossover

(a)

 

Step size c of x : Step size  c
i,2
of x

2
:

Individual A 0  0  0  1  0  1  1  1  1  0 0  0  0  0  0  1  0  0  0  1

Individual A 0  0  0  1  0  1  1  0  1  0 0  0  0  0  0  1  0  0  1  1

i,1 1
: ::

i,2 2
:

i,1 1
: :

Mutation

(b)

Figure 3: Crossover and Mutation.
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3.3.4 Recombination

At following conditions, the genetic information on
chromosome of individual is recombined by uniform
random function.

� One fitness value occupies 80% of the fitness of
all individuals;

� One chromosome occupies 80% of the popula-
tion.

4 NUMERICAL EXPERIMENTS

The numerical experiments are performed 25 trials for
every function. The initial seed number is randomly
varied during every trial. The population size is 100
individuals and the terminal generation is 1500 gen-
erations. Parameters setting for the experiments are
given in Table 1.

4.1 Benchmark Functions

We estimate the stability of the convergence to the
optimal solution by using five benchmark functions
- Rastrigin (RA), Griewank (GR), Ridge (RI), Ack-
ley (AC), and Rosenbrock (RO). These functions are
given as follows:

RA : f1 = 10n+
n

å
i=1
fx2

i �10cos(2pxi)g (18)

RI : f2 =
n

å
i=1

 
i

å
j=1

x j

!2

(19)

GR : f3 = 1+
n

å
i=1

x2
i

4000
�

n

Õ
i=1

cos
�

xip
i

�
(20)

AC : f4 =�20exp

 
�0:2

s
1
n

n

å
i=1

x2
i

!

�exp

 
1
n

n

å
i=1

cos(2pxi)

!
+20+ e (21)

RO : f5 =
n

å
i=1

[100(xi+1 +1� (xi +1)2)2 + x2
i ] (22)

Table 2 summarizes their characteristics, and de-
sign range of DVs. The terms epistasis, peaks, steep
denote the dependence relation of the DVs, presence
of multi-peak and level of steepness, respectively. All
functions are minimized to zero (ESP = 1:7e�308),
when optimal DVs X = 0 are obtained.

Table 1: Setting parameters for solving Benchmarks.

Control Parameter Set value

DE Scaling factor F 2 [0:1;1:0]
Crossover CR = 0:5

PSO
Inertia weight wmax = 0:9

wmin = 0:4

Coefficients c1i = c2 f = 2:5
c1 f = c2i = 0:5

GA
Selection 0.1
Crossover 0.8
Mutation 0.01

Population size 100; Terminal generation 1500

Table 2: Benchmark functions and design range.

Func Epistasis Peaks Steep DVs range
RA No Yes Average [-5.12,5.12]
RI Yes No Average [-100,100]
GR Yes Yes Small [-600,600]
AC No Yes Average [-32,32]
RO Yes No Big [-30,30]

4.2 Experiment Results

The experiment results, averaged over 25 trials with
RO function are shown in Table 3. The solutions
of all strategies reach their global optimum solu-
tions. When the success rate of optimal solution is
not 100%, ”-” is described.

From the results via optimization experiments, we
employed DE-PSO-APGA2 using DE/best/1 update
strategy for the DE-PSO-APGA algorithm, and rec-
ommended a value 0.1 for the scaling factor F . Ad-
ditionally, the average results of all benchmark func-
tions with 30 and 100 dimensions by the DE-PSO-
APGA are given in Table 4. The success rate of
optimal solution is 100% with all benchmark func-
tions. ”Mean” indicates average of minimum values
obtained, and ”Std.” stands for standard deviation.

In summary, its validity confirms that this strategy
can reduce the computation cost and improve the sta-
bility of the convergence to the optimal solution.

4.3 Comparison

Table 5 shows the comparison of PSO, DE, DE-PSO
(Pant et al., 2008) and the DE-PSO-APGA. As a re-
sult, DE-PSO-APGA algorithm outperformed PSO,
DE and DE-PSO in all benchmark functions. There-
fore, it is desirable to introduce this method for the
new evolution strategy.

Overall, DE-PSO-APGA was capable of attaining
robustness, high quality, low calculation cost and ef-
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Table 3: Average of minimum values obtained over 25 trials with RO function (D = 30, population size 50, CR = 0:5).

Strategy Scaling factor F
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

DE-PSO-APGA1 - - - - - - - - - -
DE-PSO-APGA2 0 0 0 0 0 0 0 - - -
DE-PSO-APGA3 2.96e-30 5.06e-30 2.9e-197 2.9e-197 2.8e-197 0 0 - - -
DE-PSO-APGA4 0 0 0 0 0 - - - - -
DE-PSO-APGA5 - - - - - - - - - -
DE-PSO-APGA6 5.31e-30 1.6e-118 - - - - - - - -
DE-PSO-APGA7 - - - - - - - - - -
DE-PSO-APGA8 - - - - - - - - - -

Table 4: Results by DE-PSO-APGA with population size
100 (F = 0:1, CR = 0:5). Mean indicates average of mini-
mum values obtained, ”Std.” stands for standard deviation.

Func Dim. Max Gen. Mean (Std.)

RA 30 500 0.00e+00 (0.00e+00)
100 1500 0.00e+00 (0.00e+00)

RI 30 500 0.00e+00 (0.00e+00)
100 1500 0.00e+00 (0.00e+00)

GR 30 500 0.00e+00 (0.00e+00)
100 1500 0.00e+00 (0.00e+00)

AC 30 500 4.44e-16 (0.00e+00)
100 1500 4.44e-16 (0.00e+00)

RO 30 500 0.00e+00 (0.00e+00)
100 1500 0.00e+00 (0.00e+00)

Table 5: Comparison results of PSO, DE, DE-PSO and DE-
PSO-APGA (D = 30, population size 30, max generation
3000).

Func PSO DE DE-PSO DE-PSO
-APGA

RA 37.82 2.531 1.614 0
(7.456) (5.19) (3.885) (0)

RI - - - 0
- - - (0)

GR 0.018 0 0 0
(0.023) (0) (0) (0)

AC 1.0e-08 7.3e-15 3.7e-15 4.4e-16
(1.9e-08) (7.7e-16) (0) (0.0e+0)

RO 81.27 31.14 24.2 0
(41.22) (17.12) (12.31) (0)

ficient performance on many benchmark problems.

5 CONCLUSIONS

To overcome the computational complexity, a new
strategy using DE for Adaptive Plan system of PSO
with GA called DE-PSO-APGA has been proposed to
solve a huge scale optimization problem, and to im-
prove the convergence to the optimal solution. Then,
we verify the effectiveness of the DE-PSO-APGA by
the numerical experiments performed five benchmark
functions.

We can confirm that the DE-PSO-APGA dramat-
ically reduces the calculation cost and improves the
convergence towards the optimal solution.
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