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Abstract: We present a novel approach for the construction of ensemble classifiers based on the Diffusion Maps (DM)
dimensionality reduction algorithm. The DM algorithm embeds data into a low-dimensional space according
to the connectivity between every pair of points in the ambient space. The ensemble members are trained
based on dimension-reduced versions of the training set. These versions are obtained by applying the DM
algorithm to the original training set using different values of the input parameter. In order to classify a test
sample, it is first embedded into the dimension reduced space of each individual classifier by using the Nyström
out-of-sample extension algorithm. Each ensemble member is then applied to the embedded sample and the
classification is obtained according to a voting scheme. A comparison is made with the base classifier which
does not incorporate dimensionality reduction. The results obtained by the proposed algorithms improve on
average the results obtained by the non-ensemble classifier.

1 INTRODUCTION

Classifiers are predictive models which label data
based on a training datasetT whose labels are known
a-priory. A classifier is constructed by applying an
induction algorithm, or inducer, toT - a process that
is commonly known astraining. Classifiers differ
by the induction algorithms and training sets that are
used for their construction. Common induction algo-
rithms include nearest neighbors (NN), decision trees
(CART (Breiman et al., 1993), C4.5 (Quinlan, 1993)),
Support Vector Machines (SVM) (Vapnik, 1999) and
Artificial Neural Networks - to name a few. Since
every inducer has its advantages and weaknesses,
methodologies have been developed to enhance their
performance. Ensemble classifiers are one of the most
common ways to achieve that.

The need for dimensionality reduction techniques
emerged in order to alleviate the so calledcurse of di-
mensionality- the fact that the complexity of many al-
gorithms grows exponentially with the increase of the
input data dimensionality (Jimenez and Landgrebe,
1998). In many cases a high-dimensional dataset lies
approximately on a low-dimensional manifold in the
ambient space. Dimensionality reduction methods

embeddatasets into a low-dimensional space while
preserving as much possible the information that is
conveyed by the dataset. The low-dimensional rep-
resentation is referred to as theembeddingof the
dataset. Since the information is inherent in the ge-
ometrical structure of the dataset (e.g. clusters), a
good embedding distorts the structure as little as pos-
sible while representing the dataset using a number of
features that is substantially lower than the dimension
of the original ambient space. Furthermore, an effec-
tive dimensionality reduction algorithm also removes
noisy features and inter-feature correlations.

1.1 Ensembles of Classifiers

Ensembles of classifiers (Kuncheva, 2004) mimic the
human nature to seek advice from several people be-
fore making a decision where the underlying assump-
tion is that combining the opinions will produce a de-
cision that is better than each individual opinion. Sev-
eral classifiers (ensemblemembers) are constructed
and their outputs are combined - usually by voting or
an averaged weighting scheme - to yield the final clas-
sification (Polikar, 2006; Opitz and Maclin, 1999).
In order for this approach to be effective, two crite-
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ria must be met:accuracyanddiversity (Kuncheva,
2004). Accuracy requires each individual classifier to
be as accurate as possible i.e. individually minimize
the generalization error. Diversity requires minimiz-
ing the correlation among the generalization errors of
the classifiers. These criteria are contradictory since
optimal accuracy achieves a minimum and unique er-
ror which contradicts the requirement of diversity.
Complete diversity, on the other hand, corresponds
to random classification which usually achieves the
worst accuracy. Consequently, individual classifiers
that produce results which are moderately better than
random classification are suitable as ensemble mem-
bers.

In this paper we focus on ensemble classifiers
that use a single induction algorithm, for example
the Naı̈ve Bayes inducer. This ensemble construc-
tion approach achieves its diversity by manipulating
the training set. A well known way to achieve diver-
sity is by bootstrap aggregation (Bagging) (Breiman,
1996). Several training sets are constructed by apply-
ing bootstrap sampling (each sample may be drawn
more than once) to the original training set. Each
training set is used to construct a different classi-
fier where the repetitions fortify different training in-
stances. This method is simple yet effective and has
been successfully applied to a variety of problems
such as spam detection (Yang et al., 2006), analysis
of gene expressions (Valentini et al., 2003) and user
identification (Feher et al., 2012).

The award winning Adaptive Boosting (Ad-
aBoost) (Freund and Schapire, 1996) algorithm and
its subsequent versions e.g. (Drucker, 1997) and
(Solomatine and Shrestha, 2004) provide a different
approach for the construction of ensemble classifiers
based on a single induction algorithm. This approach
iteratively assigns weights to each training sample
where the weights of the samples that are misclassi-
fied are increased according to a global error coeffi-
cient. The final classification combines the logarithm
of the weights to yield the ensemble’s classification.

Successful applications of the ensemble method-
ology can be found in many fields such as recom-
mender systems (Schclar et al., 2009), classification
(Schclar and Rokach, 2009), finance (Leigh et al.,
2002), manufacturing (Rokach, 2008) and medicine
(Mangiameli et al., 2004), to name a few.

1.2 Dimensionality Reduction

The dimensionality reduction problem can be for-
mally described as follows. Let

Γ = {xi}N
i=1 (1)

be the original high-dimensional dataset given as a set
of column vectors wherexi ∈ R

n, n is the dimension
of the ambient space andN is the size of the dataset.
All dimensionality reduction methods embed the vec-
tors into a lower dimensional spaceRq whereq≪ n.
Their output is a set of column vectors in the lower
dimensional space

Γ̃ = {x̃i}N
i=1 , x̃i ∈ R

q (2)

whereq is chosen such that it approximates the in-
trinsic dimensionality ofΓ (Hein and Audibert, 2005;
Hegde et al., 2007). We refer to the vectors in the set
Γ̃ as theembedding vectors.

Dimensionality techniques can be divided into
global and local methods. The former derive em-
beddings in whichall points satisfy a given crite-
rion. Examples for global methods include: Principal
Component Analysis (PCA) (Hotelling, 1933), Ker-
nel PCA (KPCA) (Schölkopf et al., 1998; Schölkopf
and Smola, 2002), Multidimensional scaling (MDS)
(Kruskal, 1964; Cox and Cox, 1994), ISOMAP
(Tenenbaum et al., 2000), etc. Contrary to global
methods, local methods construct embeddings in
which only local neighborhoods are required to meet
a given criterion. The global description of the dataset
is derived by the aggregation of the local neighbor-
hoods. Common local methods include Local Linear
Embedding (LLE) (Roweis and Saul, 2000), Lapla-
cian Eigenmaps (Belkin and Niyogi, 2003), Hes-
sian Eigenmaps (Donoho and Grimes, 2003) and Dif-
fusion Maps (Coifman and Lafon, 2006a; Schclar,
2008) which is used in this paper and is described in
Section 3.

A key aspect of dimensionality reduction is how to
efficiently embed anew pointinto agivendimension-
reduced space. This is commonly referred to asout-
of-sample extensionwhere the sample stands for the
original dataset whose dimensionality was reduced
and does not include the new point. An accurate em-
bedding of a new point requires the recalculation of
the entire embedding. This is impractical in many
cases, for example, when the time and space com-
plexity that are required for the dimensionality reduc-
tion is quadratic (or higher) in the size of the dataset.
An efficient out-of-sample extension algorithm em-
beds the new point without recalculating the entire
embedding - usually at the expense of the embedding
accuracy.

The Nyström extension (Nyström, 1928) algo-
rithm, which is used in this paper, embeds a new point
in linear time using the quadrature rule when the di-
mensionality reduction involves eigen-decomposition
of a kernel matrix. Algorithms such as Diffusion
Maps, Laplacian Eigenmaps, ISOMAP, LLE, etc. are
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Figure 1: Ensemble training.

examples that fall into this category and, thus, the em-
beddings that they produce can be extended using the
Nyström extension (Ham et al., 2004; Bengio et al.,
2004). A formal description of the Nyström exten-
sion is given in the Sec. 4.

The main contribution of this paper is a novel
framework for the construction of ensemble classi-
fiers based on the Diffusion Maps dimensionality re-
duction algorithm coupled with the Nyström out-of-
sample extension. The rest of this paper is orga-
nized as follows. In Section 2 we describe the pro-
posed approach. In Section 3 we describe the Diffu-
sion Maps dimensionality reduction algorithm. The
Nyström out-of-sample extension algorithm is de-
scribed in Section 4. Experimental results are given
in Section 5. We conclude and describe future work
in Section 6.

2 DIFFUSION ENSEMBLE
CLASSIFIERS

The proposed approach achieves the diversity require-
ment of ensemble classifiers by applying the DM di-
mensionality reduction algorithm to a given training
set using different values for its input parameter. After
the training sets are produced by the DM dimension-
ality reduction algorithms, each set is used to train a
classifier to produce one of the ensemble members.
The training process is illustrated in Fig. 1.

Employing the DM dimensionality reduction to a
training set has the following advantages:

• It reduces noise and decorrelates the data.

• It reduces the computational complexity of the
classifier construction and consequently the com-
plexity of the classification.

• It can alleviate over-fitting by constructing com-
binations of the variables (Plastria et al., 2008).

These points meet the accuracy and diversity criteria
which are required to construct an effective ensemble
classifier and thus render dimensionality reduction a
technique which is tailored for the construction of en-
semble classifiers. Specifically, removing noise from
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Figure 2: Classification process of a test sample.

the data contributes to the accuracy of the classifier
while diversity is obtained by the various dimension-
reduced versions of the data.

In order to classify test samples they are first em-
bedded into the low-dimensional space of each of
the training sets using the Nyström out-of-sample ex-
tension. Next, each ensemble member is applied to
its corresponding embedded test sample and the pro-
duced results are processed by a voting scheme to de-
rive the result of the ensemble classifier. Specifically,
each classification is given as a vector containing the
probabilities of each possible label. These vectors are
aggregated and the ensemble classification is chosen
as the label with the largest probability. Figure 2 de-
picts the classification process of a test sample.

3 DIFFUSION MAPS

The Diffusion Maps (DM) (Coifman and Lafon,
2006a) algorithm embeds data into a low-dimensional
space where the geometry of the dataset is defined in
terms of the connectivity between every pair of points
in the ambient space. Namely, the similarity between
two points x and y is determined according to the
number of paths connectingx andy via points in the
dataset. This measure is robust to noise since it takes
into account all the paths connectingx and y. The
Euclidean distance betweenx andy in the dimension-
reduced space approximates their connectivity in the
ambient space.

Formally, letΓ be a set of points inRn as defined
in Eq. 1. A weighted undirected graphG(V,E) , |V|=
N, |E| ≪ N2 is constructed, where each vertexv∈ V
corresponds to a point inΓ. The weights of the edges
are chosen according to a weight functionwε (x,y)
which measures the similarities between every pair of
points where the parameterε defines a local neighbor-
hood for each point. The weight function is defined by
a kernel function obeying the following properties:

Symmetry: ∀xi ,x j ∈ Γ, wε (xi ,x j) = wε (x j ,xi)

Non-negativity: ∀xi ,x j ∈ Γ, wε (xi ,x j)≥ 0

Positive Semi-definite: for every real-
valued bounded function f defined on Γ,
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∑xi ,xj∈Γ wε (xi ,x j) f (xi) f (x j)≥ 0.

Fast Decay: wε (xi ,x j)→ 0 when
∥∥xi − x j

∥∥≫ ε and
wε (xi ,x j)→ 1 when

∥∥xi − x j
∥∥≪ ε. This property

facilitates the representation ofwε by a sparse ma-
trix.

A common choice that meets these criteria is the
Gaussian kernel:

wε (xi ,x j) = e−
‖xi−xj‖2

2ε .

A weight matrix wε is used to represent the
weights of the edges. Given a graphG, the Graph
Laplacian normalization (Chung, 1997) is applied to
the weight matrixwε and the result is given byM:

Mi, j , m(x,y) =
wε (x,y)

d (x)

whered(x) = ∑y∈Γ wε (x,y) is the degree ofx. This
transformswε into a Markov transition matrix corre-
sponding to a random walk through the points inΓ.
The probability to move fromx to y in onetime step
is denoted bym(x,y). These probabilities measure
the connectivity of the points within the graph.

The transition matrixM is conjugate to a sym-
metric matrixA whose elements are given byAi, j ,

a(x,y) =
√

d (x)m(x,y) 1√
d(y)

. Using matrix nota-

tion, A is given byA = D
1
2 MD− 1

2 , whereD is a di-
agonal matrix whose values are given byd (x). The
matrix A hasn real eigenvalues{λl}n−1

l=0 where 0≤
λl ≤ 1, and a set of orthonormal eigenvectors{vl}N−1

l=1
in R

n. Thus,A has the following spectral decomposi-
tion:

a(x,y) = ∑
k≥0

λkvl (x)vl (y) . (3)

SinceM is conjugate toA, the eigenvalues of both
matrices are identical. In addition, if{φl} and{ψl}
are the left and right eigenvectors ofM, respectively,
then the following equalities hold:

φl = D
1
2 vl , ψl = D− 1

2 vl . (4)

From the orthonormality of{vi} and Eq. 4 it
follows that {φl} and {ψl} are bi-orthonormal i.e.
〈φm,ψl 〉= δml whereδml = 1 whenm= l andδml = 0,
otherwise. Combing Eqs. 3 and 4 together with the
bi-orthogonality of{φl} and{ψl} leads to the follow-
ing eigen-decomposition of the transition matrixM

m(x,y) = ∑
l≥0

λl ψl (x)φl (y) . (5)

When the spectrum decays rapidly (providedε is ap-
propriately chosen - see Sec. 3.1), only a few terms

are required to achieve a given accuracy in the sum.
Namely,

m(x,y)⋍
n(p)

∑
l=0

λl ψl (x)φl (y)

wheren(p) is the number of terms which are required
to achieve a given precisionp.

We recall thediffusion distancebetween two data
pointsx andy as it was defined in (Coifman and La-
fon, 2006a):

D2 (x,y) = ∑
z∈Γ

(m(x,z)−m(z,y))2

φ0 (z)
. (6)

This distance reflects the geometry of the dataset and
it depends on the number of paths connectingx and
y. Substituting Eq. 5 in Eq. 6 together with the bi-
orthogonality property allows to express the diffusion
distance using the right eigenvectors of the transition
matrixM:

D2 (x,y) = ∑
l≥1

λ2
l (ψl (x)−ψl (y))

2 . (7)

Thus, the family of Diffusion Maps{Ψ(x)} which is
defined by

Ψ(x) = (λ1ψ1 (x) ,λ2ψ2 (x) ,λ3ψ3 (x) , · · · ) (8)

embeds the dataset into a Euclidean space. In the new
coordinates of Eq. 8, theEuclideandistance between
two points in the embedding space is equal to thedif-
fusiondistance between their corresponding two high
dimensional points as defined by the random walk.
Moreover, this facilitates the embedding of the origi-
nal points into a low-dimensional Euclidean spaceR

q

by:

Ξt : xi →
(
λt

2ψ2 (xi) ,λt
3ψ3 (xi) , . . . ,λt

q+1ψq+1(xi)
)
.

(9)
which also endows coordinates on the setΓ. Since
λ1 = 1 andψ1 (x) is constant, the embedding uses
λ2, . . . ,λq+1. Essentially,q ≪ n due to the fast de-
cay of the eigenvalues ofM. Furthermore,q depends
only on the dimensionality of the data as captured by
the random walk and not on the original dimension-
ality of the data. Diffusion maps have been success-
fully applied for acoustic detection of moving vehi-
cles (Schclar et al., 2010) and fusion of data and mul-
ticue data matching (Lafon et al., 2006).

3.1 Choosingε

The choice ofε is critical to achieve the optimal per-
formance by the DM algorithm since it defines the
size of the local neighborhood of each point. On one
hand, a largeε produces a coarse analysis of the data
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as the neighborhood of each point will contain a large
number of points. In this case, the diffusion distance
will be close to 1 for most pairs of points. On the
other hand, a smallε might produce many neighbor-
hoods that contain only a single point. In this case, the
diffusion distance is zero for most pairs of points. The
best choice lies between these two extremes. Accord-
ingly, the ensemble classifier which is based on the
the Diffusion Maps algorithm will construct different
versions of the training set using different values ofε
which will be chosen between the shortest and longest
pairwise distances.

4 THE NYSTRÖM
OUT-OF-SAMPLE EXTENSION

The Nyström extension (Nyström, 1928) is an extrap-
olation method that facilitates the extension of any
function f : Γ → R to a set of new points which are
added toΓ. Such extensions are required in on-line
processes in which new samples arrive and a function
f that is defined onΓ needs to be extrapolated to in-
clude the new points. These settings exactly fit the
settings of the proposed approach since the test sam-
ples are givenafter the dimensionality of the train-
ing set was reduced. Specifically, the Nyström exten-
sion is used to embed a new point into the reduced-
dimension space where every coordinate of the low-
dimensional embedding constitutes a function that
needs to be extended.

We describe the Nyström extension scheme for the
Gaussian kernel that is used by the Diffusion Maps al-
gorithm. LetΓ be a set of points inRn andΨ be its
embedding (Eq. 8). Let̄Γ be a set inRn such that
Γ ⊂ Γ̄. The Nyström extension scheme extendsΨ
onto the dataset̄Γ. Recall that the eigenvectors and
eigenvalues form the dimension-reduced coordinates
of Γ (Eq. 9). The eigenvectors and eigenvalues of a
Gaussian kernel with widthε which is used to mea-
sure the pairwise similarities in the training setΓ are
computed according to

λlϕl (x) = ∑
y∈Γ

e−
‖x−y‖2

2ε ϕl (y) , x∈ Γ. (10)

If λl 6= 0 for everyl , the eigenvectors in Eq. 10 can be
extended to anyx∈R

n by

ϕ̄l (x) =
1
λl

∑
y∈Γ

e−
‖x−y‖2

2ε ϕl (y) , x∈ R
n. (11)

Let f be a function on the training setΓ and let
x /∈ Γ be a new point. In the Diffusion Maps setting,
we are interested in approximating

Ψ(x) = (λ2ψ2 (x) ,λ3ψ3 (x) , · · · ,λq+1ψq+1(x)) .

The eigenfunctions{ϕl} are the outcome of the spec-
tral decomposition of a symmetric positive matrix.
Thus, they form an orthonormal basis inRN where
N is the number of points inΓ. Consequently, any
function f can be written as a linear combination of
this basis:

f (x) = ∑
l

〈ϕl , f 〉ϕl (x) , x∈ Γ.

Using the Nyström extension, as given in Eq. 11,f
can be defined for any point inRn by

f̄ (x) = ∑
l

〈ϕl , f 〉ϕ̄l (x) , x∈ R
n. (12)

The above extension facilitates the decomposi-
tion of every diffusion coordinateψi as ψi(x) =
∑l 〈ϕl ,ψi〉ϕl (x) , x∈ Γ. In addition, the embedding of
a new point ¯x ∈ Γ̄\Γ can be evaluated in the embed-
ding coordinate system bȳψi (x̄) = ∑l 〈ϕl ,ψi〉ϕ̄l (x̄).

Note that the scheme is ill conditioned since
λl −→ 0 asl −→ ∞. This can be solved by cutting-off
the sum in Eq. 12 and keeping only the eigenvalues
(and their corresponding eigenfunctions) that satisfy
λl ≥ δλ0 (where 0< δ ≤ 1 and the eigenvalues are
given in descending order of magnitude):

f̄ (x) = ∑
λl≥δλ0

〈ϕl , f 〉ϕ̄l (x) , x∈R
n. (13)

The result is an extension scheme with a condition
numberδ. In this new scheme,f and f̄ do not coin-
cide onΓ but they are relatively close. The value of
ε controls this error. Thus, choosingε carefully may
improve the accuracy of the extension.

5 EXPERIMENTAL RESULTS

In order to evaluate the proposed approach, we used
the WEKA framework (Hall et al., 2009). We tested
our approach on 13 datasets from the UCI reposi-
tory (Asuncion and Newman, 2007) which contains
benchmark datasets that are commonly used to eval-
uate machine learning algorithms. The number of
features in the datasets range from 7 to 617 giving
a broad spectrum of ambient space dimensionalities.
The list of datasets and their properties are summa-
rized in Table 1.

5.1 Experiment Configuration

All ensemble algorithms were tested using he follow-
ing inducers: (a) decision tree (WEKA’s J48 inducer);
and (b) Naı̈ve Bayes. The ensembles were composed
of ten classifiers and the dimension-reduced space
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Table 1: Properties of the benchmark datasets used for the evaluation.

Dataset Name Instances Features Labels
Musk 6598 166 2
Ecoli 335 7 8
Glass 214 9 7

Hill Valley with noise 1212 100 2
Hill Valley without noise 1212 100 2

Ionosphere 351 34 2
Isolet 7797 617 26
Letter 20000 16 26

Madelon 2000 500 2
Sat 6435 36 7

Waveform with noise 5000 40 3
Waveform without noise 5000 21 3

Table 2: Results of the Diffusion Maps ensemble classifier based on the decision-tree (WEKA’s J48) and Naı̈ve Bayes induc-
ers.

Dataset Plain J48 DME (J48) Plain NB DME (NB)

Musk 96.88± 0.63 96.76 ± 0.72 83.86± 2.03 94.13 ± 0.50

Ecoli 84.23± 7.51 83.02 ± 4.10 85.40± 5.39 84.52 ± 5.43

Glass 65.87± 8.91 65.39 ± 10.54 49.48± 9.02 59.29 ± 11.09

Hill Valley with noise 49.67± 0.17 52.39 ± 3.56 49.50± 2.94 50.82 ± 2.93

Hill Valley w/o noise 50.49± 0.17 51.23 ± 4.40 51.57± 2.64 51.74 ± 3.25

Ionosphere 91.46± 3.27 88.04 ± 4.80 82.62± 5.47 92.59 ± 4.71

Isolet 83.97± 1.65 90.10 ± 0.62 85.15± 0.96 91.83 ± 0.96

Letter 87.98± 0.51 89.18 ± 0.79 64.11± 0.76 58.31 ± 0.70

Madelon 70.35± 3.78 76.15 ± 3.43 58.40± 0.77 55.10 ± 4.40

Multiple features 94.75± 1.92 93.25 ± 1.64 95.35± 1.40 89.05 ± 2.09

Sat 85.83± 1.04 91.34 ± 0.48 79.58± 1.46 85.63 ± 1.25

Waveform with noise 75.08± 1.33 86.52 ± 1.78 80.00± 1.96 84.36 ± 1.81

Waveform w/o noise 75.94± 1.36 86.96 ± 1.49 81.02± 1.33 82.94 ± 1.62

Average improvement 4.3% 4.8%

was set to half of the original dimension of the data.
Ten-fold cross validation was used to evaluate each
ensemble’s performance on each of the datasets. The
constructed ensemble classifiers were compared with:
a non-ensemble classifier which applied the induc-
tion algorithm to the dataset without dimensionality
reduction (we refer to this classifier as theplain clas-
sifier). We used the default values of the parameters
of the WEKA built-in ensemble classifiers in all the
experiments. For the sake of simplicity, in the follow-
ing we refer to the Diffusion Maps ensemble classifier
as the DME classifier.

5.2 Results

Table 2 describes the results obtained by the de-
cision tree and Naı̈ve Bayes inducers, respectively.
The results provide the classification accuracy along
with the variance of the results. The Plain J48 and

Plain NB columns refer to the non-ensemble classi-
fiers where the DME(J48) and DME(NB) columns re-
fer to the Diffusion Maps ensemble classifiers which
are constructed using the decision tree and Naı̈ve
Bayes inducers, respectively. It can be seen that in
both cases the average classification accuracy is im-
proved. Specifically, the decision-tree inducer im-
proves the classification accuracy by 4.3% (8 out of
the 13 datasets - 5 of which with statistical signifi-
cance), while the Naı̈ve Bayes inducer improves it by
4.8% (9 out of the 13 datasets - 6 with statistical sig-
nificance).
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6 CONCLUSIONS AND FUTURE
WORK

In this paper we introduced the Diffusion Maps di-
mensionality reduction algorithm as a framework for
the construction of ensemble classifiers which use a
single induction algorithm. The DM algorithm was
applied to the training set using different values for
its input parameter. This produced different versions
of the training set and the ensemble members were
constructed based on these training set versions. In
order to classify a new sample, it was first embed-
ded into the dimension-reduced space of each training
set using the Nyström out-of-sample extension algo-
rithm. The results in this paper show that the pro-
posed approach is effective. The results were supe-
rior in most of the datasets compared to the plain al-
gorithm. The authors are currently extending this ap-
proach to other dimensionality reduction techniques.
Additionally, other out-of-sample extension schemes
should also be explored e.g. the Geometric Harmon-
ics (Coifman and Lafon, 2006b). Lastly, a heteroge-
neous model which combines several dimensionality
reduction techniques should be investigated.
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