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Abstract: More and more systems contain some kind of knowledge describing their field of operation. Such knowledge
in many cases is stored as an ontology. A need arises for ability to quickly match those ontologies to enable
interoperability of such systems. The paper presents a lexicon based algorithm for merging and aligning of
OWL ontologies. The proposed similarity levels are being presented and the proposed algorithm is being
described. Results of test showing the algorithm quality are presented.

1 INTRODUCTION

Merging and aligning of domain ontologies is a com-
plex process. A set of predefined procedures is
needed for proper integration (Fig. 1).

Figure 1: Procedures ensuring ontology integration.

Quality of ontology integration is influenced by
three factors:

1. Quality and integrity of input ontologies – a key
factor for proper ontology integration. Omit-
ting typical mistakes (Goczyła, 2011) or bas-
ing ontology construction on well known guide-
lines (Gómez-Pérez et al., 2002) allows creation
of consistent and flexible ontologies. This way
integration introduces some new knowledge in the
output ontology.

2. Usage of precise and well formed vocabu-
lary, especially proper selection of core con-
cepts (Boiński, 2012) determines possibility of
performing integration seamlessly.

3. Methodology used during input ontology devel-
opment – usage of one of the well known and
accepted methodologies like Methontology (Fer-
nandez et al., 1997), NeOn (NeOn Project, 2010)

or methodology described by Noy and McGui-
ness (Noy et al., 2001) improves quality of the
ontology (Boiński, 2012). All those methodolo-
gies take into account the need of future integra-
tion, which combined with usage of tools like
Protg (Stanford University School of Medicine,
2010; Gennari et al., 2003; Noy et al., 2000) or
OCS (Boiński, 2012), allows creation of consis-
tent and formally correct ontologies.

With above criteria satisfied creation of lexicon
based algorithm for ontology integration becomes
possible.

In the following chapters of this paper proposed
similarity measures and the algorithm itself will be
presented. Some results showing it’s correctness will
be presented.

2 LEVELS OF SIMILARITY
BETWEEN ONTOLOGY
ELEMENTS

Integration of knowledge represented by two ontolo-
gies can be based on ability to compare elements,
i.e. classes, individuals, relations and properties, of
those ontologies. A need for measures of semantic
and syntactic similarity between concepts thus arises.
Those measures will lay fundamentals for the algo-
rithm described in the next chapter.

Measures proposed in this paper are derived di-
rectly from pragmatic approach to ontologies rep-
resented by both Hovy (Hovy, 1998) and Euzenat
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and Volchev (Euzenat and Valtchev, 2004). Pro-
posed solution extends them with possibilities intro-
duced by modern lexicons like WordNet (Fellbaum,
1998). Four mutually complementary and supple-
mentary levels of similarity are proposed:

1. Lexical similarity Plex of classes Ki(i = 1;2) and
individuals Bi(i = 1;2)
The basic measure of similarity between concepts.
Classes and individuals are being looked up in
WordNet dictionary. Their similarity and mu-
tual relation is being derived from WordNet struc-
ture. Basing on this measure one can determine
whether concepts are identical, disjoint or logi-
cally encapsulating one another, meaning one can
determine class hierarchy and membership of in-
dividuals. WordNet dictionary allows both direct
string matching and synonyms look-up thanks to
organisation of lemmas into so called synsets.

2. Semantic similarity Psem of classes Ki(i = 1;2)
and individuals Bi(i = 1;2)
When lexical similarity is not possible to calcu-
late, the proposed algorithm uses semantic simi-
larity as a secondary measure for similarity calcu-
lations. This level of similarity takes values from
range < 0;1 > and allows to determine whether
concepts are similar, disjoint or logically encap-
sulating one another. As a base for this measure
WordNet based Lin algorithm (Lin, 1998; Lin,
1993) is being used.
Lin algorithm requires lemmas describing the
concepts to be present in WordNet dictionary
which not always is true. In that case Levenshtein
edit distance (Levenshtein, 1966) is being used as
secondary way of calculating similarity. In that
case only similarity and disjointness of concepts
can be calculated.
To improve performance some strings, containing
no information like pronouns and words shorter
than three letters, are being eliminated from the
lemma of the concept. WordNet contains only 305
noun entries of length two and less (0,26% of all
nouns contained in the lexicon), moreover most
of them are abbreviations and numbers in roman
system.
The border value the similarity that separates
similar and disjoint concepts was based on re-
sults obtained from comparing human judgement
(simh) with values obtained from Lin algorithm
(simLin) (Boiński, 2012).
Pairs of high simLin (car - automobile, gem -
jewel, journey - voyage, boy - lad, coast - shore,
asylum - madhouse, magician - wizard, midday -
noon and furnace - stove) were all found very sim-

ilar by humans. Similarity simh of pairs tool - im-
plement and brother - monk, were lower than ex-
pected when compared to simLin, however humans
closely connected with English language (North-
ern Ireland resident, English teacher etc.) marked
those pairs as highly similar.
The most problematic were pairs bird - cock and
bird - crane. In both cases second lemma is log-
ically encapsulated by first lemma. According to
the Lin algorithm both pairs have relatively high
simLin, 0.74 and 0.72 respectively. It is unfortu-
nately not possible to determine which concepts
encapsulates which basing only on that value.
Most of the human testers decided however that
in case when only a similarity value is available
such concepts can be safely merged if no other
piece of information is available.
Remaining concept pairs were judged different by
both humans and the Lin algorithm. Basing on
that test it was decided, that Psem < 0;7 means
different concepts and Psem � 0;7 means similar
concepts. This observation is consistent with re-
sults obtained by other research groups, i.e. de-
velopers of Falcon-AO (Jian et al., 2005).

3. Similarity of comments Pkom attached to classes
Ki(i = 1;2) and individuals Bi(i = 1;2)
Third level of similarity between ontology ele-
ments if similarity between comments attached to
those elements. Comments are being treated as
parts of bipartite graph, where words are mapped
to nodes of the graph and similarity between them
are mapped to edges between those nodes. Sim-
ilarity between the comments is than reduced to
problem of maximal assignments between two
graphs which can be solved using Hungarian
Method (Kuhn, 1955). Similarities between nodes
are being calculated using aforementioned meth-
ods.
Finally, the value of Pkom is calculated as ratio
of achieved maximal assignment to number of
elements in longer of the two comments (Equa-
tion 1). This ensures that the value of Pkom will
always be within the range < 0;1 >.

Pkom =

å
i

Plri

max(jLj; jRj)
(1)

4. Structural similarity Pstr of classes Ki(i = 1;2)
and individuals Bi(i = 1;2)
This level of similarity takes into account struc-
tural placements of given concept in regard of its
nearest neighbours. Both the type and direction
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of the relation are being taken into account. This
similarity can be described by Equation 2:

Pstr =

å
i

min(ri)

å
i

max(ri)
(2)

where:
ri – number of occurrences of relation i (where
i = fsubsumption, membership, equality, disjoint-
ness, union, intersectiong) in which given concept
takes part.
This level of similarity is used where no other pos-
sibility can be applied as it provides the lowest
amount of information.

The basic similarity measure in the lexical simi-
larity is being proposed. With constant development
of many lexicons this approach seems to be more
and more justified. In current 3.0 version of Word-
Net 155287 different nouns in English language with
206941 word–meaning pairs can be found (Princeton
University, 2010). It is highly probable that most of
the words used in concepts description will be found
within that lexicon. This way connections between
concepts can be derived from WordNet and thus en-
riching the output ontology. Further levels of simi-
larity allows mapping concepts into one another even
when they are not found in the used lexicon, making
the proposed algorithm usable in general scenarios.

3 THE PROPOSED ALGORITHM

The proposed algorithm is based on lexical and se-
mantic analysis of integrated ontologies and operates
on ontologies stored in OWL language. Furthermore
it was observed that in most ontologies concept names
are usually represented by nouns and most of the in-
formation is either explicitly represented by classes
and relations between them or can be easily derived
and transformed into such representation. It was also
assumed that input ontologies are representing the
same domain. Strictness of such assumption depends
on used lexicon and usually improves the quality of
output ontology (Boiński, 2012).

The WordNet dictionary was proposed as a knowl-
edge base allowing adding and extending relations in
output ontology (Boiński, 2012). The proposed al-
gorithm takes two ontologies as input and produces
one ontology as its output. The output ontology can
be either a merge (in terms of unification of URI’s in
OWL language) or an alignment (in terms of import-
ing source ontologies and including only mapping be-
tween their elements).

The proposed algorithm goes as follows:
1: program OntologyMerger {
2: function combineSubTrees(

node_A, node_B, node_C) {
3: for all child_A of node_A do
4: for all child_B of node_B do
5: result = compare(child_A, child_B);
6: if result == EQUAL then
7: node = combine(child_A, child_B);
8: add node as child of node_C;
9: combineSubTrees(

child_A, child_B, node);
10: else if result == DISJOINT then
11: add child_A as child of node_C;
12: add child_B as child of node_C;
13: else if result ==

A_ENCAPSULATES_B then
14: add child_A as child of node_C;
15: place child_B in subtree of child_A;
16: else if result ==

B_ENCAPSULATES_A then
17: add child_B as child of node_C;
18: place child_A in subtree of child_B;
19: end if
20: end for
21: end for
22: }

23: function placeInSubTree(node, root) {
24: for all child of root do
25: result = compare(node, child);
26: if result == EQUAL then
27: newNode = combine(node, child);
28: add newNode as child of root;
29: combineSubTrees(

node, child, newNode);
30: else if result == DISJOINT then
31: add child with subtree

as child of root;
32: add node with subtree

as child of root;
33: else if result ==

NODE_ENCAPSULATES_CHILD then
34: add node as child of root;
35: placeInSubTree(child, node);
36: else if result ==

CHILD_ENCAPSULATES_NODE then
37: add child as child of root;
38: placeInSubTree(node, child);
39: end if
40: end for
41: }

42: input Ontology_A;
43: input Ontology_B;
44: output Ontology_C;
45: combineSubTrees(

root_of_A, root_of_B, root_of_C);
46: return Ontology_C;
47: }

The main job of the algorithm is performed by two
functions:
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� combineSubTrees – which merges subtrees of
node A and node B and adds the result node C
as its subtree (lines 2-22),

� placeInSubTree – which finds the best placement
of node in subtree of root recursively looking for
proper placement in terms of logical encapsula-
tion (lines 23-42).
The basic concept behind both of those functions

is the same, thus only the first one will be described
in detail. The algorithm starts with reading two on-
tologies A and B (lines 42 and 43). Ontology C is the
output of the algorithm and is returned when it fin-
ishes (line 46). In OWL ontologies there always is
a common class owl:Thing that is the root of the on-
tology. The algorithm starts its work from this node of
every ontology thus combining subtree of ontology A
owl:Thing with subtree of ontology B owl:Thing. The
result is being added to owl:Thing of ontology C (line
45) by the first function which takes three parameters:
� analyzed node of ontology A,

� analyzed node of ontology B,

� node of ontology C which should be the root for
combination of subtrees of the rest of the parame-
ters.
Note that it is not required for the ontology to be a

tree. The ontology however is analysed at the level of
a concept and its direct descendants and this fragment
can be considered as such.

The algorithm starts with comparing every ele-
ment of ontology A with every other element of on-
tology B at the same level of detail (loops starting at
lines 3 and 4). The action performed depends on the
result of the comparison:
1. if the concepts in both ontologies are determined

to be equal (according to measures presented in
chapter 2) they are merged together (or connected
with equivalent property) (line 7), added to the
output ontology (line 8). Finally their subtrees are
being combined together into one tree attached to
this new node (line 9).

2. if the concepts are determined to be different they
are added with their subtrees to the output ontol-
ogy (lines 10-13). No further analysis of those
subtrees is being performed.

3. if meaning of node from ontology A is more gen-
eral than meaning of node from ontology B (lines
13-16) than node from ontology A is added to the
ontology (line 13) and the node from ontology B
is placed within the subtree of node from ontology
A (line 15). Lookup of proper place for this node
is done via function placeInSubTree.

4. if meaning of node from ontology B is more gen-
eral than meaning of node from ontology A (lines
(linie 16-19), the operations are analogous to
those in point 3.
The compare(node A, node B) function (lines 5

and 25) is used to determine whether concepts are
similar, disjoint or logically encapsulating. It utilises
similarity levels introduced in chapter 2. First it
checks lexical and than semantic similarity. Further-
more, wherever possible, sibling and parent-children
relations between compared concepts are determined.
Finally, if two previous means did not prove concept
similarity, comments and structural similarity is uti-
lized according to Equation 3.

Psk = w1Pstr +w2Pkom (3)
where:
Pstr - structural similarity derived from type and num-
ber of relations in which analysed concepts take
part (Equation 2),
Pkom - semantic similarity of comments attached to
analysed concepts(Equation 1),
wi - weights of aforementioned similarities, as a re-
sult of tests, their values where determined to be as
follows: w1 = 0;3; w2 = 0;7.

Similar as in other cases it was assumed that Psk �
0;7 means the concepts are identical and Psk < 0;7
means the concepts are different.

The second function (placeInSubTree) is similar
in the way of performing it’s tasks. Calculation of
similarity between elements is done in the same way
and the main loop is similar. The difference is that in-
stead of combining two subtrees it locates best logical
placement of one node (first parameter) in the subtree
of other (second parameter).

4 RESULTS

The proposed algorithm was tested using selected on-
tologies developed by Ontology Alignment Evalua-
tion Initiative as input for EON Ontology Alignment
Contest (Euzenat, 2004) and specially developed se-
curity ontology (Boiński, 2012).

4.1 OAEI Ontologies

The tests were performed using reference ontol-
ogy (describing Bibtex structure), its modifica-
tions and one unrelated ontology. All ontolo-
gies used in the tests are publicly available at
http://oaei.ontologymatching.org/2006/benchmarks/.
The results obtained by the algorithm were than com-
pared with those provided by the contests authors.
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Table 1: Results of comparing concepts InCollection and Chapter with their modified equivalents dcsqdcsqd and dzqndbzq.

Lemma A Lemma B max(Plex;Psem) Pkom Pstr Psk Result
InCollection dcsqdcsqd 0,10 1,00 1,00 1,00 EQUAL
InCollection dzqndbzq 0,00 0,75 0,67 0,73 EQUAL
Chapter dcsqdcsqd 0,11 0,75 0,67 0,73 EQUAL
Chapter dzqndbzq 0,00 1,00 1,00 1,00 EQUAL

All tests yielded positive results. The following
scenarios were considered:
� merging with identical ontology – all classes were

connected with final similarity equal 1:0. One ad-
ditional connection was introduced (between Ad-
dress and Reference) because of the domain over-
lap, as source ontologies provide no additional
info stating disjointness of those two concepts,

� merging with completely different ontology –
Bibtex ontology was combined with ontology de-
scribing food and wines, all concepts were cor-
rectly marked as different,

� merging with similar ontologies stored using
more general dialects of OWL language – all el-
ements of source and target ontologies were de-
scribed as identical with similarity equal to 1:0.
Similarly as in the first test one additional connec-
tion was introduced (between Address and Refer-
ence),

� merging with identical ontology with removed la-
bels (comment and structural similarity only) –
the ontology was merged with identical but with
labels replaced by random, meaningless strings.
The algorithm based its work solely on comments
and structure of both ontologies. The algorithm
calculated most of the connections right. The only
problem was with connecting concepts InCollec-
tion and Chapter with their respective matches
in modified ontology, as they are located within
the same structure nad have similar comments
(,,A part of a book having its own title.” and
,,A chapter (or section or whatever) of a book hav-
ing its own title.” respectively). Thus matches to
concepts dcsqdcsqd and dzqndbzq could not be
guessed correctly and the algorithm marked all
four concepts as similar. Details of the results of
those calculations are presented by Table 1.
In all cases the algorithm produced satisfactory re-

sults proving that’s it’s useful for small, domain ori-
ented ontologies.

4.2 Security Ontology

The security ontology1 was created both manually
1Available at http://ocs.kask.eti.pg.gda.pl and (as OWL)

at http://kask.eti.pg.gda.pl

and using the proposed algorithm. It consists of three
modules:

� Risk Core Concepts module – created from in-
tegration of ontologies based on ENISA dictio-
nary (ENISA, 2006; Enisa, 2010) (43 classes
and 28 properties), NIST dictionary (Guttman and
Roback, 1995) (70 classes and 23 properties) and
chapter of Sommerville Book ,,Software Engi-
neering” (Sommerville, 2006) (40 classes and 22
properties). After integration the ontology con-
sists of 122 classes and 63 properties.

� Basic Security Concepts module – based on Avi-
ienis taxonomy (Avizienis et al., 2004) (269
classes and 91 properties).

� Safety and Security Requirements module – based
on Firesmith taxonomy (Firesmith, 2005a; Fire-
smith, 2005b) (195 classes and 56 properties).

The ontologies included in the Risk Core Con-
cepts module and later all three modules were merged
using the proposed algorithm and the obtained ontolo-
gies were compared with results of manual integra-
tion.

In the first step Risk Core Concepts module was
created where the algorithm performed 1170 com-
parisons between 153 classes. Of those comparisons
only 13 was incorrect (1,11%). Some of them re-
sulted from errors in source ontologies which were
corrected. Later on the three modules were integrated
into the Security ontology. The algorithm performed
1956 comparisons of which only 31 was incorrect
(1,59%). The resulting ontology was very similar to
the one obtained manually. Plus some of the errors
in source ontologies were discovered during the auto-
mated integration and could be corrected.

5 CONCLUSIONS

In all test cases the proposed algorithm proved to
be useful. The tests show its usability both in case
of small and large domain ontologies with efficiency
around 98%. In all cases however the algorithm was
dependent on quality of input ontologies and external
lexicons used during concept mapping. With the fur-
ther development of such lexicons quality of obtained
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results can be enhanced and ontologies from wider
field of domains can be merged.

The algorithm can be easily implemented as
a lightweight library and used in any kind of appli-
cation managing OWL or RDF ontologies. Such us-
age can further improve interoperability between sys-
tems in heterogeneous environment by enabling them
to understand messages sent to each other and map
them to local knowledge bases represented as OWL
ontologies.
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