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Abstract: A gap between two domains, the system and its supporting software, is a well-known issue in software 
development. The analysis of the system is often considered as a redundant unwanted activity. However, 
software development driven by models will not be able to close the gap, if these models focus only on 
software and ignore the system, since software is a subsystem that helps to conduct some system’s 
activities. Thus, the system must be accurately analyzed before the software. For this purpose, this paper 
suggests a formal engineering model, Topological Functioning Model, and analysis of system functioning 
based on the system theory, algebraic topology, and classical logic. 

1 INTRODUCTION 

Software is a solution that is dedicated to address 
problems within the system it will operate, and 
which becomes its subsystem after introduction. 
Therefore, a problem domain includes both system 
and software sub-domains. Due to many reasons, the 
analysis of a system domain is quite superficial in 
software development. That leads to the well-known 
issue in software development. It is a gap between 
the system and its supporting software, i.e., between 
the problem and the solution (Osis, 2006), (Osis and 
Asnina, 2011 b). 

A power of traditional engineering is a solid 
theory, mathematics and formal methods. A 
traditional civil engineer investigates a surrounding 
environment, analyzes requirements for an object to 
be built, builds mathematical models of the object, 
verifies them by a formal means, and only then 
builds a real object. Conversely, a software 
developer investigates a surrounding environment a 
little bit, analyzes thoughts (requirements) about an 
object to be built, and starts to build this object 
based on a sketch of the object (in a better case). 
Caper Jones was right when he said that “The way 
software is built remains surprisingly primitive” (as 
cited in Osis and Asnina, 2011 b), because it is 
requirements-based and chaotic. Requirements-
based development differs from requirements-

initiated development similarly as software 
engineering differs from traditional engineering. 
Software development must be requirements-
initiated, this means that analysis and modeling of 
the system as a whole must precede design of the 
software. Modeling is a better means to deal with 
complexity and a large size of a system. 

System thinking is based on the system theory. 
Paul Weiss and Karl Ludwig von Bertalanffy are the 
first founders of the general system theory (GST) 
(Drack and Apfalter, 2007), which had have many 
elaborations in different disciplines such as biology, 
cybernetics, system, social and management science. 
Weiss considered “it to be essential to deal with a 
system as a whole, because system reactions (e.g., 
concerning functions and development) could only 
be adequately understood by taking into account the 
system as a whole” (Drack and Apfalter, 2007). 
Ludwig von Bertalanffy wrote in 1969 that “A 
system may be defined as a set of elements standing 
in interrelation among themselves and with [the] 
environment” (as cited in Drack and Apfalter, 2007). 
System thinking has been useful in multi-project 
management for software development, where the 
proposed management model joins both Weiss’ and 
Bertalanffy’s definitions of GST in an enhanced 
causal-loop diagram (Lee and Miller, 2004). 
Successful applications of the system theory to 
operational research and management science are 
overviewed in (Mingers and White, 2010).  
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We believe that the main principle of OMG 
Model Driven Architecture (MDA) – architectural 
separation of concerns in specifications – is a step 
towards practical application of system thinking in 
software development. MDA (Miller and Mukerji, 
2003) suggests three architectural viewpoints on the 
system, namely, a computation independent, a 
platform independent and a platform specific view. 
By considering both the software and the system, the 
computation independent viewpoint should be able 
to provide compliance of the software model with 
the system model (Osis and Asnina, 2008), (Asnina 
and Osis, 2010). This puts a strong responsibility on 
the computation independent model – this must be 
an engineering model. Characteristics of a good 
engineering model given in (Lavagno et al., 2004) 
are the following: abstraction, comprehension, 
accuracy, possibility to make accurate predictions 
about interesting properties of the modeled system 
from the information provided by the model, and 
significant inexpensiveness. Most modern models 
provide abstraction, understandability and 
inexpensiveness. But accuracy and predictability are 
challenges. 

A topological functioning model (TFM) has all 
the five characteristics (Osiset al., 2007 a), (Osis et 
al., 2007 b) (Osis et al., 2008 a),. Its properties and 
application as a computation independent model in 
the context of MDA are described in the below 
mentioned sources. Because of its holistic formal 
nature, the TFM is a means for verification of 
requirements completeness (Osis et al., 2008 b), 
determination of shared functionality and derivation 
of use cases (Osis and Asnina, 2011 a),  (Osis and 
Asnina, 2011 c), integration of system knowledge 
that usually are expressed as a set of interrelated 
fragments (Slihte et al.,  2011), and derivation of a 
system’s structure (Osis and Donins, 2010),  (Donins 
et al.,  2011) and behaviour (Asnina and Osis, 2011).  

This paper discusses two of the above mentioned 
engineering model characteristics, namely, accuracy 
and predictability. Accuracy and predictability of the 
software model should be based on a solid theory, 
which application should be elaborated in formal 
methods, and results of application of these formal 
methods should be formally presented. System 
thinking and a formal model, TFM, can address 
these challenges. Section 2 presents theoretical 
foundations of the TFM and analysis of domain 
functioning. Section 3 illustrates application of the 
suggested approach on an example. Section 4 
discusses related work. Conclusions discuss the 
obtained results and directions of future research. 

2 SYSTEM THINKING, DOMAIN 
FUNCTIONING AND CAUSAL 
RELATIONS 

The “traditional” way of problem domain analysis is 
when developers explore the problem domain by 
small parts, at the beginning trying to understand 
each fragment of the problem domain and only after 
that trying to join those fragments together in the 
joined and more formal representation. The 
alternative way is system thinking that is based on a 
system theory. It anticipates that interdependency of 
fragments is understood before analysis of each 
particular fragment. This interdependency may have 
dynamic and structural nature. In order to simplify 
problem analysis “reduction to dynamics” and 
“reduction to components” are applied (Laszlo and 
Krippner, 1998). This section discusses the 
alternative way of simplification; it could be called 
“reduction to functional dependence” that joins both 
the mentioned reductions. Section 2.1 introduces the 
TFM and its implementation of the system theory in 
brief. Section 2.2 and 2.3 illustrate two main 
elements of the TFM, a functional feature and a 
cause-and-effect relation, which are responsible for 
accuracy and predictability of a system model. 
Section 2.4 discusses improvement of accuracy and 
predictability of the model.  

2.1 Topological Functioning Model  
in Brief 

The TFM is based on principles of algebraic 
topology and system theory. Mathematically, the 
TFM is represented in the form of a topological 
space (X, Θ), where X is a finite set of functional 
features (characteristics) of the system under 
consideration, and Θ is the topology that satisfies 
axioms of topological structures and is represented 
in the form of a directed graph (Osis, 1969). 
Properties of topological spaces are described in 
detail in (Osis, 2006), (Osis, 2004), (Basener, 2006).  

The process of construction of the TFM consists 
of definition of system’s functional features, cause-
and-effect relations among them, and separation of 
the TFM from the topological space of the system. 
The details are described in (Osis et al., 2008 b), 
(Osis and Asnina, 2011 c), (Donins et al., 2011). The 
stage we consider here is related to determination of 
cause-and-effect relations.  

The TFM has topological (come from algebraic 
topology) and functioning (come from system 
theory) properties. The topological properties are 
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connectedness, closure, neighborhood and 
continuous mapping. The functional properties are 
cause-and-effect relations, cycle structure, inputs 
and outputs (Osis and Asnina, 2011 d). This section 
focuses on TFM functional properties. 

2.2 Functional Features 

A functional feature is a characteristic of the system 
that is designed for achieving some system’s goal. 
The functional feature is an activity that helps the 
system in conducting its functionality. Functional 
features can be joined in a functional feature set that 
represents a certain business function (Osis, 1969).  

A functional feature is defined as a unique tuple 
<Name, PrCond, PostCond, Pr, Ex>, where (Asnina 
and Osis, 2010): 
• Name that consists of a tuple <A, R, O>, where 

A is an action linked with an object; R is a 
result of that action (it is an optional element); 
and O is an object (objects) that get the result 
of the action or an object (objects) that is used 
in this action; it could be a role, a time period 
or a moment, catalogues etc.;  

• PrCond is a set PrCond = {c1, …, ci}, where ci 
is a precondition or an atomic business rule (it 
is an optional element) of the action;  

• PostCond is a set PostCond = {c1, …, ci}, 
where ci is a post-condition or an atomic 
business rule (it is an optional element) of the 
action;  

• Pr is a set of responsible entities (systems or 
subsystems), which provide or suggest the 
action with the set of certain objects;  

• Ex is a set of responsible entities (systems or 
subsystems), which enact the action. 

Functional features are connected by causal 
relations. 

2.3 Cause-and-effect Relations 

Cause-and-effect relations connect functional 
features and may form functioning cycles. A cause 
functional feature must have at least one effect, as 
well as an effect functional feature must have at least 
one cause. At the same time, causes and effects are 
stimulus sent to the system by the external 
environment (inputs) and reactions sent to the 
external environment by the system (outputs). In 
other words, a cause-and-effect relation is a control 
flow from one functional feature to another one. 

The formal specification of a cause-and-effect 
relation is a unique tuple <C, E, N, S>, where: 
• C (cause) is a functional feature that generates  

functional feature E, this may not be empty; 
• E (effect) is a functional feature that is 

generated by functional feature C, this may not 
be empty; 

• N is the necessity of the functional feature C 
for generating the functional feature E; the 
values are true or false; 

• S is the sufficiency of the functional feature C; 
the values are true or false. 

Necessity N and sufficiency S are concepts of 
classical logic; they induce substantial and 
consistent effects on conditional reasoning 
performance. The necessity of the cause is 
determined when the occurrence of the effect 
indicates the occurrence of the cause. The 
sufficiency of the cause is determined when the 
occurrence of the cause indicates the occurrence of 
the effect. The necessary and sufficient cause is 
when the occurrence of the effect is possible if and 
only if the cause occurred, and occurrence of the 
effect indicates the obligatory occurrence of the 
cause. 

Identification of cause-and-effect relations is 
intuitive work based on a modeler’s knowledge and 
understanding of system operation. As stated in 
(Osis, 1969) “it is assumed in topological 
functioning modeling that a cause-and-effect relation 
between two functional features of the system exists 
if the appearance of one feature is caused by the 
appearance of the other feature without participation 
of any third (intermediary) feature.” In terms of 
classical logic, this means that a cause must be 
either sufficient, or both necessary and sufficient. 
However, cases when a single cause is both 
necessary and sufficient are not often in complex 
domains. More often cases are when a combination 
of causes is either sufficient, or both necessary and 
sufficient, and generates an effect. 

2.4 Analysis of Domain Functioning 

The main objective of system thinking is to move 
implicitly or informally expressed knowledge to 
formal specifications of the system; in our case, in 
the form of TFM elements – functional features and 
cause-and-effect relations. As mentioned above, a 
general case is when a functional feature may have 
multiple causes and multiple effects, i.e., multiple 
control flows. The question is how to put the 
discovering of cause combinations, as well as the 
branching and joining of logical flows, on the formal 
base.  

Possible formalization is obligate determination 
and specification of all pre- and post-conditions of 
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every TFM functional feature. Then it would be 
possible “to connect” a post-condition of one 
functional feature with an equal precondition of 
another functional feature. In such a way, a sequence 
of functional parts would be defined. However, the 
question about logical (control) relations between 
such sequences within a behavioral scenario and 
among behavioral scenarios cannot be solved 
without introducing logical operators into the textual 
or visual specifications of functionality.  

Logical operators Lop are relations from 
classical logic such as conjunction (AND), 
disjunction (OR, XOR), and negation (¬). 
Conjunction indicates synchronous occurrence of 
referenced causes. Disjunction indicates 
asynchronous occurrence of referenced causes. 
Negation indicates that referenced causes did not 
occur. 

Relations between causes and effects are causal 
implications. This means that a cause may or may 
not occur. There are four possible classical 
combinations (Cummins, 1995): 
• Modus Ponens. IF cause THEN effect. The 

cause occurs. Thus, the effect follows. 
• Modus Tollens. IF cause THEN effect. The 

effect does not occur. Thus, the cause did not 
precede. 

• Affirmation of the Consequent. IF cause THEN 
effect. The effect occurs, thus the cause 
preceded. 

• Denial of the Antecedent. IF cause THEN 
effect. The cause did not occur. Thus, the effect 
does not follow. 

In order to define complete (compound) causes, a 
modeler needs to analyze all possible combinations 
of cause occurrences and to elect only those which 
are both necessary and sufficient. 

The possible combinations of necessity and 
sufficiency may indicate the following outcomes: 
• One cause: 
o An incorrectly defined cause in a cause-and-

effect relation between functional features: 
when a cause functional feature is not 
necessary and not sufficient for generation of 
an effect functional feature, then this cause-
and-effect relation between features is defined 
incorrectly; 

o An incomplete cause is when it is necessary 
but not sufficient, or sufficient but not 
necessary. This may indicate that some needed 
causes were ignored. 

• Existence of logical operators between two 
causes (Table 1):  

o An AND operator must be set between two 
causes if they all are necessary, but not 
sufficient; 

o An OR operator must be set between two 
causes if they all are sufficient, but not 
necessary. 

• If each cause in a combination is both 
necessary and sufficient (Table 1), then these 
causes are joined by the logical operator XOR 
(exclusive OR). 

• In the general case, when a cause is not 
necessary or sufficient, this indicates an 
incompleteness of causes. This means that we 
must first find missing causes (i.e., 
functionality presented by functional features), 
and then review all the combinations of 
occurrences and non-occurrence of causes and 
elect those combinations where sufficiency is 
true, or both necessity and sufficiency are true. 
If there are more than one combination, then 
they are joined by XOR, as mentioned in the 

Table 1: Analysis of combinations of two causes (0-a cause does not occur, 1 – a cause occurs). 

Cause1 – c1 Cause2 – c2 Logical 
combination 

Necessary Sufficient Effect 

Case “c1 OR c2 generates Effect” 
0 1 ¬c1 AND c2 false true 1 
1 0 c1 AND ¬c2 false true 1 
1 1 c1 AND c2 true true 1 

Case “c1 AND c2 generates Effect” 
0 1 ¬c1 AND c2 true false 0 
1 0 c1 AND ¬c2 true false 0 
1 1 c1 AND c2 true true 1 

Case “c1 XOR c2 generates Effect” 
0 1 ¬c1 AND c2 true true 1 
1 0 c1 AND ¬c2 true true 1 
1 1 c1 AND c2 false false 0 
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previous point. We have to note that only one 
combination is excluded – when all causes do 
not occur, since it completely satisfies Denial 
of the Antecedent. 

The result of these activities should be an 
accurate model of system’s functioning with 
completely defined inputs, outputs, functioning 
cycles, and logical relations among control flows 
within the system. 

Thus, in order to handle these “combinations of 
causes”, which actually are “firing conditions” of 
effects, the tuple of a functional feature must be 
supplemented with an element that represents them. 

3 APPLICATION OF THE 
ANALYSIS FOR PROBLEM 
SOLVING 

Let us take a small problem domain for illustration 
of the suggested theory. An informal description of 
the problem “Management of the research group 
activities” is the following: “The research group 
investigates issues in the field of interest. Once some 
valuable results are obtained, one or more members 
of the group prepare a paper as its authors. The 
completed paper is submitted to an appropriate 
conference by the responsible author. If the paper is 
accepted by the conference organizers, then the 
authors prepare a camera-ready paper in 
accordance with the obtained reviews. The 
responsible author submits the camera-ready paper 
to the conference, and presents it at the conference. 
If the paper is published, the responsible author 
records paper’s bibliographical description in the 
authors’ personal files. The presenter records 
his/her visit to the conference and the title of the 
paper in his/her personal file. Group members may 
attend conferences without accepted papers; these 
visits also are recorded in their personal files. 
Personal files of former group members are 
archived.” 

The list of functional features for this problem 
domain obtained from the description (1-12), 
inferred during analysis of cause-and-effect relations 
in the first iteration (13-19) and the second iteration 
(20-22) is shown in Table 2. 

After analysis of the suggested description, 
functional features from 1 to 12 together with 
corresponding cause-and-effect relations, which are 
illustrated in Figure 1(a), were defined. The obtained 
topological model has isolated vertices 10 and 12, 
and it does not have any functioning cycle. This 

model is not valid and must be refined. Figure 1(b) 
illustrates the refined model that completely satisfies 
topological and functional properties of the TFM. It 
was supplemented by functional features 13-19 and 
corresponding cause-and-effect relations, which 
specifies implicitly expressed knowledge about the 
domain (Figure 1(c), Table 2). The next step is to 
check completeness of causes for effect “firing” and 
valid combinations of causes as stated in Section 
2.4. The necessity and sufficiency (T-true or F- 
false) of each relation are indicated above the 
arrows.  

First, there is a list of insufficient cause-and-
effect relations grouped by effects (14→1, 16→1, 
18→1), (4→5, 2→5), (6→7, 13→7), (8→9, 17→9, 
19→9), (7→11, 17→11), (13→10, 19→10, 
17→10), 16→15, 15→18, (18→19, 12→19), 
(15→12, 17→12, 19→12). ° 

A combination of each pair of cause-and-effect 
relations (4→5, 2→5), (6→7, 13→7), (7→11, 
17→11), and (18→19, 12→19) is sufficient when 
two causes occur, therefore these causes in each pair 
have a logical operator AND (Section 2.4).  

Cause-and-effect relations 16→15 and 15→18 
are not sufficient; this means that some causal 
relations were missed, or causes were not indicated 
in the model. In case of 16→15, starting a 
membership is not sufficient for ending a 
membership, there must be some reason. Existence 
of this reason is introduced by functional feature 22 
and relation 22→15. The relation pair (16→15, 
22→15) is necessary and sufficient if two causes are 
joined by a logical operator AND. In case of 
15→18, ending a membership is not sufficient for 
renewing a membership, because a former member 
should ask to renew his/her membership. At the 
same time, starting a membership (feature 16) has a 
precondition that a candidate must not be a member 
of the group. Therefore, a new functional feature 21 
“Appearance of a new member” is introduced and 
relations 21→18 (necessary, not sufficient) and 
21→16 (necessary and sufficient) are set. 

The logical operator AND is set for the pair 
 

(15→18, 21→18). The more complex cases are 
combinations of causes (14→1, 16→1, 18→1, 
20→1), (8→9, 17→9, 19→9), and (13→10, 
19→10, 17→10). For firing functional feature 1, the 
valid cause combination is ((20 OR 14) AND (16 
XOR 18)). For firing functional feature 9, the valid 
cause combination is (8 AND (17 XOR 19)). For 
firing functional feature 10, the valid cause 
combination is (13 AND (17 XOR 19)). The 
resulting TFM is shown in Figure 1(c). 
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Table 2: The list of functional features, where the abbreviations are as follows: P - a person, RG – the research group, M – a 
member of the group, C – a conference, RA – a responsible author, CO – conference organizers, A – authors, Pr – a 
presenter, EE- the external environment. 

Nr. Name PreCond PostCond Pr Ex 

1 Investigating an issue in the 
field of interest issues 

valuable results are 
obtained 

 
RG M 

2 Preparing a new paper valuable results are 
obtained completed paper RG M 

3 Submitting a new paper completed paper  C RA 

4 Notifying the status of a paper  accepted paper OR 
not accepted paper C CO 

5 Preparing a camera-ready 
paper accepted paper prepared camera-

ready paper RG A 

6 Submitting a camera-ready 
paper 

prepared camera-
ready paper 

submitted camera-
ready paper C RA 

7 Presenting a camera-ready 
paper 

submitted camera-
ready paper and 

visited conference 
 C Pr 

8 Publishing a paper submitted camera-
ready paper published paper C CO 

9 
Recording the bibliographical 
description of the paper in a 

personal file 
published paper all records are done RG RA 

10 Recording the visit to the 
conference in a personal file visited conference  RG Pr, 

M 

11 Recording the title of the 
paper in a personal file presented paper  RG Pr 

12 Archiving a personal file former group 
member  RG RG 

13 Visiting a conference  visited conference C M, 
Pr 

14 Identifying the issues in a 
paper not accepted paper issues RG A 

15 Ending a membership in the 
research group current member former member RG M 

16 Starting a membership in the 
research group not a member new member RG P 

17 Creating a personal file new member new personal file RG M 

18 Renewing a membership in 
the research group former member renewed member RG M 

19 Restoring a personal file renewed member restored personal 
file RG M 

20 Existence of an issue in the 
field  issues EE EE 

21 Appearance of a new member  a former member 
OR not a member RG P 

22 Appearance of a membership 
finishing reason  reason to end the 

group M M 

 

4 RELATED WORK 

There   are   many  works   on  causality  and  system 

thinking in the humanities, and only several of them 
are in the computer science. We would like to 
highlight only a few of them, which, by our opinion,  
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rules may be composed. It is similar to our 
proposition, where logical relations among causes 
and causal relations among causes and effects can be 
considered as such rules. 

Theoretical foundations of causality of 
relationships are well described by Chris Taylor 
(Taylor, 1993). Speaking about causation of 
temporal events (that is close to our discussion), the 
author defined several sets – a set of world (system) 
elements, a set of world states, a set of events (which 
are regarded as transition from one world state to 
another), and a set of worlds, which contains all 
possible (lawful) worlds for each state in the set of 
states. In other words, the author defines all possible 
transitions from a state to another related state. And 
these transitions also have logical relations – 
conjunction, disjunction, and negation. In this case, 
the author considers a counterfactual analysis. In our 
proposition we use a law-based analysis, i.e., we do 
not consider “possible worlds” for the event. 

5 CONCLUSIONS 

Application of the TFM together with careful 
analysis of causal relations among functional 
characteristics of the system allows investigating the 
system and its surrounding environment. The result 
is explicitly specified knowledge about stimulus 
(inputs) and reactions (outputs) of the system, its 
functioning cycles, and more complete 
understanding of collaboration among system’s 
functional characteristics, namely, well-specified 
information about conductors, resources, control 
flows, activities, objects, and results.  

In case of a very large system and a complex 
domain, the TFM provides a mathematical means 
for abstraction – continuous mapping between 
graphs. Functional features in a refined model may 
be mapped to one functional feature in a more 
abstract (simpler) model, while keeping all cause-
and-effect relations with other functional features, 
which were defined in the refined model. Thus, at 
higher levels of abstraction cause-and-effects 
relations among large system fragments (or 
functional components) will be analyzed. But at 
lower levels of abstraction, analysis of cause-and-
effect relations within those fragments will be 
conducted. Certainly, this work must be iterative, 
because changes in the model at any level of 
abstraction may have impact on the model at other, 
lower and higher, levels of abstraction. 

As a computation independent model, the TFM 
can be used as an input specification for automated 

transformations to the more detailed computation 
independent and initial platform-independent 
models– traceability models, business process 
models, use case models, class diagrams, and object 
interaction diagrams. Work on formalization of 
mappings from TFM to these models has been 
referred in Introduction. Additionally, the TFM as an 
input specification must be properly verified before 
transformation to other models. Future research 
direction is TFM verification by model checking 
approaches, e.g., Colored Petri Nets. 
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