
System Thinking for Formal Analysis of Domain Functioning
in the Computation Independent Model

Erika Asnina1, Janis Osis1 and Asnate Jansone2
1Department of Applied Computer Science, Riga Technical University, Meza iela 1-k.3, LV-1007, Riga, Latvia

2Institute of Applied Computer Systems, Riga Technical University, Meza iela 1-k.3, LV-1007, Riga, Latvia

Keywords: System Thinking, Analytical Models, System Analysis and Design, Topological Functioning Model.

Abstract: A gap between two domains, the system and its supporting software, is a well-known issue in software
development. The analysis of the system is often considered as a redundant unwanted activity. However,
software development driven by models will not be able to close the gap, if these models focus only on
software and ignore the system, since software is a subsystem that helps to conduct some system’s
activities. Thus, the system must be accurately analyzed before the software. For this purpose, this paper
suggests a formal engineering model, Topological Functioning Model, and analysis of system functioning
based on the system theory, algebraic topology, and classical logic.

1 INTRODUCTION

Software is a solution that is dedicated to address
problems within the system it will operate, and
which becomes its subsystem after introduction.
Therefore, a problem domain includes both system
and software sub-domains. Due to many reasons, the
analysis of a system domain is quite superficial in
software development. That leads to the well-known
issue in software development. It is a gap between
the system and its supporting software, i.e., between
the problem and the solution (Osis, 2006), (Osis and
Asnina, 2011 b).

A power of traditional engineering is a solid
theory, mathematics and formal methods. A
traditional civil engineer investigates a surrounding
environment, analyzes requirements for an object to
be built, builds mathematical models of the object,
verifies them by a formal means, and only then
builds a real object. Conversely, a software
developer investigates a surrounding environment a
little bit, analyzes thoughts (requirements) about an
object to be built, and starts to build this object
based on a sketch of the object (in a better case).
Caper Jones was right when he said that “The way
software is built remains surprisingly primitive” (as
cited in Osis and Asnina, 2011 b), because it is
requirements-based and chaotic. Requirements-
based development differs from requirements-

initiated development similarly as software
engineering differs from traditional engineering.
Software development must be requirements-
initiated, this means that analysis and modeling of
the system as a whole must precede design of the
software. Modeling is a better means to deal with
complexity and a large size of a system.

System thinking is based on the system theory.
Paul Weiss and Karl Ludwig von Bertalanffy are the
first founders of the general system theory (GST)
(Drack and Apfalter, 2007), which had have many
elaborations in different disciplines such as biology,
cybernetics, system, social and management science.
Weiss considered “it to be essential to deal with a
system as a whole, because system reactions (e.g.,
concerning functions and development) could only
be adequately understood by taking into account the
system as a whole” (Drack and Apfalter, 2007).
Ludwig von Bertalanffy wrote in 1969 that “A
system may be defined as a set of elements standing
in interrelation among themselves and with [the]
environment” (as cited in Drack and Apfalter, 2007).
System thinking has been useful in multi-project
management for software development, where the
proposed management model joins both Weiss’ and
Bertalanffy’s definitions of GST in an enhanced
causal-loop diagram (Lee and Miller, 2004).
Successful applications of the system theory to
operational research and management science are
overviewed in (Mingers and White, 2010).

232 Asnina E., Osis J. and Jansone A..
System Thinking for Formal Analysis of Domain Functioning in the Computation Independent Model.
DOI: 10.5220/0004090602320240
In Proceedings of the 7th International Conference on Evaluation of Novel Approaches to Software Engineering (MDA&MDSD-2012), pages 232-240
ISBN: 978-989-8565-13-6
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

We believe that the main principle of OMG
Model Driven Architecture (MDA) – architectural
separation of concerns in specifications – is a step
towards practical application of system thinking in
software development. MDA (Miller and Mukerji,
2003) suggests three architectural viewpoints on the
system, namely, a computation independent, a
platform independent and a platform specific view.
By considering both the software and the system, the
computation independent viewpoint should be able
to provide compliance of the software model with
the system model (Osis and Asnina, 2008), (Asnina
and Osis, 2010). This puts a strong responsibility on
the computation independent model – this must be
an engineering model. Characteristics of a good
engineering model given in (Lavagno et al., 2004)
are the following: abstraction, comprehension,
accuracy, possibility to make accurate predictions
about interesting properties of the modeled system
from the information provided by the model, and
significant inexpensiveness. Most modern models
provide abstraction, understandability and
inexpensiveness. But accuracy and predictability are
challenges.

A topological functioning model (TFM) has all
the five characteristics (Osiset al., 2007 a), (Osis et
al., 2007 b) (Osis et al., 2008 a),. Its properties and
application as a computation independent model in
the context of MDA are described in the below
mentioned sources. Because of its holistic formal
nature, the TFM is a means for verification of
requirements completeness (Osis et al., 2008 b),
determination of shared functionality and derivation
of use cases (Osis and Asnina, 2011 a), (Osis and
Asnina, 2011 c), integration of system knowledge
that usually are expressed as a set of interrelated
fragments (Slihte et al., 2011), and derivation of a
system’s structure (Osis and Donins, 2010), (Donins
et al., 2011) and behaviour (Asnina and Osis, 2011).

This paper discusses two of the above mentioned
engineering model characteristics, namely, accuracy
and predictability. Accuracy and predictability of the
software model should be based on a solid theory,
which application should be elaborated in formal
methods, and results of application of these formal
methods should be formally presented. System
thinking and a formal model, TFM, can address
these challenges. Section 2 presents theoretical
foundations of the TFM and analysis of domain
functioning. Section 3 illustrates application of the
suggested approach on an example. Section 4
discusses related work. Conclusions discuss the
obtained results and directions of future research.

2 SYSTEM THINKING, DOMAIN
FUNCTIONING AND CAUSAL
RELATIONS

The “traditional” way of problem domain analysis is
when developers explore the problem domain by
small parts, at the beginning trying to understand
each fragment of the problem domain and only after
that trying to join those fragments together in the
joined and more formal representation. The
alternative way is system thinking that is based on a
system theory. It anticipates that interdependency of
fragments is understood before analysis of each
particular fragment. This interdependency may have
dynamic and structural nature. In order to simplify
problem analysis “reduction to dynamics” and
“reduction to components” are applied (Laszlo and
Krippner, 1998). This section discusses the
alternative way of simplification; it could be called
“reduction to functional dependence” that joins both
the mentioned reductions. Section 2.1 introduces the
TFM and its implementation of the system theory in
brief. Section 2.2 and 2.3 illustrate two main
elements of the TFM, a functional feature and a
cause-and-effect relation, which are responsible for
accuracy and predictability of a system model.
Section 2.4 discusses improvement of accuracy and
predictability of the model.

2.1 Topological Functioning Model
in Brief

The TFM is based on principles of algebraic
topology and system theory. Mathematically, the
TFM is represented in the form of a topological
space (X, Θ), where X is a finite set of functional
features (characteristics) of the system under
consideration, and Θ is the topology that satisfies
axioms of topological structures and is represented
in the form of a directed graph (Osis, 1969).
Properties of topological spaces are described in
detail in (Osis, 2006), (Osis, 2004), (Basener, 2006).

The process of construction of the TFM consists
of definition of system’s functional features, cause-
and-effect relations among them, and separation of
the TFM from the topological space of the system.
The details are described in (Osis et al., 2008 b),
(Osis and Asnina, 2011 c), (Donins et al., 2011). The
stage we consider here is related to determination of
cause-and-effect relations.

The TFM has topological (come from algebraic
topology) and functioning (come from system
theory) properties. The topological properties are

System�Thinking�for�Formal�Analysis�of�Domain�Functioning�in�the�Computation�Independent�Model

233

connectedness, closure, neighborhood and
continuous mapping. The functional properties are
cause-and-effect relations, cycle structure, inputs
and outputs (Osis and Asnina, 2011 d). This section
focuses on TFM functional properties.

2.2 Functional Features

A functional feature is a characteristic of the system
that is designed for achieving some system’s goal.
The functional feature is an activity that helps the
system in conducting its functionality. Functional
features can be joined in a functional feature set that
represents a certain business function (Osis, 1969).

A functional feature is defined as a unique tuple
<Name, PrCond, PostCond, Pr, Ex>, where (Asnina
and Osis, 2010):
• Name that consists of a tuple <A, R, O>, where

A is an action linked with an object; R is a
result of that action (it is an optional element);
and O is an object (objects) that get the result
of the action or an object (objects) that is used
in this action; it could be a role, a time period
or a moment, catalogues etc.;

• PrCond is a set PrCond = {c1, …, ci}, where ci
is a precondition or an atomic business rule (it
is an optional element) of the action;

• PostCond is a set PostCond = {c1, …, ci},
where ci is a post-condition or an atomic
business rule (it is an optional element) of the
action;

• Pr is a set of responsible entities (systems or
subsystems), which provide or suggest the
action with the set of certain objects;

• Ex is a set of responsible entities (systems or
subsystems), which enact the action.

Functional features are connected by causal
relations.

2.3 Cause-and-effect Relations

Cause-and-effect relations connect functional
features and may form functioning cycles. A cause
functional feature must have at least one effect, as
well as an effect functional feature must have at least
one cause. At the same time, causes and effects are
stimulus sent to the system by the external
environment (inputs) and reactions sent to the
external environment by the system (outputs). In
other words, a cause-and-effect relation is a control
flow from one functional feature to another one.

The formal specification of a cause-and-effect
relation is a unique tuple <C, E, N, S>, where:
• C (cause) is a functional feature that generates

functional feature E, this may not be empty;
• E (effect) is a functional feature that is

generated by functional feature C, this may not
be empty;

• N is the necessity of the functional feature C
for generating the functional feature E; the
values are true or false;

• S is the sufficiency of the functional feature C;
the values are true or false.

Necessity N and sufficiency S are concepts of
classical logic; they induce substantial and
consistent effects on conditional reasoning
performance. The necessity of the cause is
determined when the occurrence of the effect
indicates the occurrence of the cause. The
sufficiency of the cause is determined when the
occurrence of the cause indicates the occurrence of
the effect. The necessary and sufficient cause is
when the occurrence of the effect is possible if and
only if the cause occurred, and occurrence of the
effect indicates the obligatory occurrence of the
cause.

Identification of cause-and-effect relations is
intuitive work based on a modeler’s knowledge and
understanding of system operation. As stated in
(Osis, 1969) “it is assumed in topological
functioning modeling that a cause-and-effect relation
between two functional features of the system exists
if the appearance of one feature is caused by the
appearance of the other feature without participation
of any third (intermediary) feature.” In terms of
classical logic, this means that a cause must be
either sufficient, or both necessary and sufficient.
However, cases when a single cause is both
necessary and sufficient are not often in complex
domains. More often cases are when a combination
of causes is either sufficient, or both necessary and
sufficient, and generates an effect.

2.4 Analysis of Domain Functioning

The main objective of system thinking is to move
implicitly or informally expressed knowledge to
formal specifications of the system; in our case, in
the form of TFM elements – functional features and
cause-and-effect relations. As mentioned above, a
general case is when a functional feature may have
multiple causes and multiple effects, i.e., multiple
control flows. The question is how to put the
discovering of cause combinations, as well as the
branching and joining of logical flows, on the formal
base.

Possible formalization is obligate determination
and specification of all pre- and post-conditions of

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

234

every TFM functional feature. Then it would be
possible “to connect” a post-condition of one
functional feature with an equal precondition of
another functional feature. In such a way, a sequence
of functional parts would be defined. However, the
question about logical (control) relations between
such sequences within a behavioral scenario and
among behavioral scenarios cannot be solved
without introducing logical operators into the textual
or visual specifications of functionality.

Logical operators Lop are relations from
classical logic such as conjunction (AND),
disjunction (OR, XOR), and negation (¬).
Conjunction indicates synchronous occurrence of
referenced causes. Disjunction indicates
asynchronous occurrence of referenced causes.
Negation indicates that referenced causes did not
occur.

Relations between causes and effects are causal
implications. This means that a cause may or may
not occur. There are four possible classical
combinations (Cummins, 1995):
• Modus Ponens. IF cause THEN effect. The

cause occurs. Thus, the effect follows.
• Modus Tollens. IF cause THEN effect. The

effect does not occur. Thus, the cause did not
precede.

• Affirmation of the Consequent. IF cause THEN
effect. The effect occurs, thus the cause
preceded.

• Denial of the Antecedent. IF cause THEN
effect. The cause did not occur. Thus, the effect
does not follow.

In order to define complete (compound) causes, a
modeler needs to analyze all possible combinations
of cause occurrences and to elect only those which
are both necessary and sufficient.

The possible combinations of necessity and
sufficiency may indicate the following outcomes:
• One cause:
o An incorrectly defined cause in a cause-and-

effect relation between functional features:
when a cause functional feature is not
necessary and not sufficient for generation of
an effect functional feature, then this cause-
and-effect relation between features is defined
incorrectly;

o An incomplete cause is when it is necessary
but not sufficient, or sufficient but not
necessary. This may indicate that some needed
causes were ignored.

• Existence of logical operators between two
causes (Table 1):

o An AND operator must be set between two
causes if they all are necessary, but not
sufficient;

o An OR operator must be set between two
causes if they all are sufficient, but not
necessary.

• If each cause in a combination is both
necessary and sufficient (Table 1), then these
causes are joined by the logical operator XOR
(exclusive OR).

• In the general case, when a cause is not
necessary or sufficient, this indicates an
incompleteness of causes. This means that we
must first find missing causes (i.e.,
functionality presented by functional features),
and then review all the combinations of
occurrences and non-occurrence of causes and
elect those combinations where sufficiency is
true, or both necessity and sufficiency are true.
If there are more than one combination, then
they are joined by XOR, as mentioned in the

Table 1: Analysis of combinations of two causes (0-a cause does not occur, 1 – a cause occurs).

Cause1 – c1 Cause2 – c2 Logical
combination

Necessary Sufficient Effect

Case “c1 OR c2 generates Effect”
0 1 ¬c1 AND c2 false true 1
1 0 c1 AND ¬c2 false true 1
1 1 c1 AND c2 true true 1

Case “c1 AND c2 generates Effect”
0 1 ¬c1 AND c2 true false 0
1 0 c1 AND ¬c2 true false 0
1 1 c1 AND c2 true true 1

Case “c1 XOR c2 generates Effect”
0 1 ¬c1 AND c2 true true 1
1 0 c1 AND ¬c2 true true 1
1 1 c1 AND c2 false false 0

System�Thinking�for�Formal�Analysis�of�Domain�Functioning�in�the�Computation�Independent�Model

235

previous point. We have to note that only one
combination is excluded – when all causes do
not occur, since it completely satisfies Denial
of the Antecedent.

The result of these activities should be an
accurate model of system’s functioning with
completely defined inputs, outputs, functioning
cycles, and logical relations among control flows
within the system.

Thus, in order to handle these “combinations of
causes”, which actually are “firing conditions” of
effects, the tuple of a functional feature must be
supplemented with an element that represents them.

3 APPLICATION OF THE
ANALYSIS FOR PROBLEM
SOLVING

Let us take a small problem domain for illustration
of the suggested theory. An informal description of
the problem “Management of the research group
activities” is the following: “The research group
investigates issues in the field of interest. Once some
valuable results are obtained, one or more members
of the group prepare a paper as its authors. The
completed paper is submitted to an appropriate
conference by the responsible author. If the paper is
accepted by the conference organizers, then the
authors prepare a camera-ready paper in
accordance with the obtained reviews. The
responsible author submits the camera-ready paper
to the conference, and presents it at the conference.
If the paper is published, the responsible author
records paper’s bibliographical description in the
authors’ personal files. The presenter records
his/her visit to the conference and the title of the
paper in his/her personal file. Group members may
attend conferences without accepted papers; these
visits also are recorded in their personal files.
Personal files of former group members are
archived.”

The list of functional features for this problem
domain obtained from the description (1-12),
inferred during analysis of cause-and-effect relations
in the first iteration (13-19) and the second iteration
(20-22) is shown in Table 2.

After analysis of the suggested description,
functional features from 1 to 12 together with
corresponding cause-and-effect relations, which are
illustrated in Figure 1(a), were defined. The obtained
topological model has isolated vertices 10 and 12,
and it does not have any functioning cycle. This

model is not valid and must be refined. Figure 1(b)
illustrates the refined model that completely satisfies
topological and functional properties of the TFM. It
was supplemented by functional features 13-19 and
corresponding cause-and-effect relations, which
specifies implicitly expressed knowledge about the
domain (Figure 1(c), Table 2). The next step is to
check completeness of causes for effect “firing” and
valid combinations of causes as stated in Section
2.4. The necessity and sufficiency (T-true or F-
false) of each relation are indicated above the
arrows.

First, there is a list of insufficient cause-and-
effect relations grouped by effects (14→1, 16→1,
18→1), (4→5, 2→5), (6→7, 13→7), (8→9, 17→9,
19→9), (7→11, 17→11), (13→10, 19→10,
17→10), 16→15, 15→18, (18→19, 12→19),
(15→12, 17→12, 19→12). °

A combination of each pair of cause-and-effect
relations (4→5, 2→5), (6→7, 13→7), (7→11,
17→11), and (18→19, 12→19) is sufficient when
two causes occur, therefore these causes in each pair
have a logical operator AND (Section 2.4).

Cause-and-effect relations 16→15 and 15→18
are not sufficient; this means that some causal
relations were missed, or causes were not indicated
in the model. In case of 16→15, starting a
membership is not sufficient for ending a
membership, there must be some reason. Existence
of this reason is introduced by functional feature 22
and relation 22→15. The relation pair (16→15,
22→15) is necessary and sufficient if two causes are
joined by a logical operator AND. In case of
15→18, ending a membership is not sufficient for
renewing a membership, because a former member
should ask to renew his/her membership. At the
same time, starting a membership (feature 16) has a
precondition that a candidate must not be a member
of the group. Therefore, a new functional feature 21
“Appearance of a new member” is introduced and
relations 21→18 (necessary, not sufficient) and
21→16 (necessary and sufficient) are set.

The logical operator AND is set for the pair

(15→18, 21→18). The more complex cases are
combinations of causes (14→1, 16→1, 18→1,
20→1), (8→9, 17→9, 19→9), and (13→10,
19→10, 17→10). For firing functional feature 1, the
valid cause combination is ((20 OR 14) AND (16
XOR 18)). For firing functional feature 9, the valid
cause combination is (8 AND (17 XOR 19)). For
firing functional feature 10, the valid cause
combination is (13 AND (17 XOR 19)). The
resulting TFM is shown in Figure 1(c).

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

236

Table 2: The list of functional features, where the abbreviations are as follows: P - a person, RG – the research group, M – a
member of the group, C – a conference, RA – a responsible author, CO – conference organizers, A – authors, Pr – a
presenter, EE- the external environment.

Nr. Name PreCond PostCond Pr Ex

1 Investigating an issue in the
field of interest issues

valuable results are
obtained

RG M

2 Preparing a new paper valuable results are
obtained completed paper RG M

3 Submitting a new paper completed paper C RA

4 Notifying the status of a paper accepted paper OR
not accepted paper C CO

5 Preparing a camera-ready
paper accepted paper prepared camera-

ready paper RG A

6 Submitting a camera-ready
paper

prepared camera-
ready paper

submitted camera-
ready paper C RA

7 Presenting a camera-ready
paper

submitted camera-
ready paper and

visited conference
 C Pr

8 Publishing a paper submitted camera-
ready paper published paper C CO

9
Recording the bibliographical
description of the paper in a

personal file
published paper all records are done RG RA

10 Recording the visit to the
conference in a personal file visited conference RG Pr,

M

11 Recording the title of the
paper in a personal file presented paper RG Pr

12 Archiving a personal file former group
member RG RG

13 Visiting a conference visited conference C M,
Pr

14 Identifying the issues in a
paper not accepted paper issues RG A

15 Ending a membership in the
research group current member former member RG M

16 Starting a membership in the
research group not a member new member RG P

17 Creating a personal file new member new personal file RG M

18 Renewing a membership in
the research group former member renewed member RG M

19 Restoring a personal file renewed member restored personal
file RG M

20 Existence of an issue in the
field issues EE EE

21 Appearance of a new member a former member
OR not a member RG P

22 Appearance of a membership
finishing reason reason to end the

group M M

4 RELATED WORK

There are many works on causality and system

thinking in the humanities, and only several of them
are in the computer science. We would like to
highlight only a few of them, which, by our opinion,

System�Thinking�for�Formal�Analysis�of�Domain�Functioning�in�the�Computation�Independent�Model

237

Figure 1:
knowledg

are more
our prop

Auth
for mana
enterpris
This mo
assests, s
authors j
first view
the syste
existence
parts and
The sec
Process M
regarded
processe
regarded
process
BPIs lay

A topological
ge about the sys

e interesting f
position and fu
hors in (Bider
aging enterpri
se to function
odel consists
sensors, and b
joined two v
wpoint comes
em is regarded
e through co
d a bigger wh
cond viewpo
Management

d as a num
es. A busine
d as a system

type (BPT)
yer deals with

model of the s
stem, (c) supple

for understan
uture research.
r et al., 2011)
ise agility, i.e
in the highly
of three lay

business proce
viewpoints on
s from system
d as a whole

onstant interac
hole, an exter
int comes f
perspective, w

mber of rep
ss process in
that is produc
within an e

h this notions.

system function
emented by usin

ding the plac
.
) discuss a m
., “property o

y dynamic wor
yers – enterp
ess instances.

the system.
m thinking, w

that maintain
ction between
rnal environm
from a Busi
where a system
eatable busi
nstance (BPI
ced by a busi
nterprise syst
 Each BPT h

ning: (a) obtain
ng the cause-an

ce of

model
of an
rld”.
prise
The
The

where
ns its
n its

ment.
iness
m is
iness
I) is
iness
tem.

has a

sen
thin
the
org
Com
con
all
asse
dist
and
cha
TFM
app
amo
dec
The
brea
them
of t

ned from the de
nd-effect analysi

sor, which di
nking is applie

best places
anization. Bo
mparing this
nclude that the

BPIs and do
ets and sen
tributed over
d cause-and-e
aracteristics o
M, because
plication. Disc
ong system

clarative rules
ese rules cons
aking these r
m, i.e., forces
these rules is b

escription, (b) in
is.

scovers the n
ed for strategi

to make ch
th a sensor an

model with
e TFM has on
oes not extra
nsors. Senso
input and outp
ffect relation
f managemen
this model

cussion on cau
objects lead

s (Khomyako
strain chaos w
rules forces t
s the system t
based on expe

nferred by usin

need for a BPI
ic BPT in ord
hanges in th

and a BPI are
h the TFM,
ne layer which
act separate
ors as syst
tput functiona
ns. Usually, f
nt are omitte
has another
usality of rela
ds authors t
ov and Bide
within the sys
the system t
to function. D
ert knowledge

ng expert’s

I. System
der to find
he whole
 systems.

we can
h includes
layers of
ems are

al features
functional
ed in the

field of
ationships
to define
r, 2000).
stem, and
to restore
Definition
e, and the

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

238

rules may be composed. It is similar to our
proposition, where logical relations among causes
and causal relations among causes and effects can be
considered as such rules.

Theoretical foundations of causality of
relationships are well described by Chris Taylor
(Taylor, 1993). Speaking about causation of
temporal events (that is close to our discussion), the
author defined several sets – a set of world (system)
elements, a set of world states, a set of events (which
are regarded as transition from one world state to
another), and a set of worlds, which contains all
possible (lawful) worlds for each state in the set of
states. In other words, the author defines all possible
transitions from a state to another related state. And
these transitions also have logical relations –
conjunction, disjunction, and negation. In this case,
the author considers a counterfactual analysis. In our
proposition we use a law-based analysis, i.e., we do
not consider “possible worlds” for the event.

5 CONCLUSIONS

Application of the TFM together with careful
analysis of causal relations among functional
characteristics of the system allows investigating the
system and its surrounding environment. The result
is explicitly specified knowledge about stimulus
(inputs) and reactions (outputs) of the system, its
functioning cycles, and more complete
understanding of collaboration among system’s
functional characteristics, namely, well-specified
information about conductors, resources, control
flows, activities, objects, and results.

In case of a very large system and a complex
domain, the TFM provides a mathematical means
for abstraction – continuous mapping between
graphs. Functional features in a refined model may
be mapped to one functional feature in a more
abstract (simpler) model, while keeping all cause-
and-effect relations with other functional features,
which were defined in the refined model. Thus, at
higher levels of abstraction cause-and-effects
relations among large system fragments (or
functional components) will be analyzed. But at
lower levels of abstraction, analysis of cause-and-
effect relations within those fragments will be
conducted. Certainly, this work must be iterative,
because changes in the model at any level of
abstraction may have impact on the model at other,
lower and higher, levels of abstraction.

As a computation independent model, the TFM
can be used as an input specification for automated

transformations to the more detailed computation
independent and initial platform-independent
models– traceability models, business process
models, use case models, class diagrams, and object
interaction diagrams. Work on formalization of
mappings from TFM to these models has been
referred in Introduction. Additionally, the TFM as an
input specification must be properly verified before
transformation to other models. Future research
direction is TFM verification by model checking
approaches, e.g., Colored Petri Nets.

REFERENCES

Asnina, E., & Osis, J. (2010). Computation independent
models: bridging problem and solution domains.
Proceedings of the 2nd InternationalWorkshop on
Model-Driven Architecture and Modeling Theory-
Driven Development MDA & MTDD 2010, In
conjunction with ENASE 2010, Athens, Greece, July
2010 (pp. 23-32). Portugal: SciTePress.

Asnina, E., & Osis, J. (2011). Topological Functioning
Model as a CIM-Business Model. In J. Osis, & E.
Asnina, Model-Driven Domain Analysis and Software
Development: Architectures and Functions (pp. 40-
64). Hershey, New York, USA: IGI Global.

Basener, W. (2006). Topology and Its Applications. New
Jersey, USA: John Wiley and Sons, Inc.

Bider, I., Bellinger, G., & Perjons, E. (2011). Modeling an
Agile Enterprise: Reconciling Systems and Process
Thinking. Proceedings of PoEM 2011, LNBIP , 92, pp.
238-252.

Cummins, D. (1995). Naive theories and causal deduction.
Memory and Cognition , 23, pp. 646-658.

Donins, U., Osis, J., Slihte, A., Asnina, E., & Gulbis, B.
(2011). Towards the Refinement of Topological Class
Diagram as a Platform Independent Model. Model-
Driven Architecture and Modeling-Driven Software
Development: ENASE 2011, 3rd Whs. MDA&MDSD,
(pp. 79 - 88).

Drack, M., & Apfalter, W. (2007). Is Paul A. Weiss’ and
Ludwig von Bertalanffy’s System Thinking Still Valid
Today? Systems Research and Behavioral Science , 24
(5), pp. 537-546.

Khomyakov, M., & Bider, I. (2000). Achieving Workflow
Flexibility through Taming the Chaos. OOIS 2000 -
6th international conference on object oriented
information systems (pp. 85-92). Springer.

Laszlo, A., & Krippner, S. (1998). Chapter 3 Systems
theories: Their origins, foundations, and development.
In J. Scott Jordan, Advances in Psychology (Vol. 126,
pp. 47-74). North-Holland.

Lavagno, L., Grant, E. M., & Selic, B. (2004). UML for
Real: Design of Embedded Real-Time Systems.
Springer.

Lee, B., & Miller, J. (2004). Multi-project Software
Engineering Analysis Using Systems Thinking.

System�Thinking�for�Formal�Analysis�of�Domain�Functioning�in�the�Computation�Independent�Model

239

Software Process Improvement and Practice (9), pp.
173–214.

Miller, J., & Mukerji, J. (Eds.). (2003, May 1). MDA
Guide Version 1.0. Retrieved January 15, 2010, from
http://www.omg.org/mda/

Mingers, J., & White, L. (2010). A review of the recent
contribution of systems thinking to operational
research and management science. European Journal
of Operational Research , 207, 1147–1161.

Osis, J. (2006). Formal Computation Independent Model
within the MDA Life Cycle. (P. Loucopoulos, & K.
Lyytinen, Eds.) International transactions on system
science and applications , 1 (2), pp. 159-166.

Osis, J. (2004). Software development with topological
model in the framework of MDA. Proceedings of the
9th CaiSE/IFIP8.1/EUNO International Workshop on
Evaluation of Modeling Methods in Systems Analysis
and Design (EMMSAD’2004) in connection with the
CaiSE’2004. 1, pp. 211-220. Riga, Latvia: RTU.

Osis, J. (1969). Topological Model of System
Functioning. Automatics and Computer Science, J. of
Acad. of Sc. (6), 44-50.

Osis, J., & Asnina, E. (2008). A Business Model to Make
Software Development Less Intuitive. Proceedings of
2008 International Conference on Innovation in
Sofware Engineering (ISE 2008). December 10-12,
2008, Vienna, Austria (pp. 1240-1245). IEEE
Computer Society Publishing.

Osis, J., & Asnina, E. (2011 a). Derivation of Use Cases
from the Topological Computation Independent
Business Model. In J. Osis, & E. Asnina, Model-
Driven Domain Analysis and Software Development:
Architectures and Functions (pp. 65-89). Hershey,
New York, USA: IGI Global.

Osis, J., & Asnina, E. (2011 b). Is Modeling a Treatment
for the Weakness of Software Engineering? In J. Osis,
& E. Asnina, Model-Driven Domain Analysis and
Software Development: Architectures and Functions
(pp. 1-14). Hershey - New York, USA: IGI Global.

Osis, J., & Asnina, E. (2011 c). Model-Driven Domain
Analysis and Software Development: Architectures
and Functions. Hershey, New York, USA: IGI Global.

Osis, J., & Asnina, E. (2011 d). Topological Modeling for
Model-Driven Domain Analysis and Software
Development. In J. Osis, & E. Asnina, Model-Driven
Domain Analysis and Software Development:
Architectures and Functions (pp. 15-39). Hershey,
New York, USA: IGI Global.

Osis, J., & Donins, U. (2010). Formalization of the UML
Class Diagrams. In Evaluation of Novel Approaches to
Software Engineering (pp. 180-192). Berlin: Springer-
Verlag.

Osis, J., Asnina, E., & Grave, A. (2007 a). Computation
Independent Modeling within the MDA. Proceedings
of IEEE International Conference on Software,
Science, Technology & Engineering (SwSTE07), 30-31
October 2007, Herzlia, Israel (pp. 22-34). IEEE
Computer Society, Conference Publishing Services
(CPS).

Osis, J., Asnina, E., & Grave, A. (2008 a). Computation
Independent Representation of the Problem Domain in
MDA. e-Informatica Software Engineering Journal , 2
(1), 29-46.

Osis, J., Asnina, E., & Grave, A. (2007 b). Formal
Computation Independent Model of the Problem
Domain within the MDA. Information Systems and
Formal Models, Proceedings of the 10th International
Conference ISIM'07 (pp. 47-54). Opava, Czech
Republic: Silesian University.

Osis, J., Asnina, E., & Grave, A. (2008 b). Formal
Problem Domain Modeling within MDA. In
Communications in Computer and Information
Science (CCIS). Software and Data Technologies (pp.
387-398). Berlin: Springer-Verlag.

Slihte, A., Osis, J., & Donins, U. (2011). Knowledge
Integration for Domain Modeling. Model-Driven
Architecture and Modeling-Driven Software
Development: ENASE 2011, 3rd Whs. MDA&MDSD,
(pp. 46 - 56).

Taylor, C. (1993). A Formal Logical Analysis of Causal
Relations, DPhil Thesis. University of Sussex.

ENASE�2012�-�7th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

240

