
Linear Software Models for Well-composed Systems

Iaakov Exman
Software Engineering Dept., Jerusalem College of Engineering, POB 3566, Jerusalem, 91035, Israel

Keywords: Software Composition, Linear Software Models, Well-composed Systems, Modularity Matrix, Linear-

Reducible Matrix.

Abstract: Modularity is essential for automatic composition of real software systems from ready-made components.

But given ready-made components do not necessarily correspond exactly to the units and functionality of

designed software system architecture modules. One needs a neat composition procedure that guarantees the

necessary and sufficient components to provide required units. Linear Software Models are rigorous

theoretical standards subsuming modularity. The Linear-Reducible model is proposed as a model of well-

composed software systems, above and beyond software variability. Indeed, case studies of representative

systems recognized as well-composed, be they small, intermediate building blocks or large scale, are shown

to be Linear-Reducible. The paper lays down theoretical foundations – upon exact linear independence and

reducible matrix concepts – providing new precise meanings to familiar modularity ideas, such as the single

responsibility theorem. The theory uses a Modularity Matrix – linking independent software structors to

composable software functionals in a Linear Model.

1 INTRODUCTION

Significant progress since Parnas’ classical paper

(Parnas, 1972) – which posed the modularity issue in

the software context and treated it by informal

reasoning – paved the way for automatic run-time

system composition/update from ready-made

software components. Yet there remain fundamental

obstacles to make this vision concrete.

Modularity’s wisdom of low dependency among

modules has been informally stated in innumerable

ways: recommendations such as single

responsibility, source-code dependency metrics,

design patterns and tools. But recommendations,

metrics, patterns and tools never crystallized into a

systematic theoretical approach.

This is exactly the problem dealt with by this

paper: to provide a solid and generic basis to treat

software composition in a rigorous and consistent

way, enabling theoretical models against which to

check real systems. To this end, Linear Software

Models are proposed upon well-established linear

algebra techniques.

1.1 The Software Composition
Problem

The software composition problem, analysed by this

paper, is how to build a well-designed modular

software system from available ready-made

components that were not designed specifically for a

particular system.

Components are deployment units needed to

actually run software systems. They are loaded to

the computer memory as indivisible wholes. Typical

examples are a C++ dll (dynamically linked library),

a jar (Java archive) or a C# assembly.

On the one hand, the software engineer, by using

best practices, designs a modular software system in

terms of desirable architectural units. Architectural

units describe the structure and behaviour of a

particular software system.

On the other hand, components are assumed to

be mainly purchased as COTS (Commercial Off-

The-Shelf) components from several manufacturers,

and less frequently to be produced in-house. It is

realistic to expect variability among COTS from

distinct sources.

92 Exman I..
Linear Software Models for Well-composed Systems.
DOI: 10.5220/0004085500920101
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 92-101
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

1.2 Linear Software Models: Structors
and Functionals

This paper describes Linear Software Models as a

theory of software composition. In this theory, the

architecture of a software system is expressed by

two kinds of entities: structors and functionals.

Structors – a new term reminding vectors – are

architectural units, from the structural point of view.

Structors generalize the notion of structural unit to

cover diversity of types (structs, classes, interfaces,

aspects) and hierarchical collections (sets of classes,

as design patterns). Structors refer to types, not

instances. Structors are loadable within components.

Functionals are architectural system units from a

behavioural point of view. These are potential

functions that can be, but are not necessarily

invoked. Typically these are Java or C# methods,

related functions (e.g. a set of trigonometric

functions) or roles – supplying the functionality of a

design pattern (Riehle, 1996). Note: we use

Functional as a noun, similarly to the mathematical

concept with this name in the calculus of variations,

and to the grammatical use of Potential in physics.

Structors in general contain a finite set of

functionals and are represented by finite vectors.

Modules are architectural units in a higher

hierarchical level of a system. Modules are

composed of grouped structors and their

corresponding functionals.

Both components and systems contain structors.

But the respective logics are different. Structors

contained in a COTS component are fixed by the

core technology of the component manufacturer and

such structors must be assumed indivisible.

Structors within a system are determined by the

software system purpose. Thus, not all structors of a

component may be required by a system. Similarly,

not all functionals provided by structors are needed

by a system, and some of them may never be

invoked. The numbers of structors or functionals

provided by a component are not constrained.

Analysis starts with a list of structors and a list of

functionals that must be in a system. If two structors

provide distinct functionals, both are needed. If they

provide the same functionals, one of them is

redundant. For partial overlap, either one may be

complemented by a third structor. But which one is

preferable? Within a Linear Software Model the

answer is clear: choose a linearly independent set of

structors.

Linear models are usually formulated in terms of

matrices. The Modularity Matrix is a Boolean matrix

with columns standing for structors and rows for

functionals. A matrix element is 1-valued for a

functional-structor link and 0-valued for no link.

1.3 Modularity Matrix: An
Introductory Example

A simple yet useful system is here described in

terms of a Linear Software Model to illustrate

concepts found along the paper. It refers to OFB

(Output Feed-Back) encryption of a long message

(Fig. 1) before network transmission – e.g.

(Kaufman, et al. 1997). A message is cut into N

blocks of fixed length and each one is treated

separately.

A random number, the Initial Vector, is

generated. Each block of the message is pre-

processed. A corresponding vector is also pre-

processed to be of the size of a block, and then

encrypted. The encrypted output vector is fed back

into the encryption function, through the vector pre-

processing. Feedback is done N times, obtaining one

vector for each message block. The kth encrypted

vector is then Xored with the kth message block.

Figure 1: OFB encryption of long message. This is a

functional calling dependency graph for a generic kth

message block. Functionals are displayed as (blue)

rounded rectangles. Some of the input/output dataflow is

shown in regular rectangles.

Table 1: OFB Functionals.

Functional Description

1 Random number

generator

from a distribution

2 Encryption function e.g. RSA encryption

3 Xor a logical function

4 Vector-Pre-Process Fetch(vector,size)

5 Message-Pre-Process fetch & pad message

The OFB software system has five functionals

(Table 1) and the following four structors: S1) Rand

- offers random distributions; S2) Crypto structor -

Linear Software Models for Well-composed Systems

93

offers encryption protocols; S3) Logical - provides

logical functions, say AND, OR, XOR; S4) Proc - a

processor structor provides pre-processing functions.

The resulting OFB modularity matrix (Table 2)

has 2 identical lowest rows. The matrix reflects that

the pre-processing functionals are not independent.

Both functionals are provided by the same structor,

thus they are not distinguishable.

Table 2: OFB Rectangular Modularity Matrix with Linear

Dependencies.

 S1=Rand S2=Crypto S3=Logical S4=Proc

Rand Num Gen F1 1 0 0 0

Encryption Func F2 0 1 0 1

XOR F3 0 0 1 1

Vector-Pre-Proc F4 0 0 0 1

Msg-Pre-Proc F5 0 0 0 1

An interesting feature of OFB encryption is that

one can prepare all encrypted vectors in advance,

before there are any message blocks to be sent.

Therefore, one can rearrange the functional calling

graph, enabling totally separate execution.

Two modules naturally appear, one dealing with

vectors and the other with message blocks – see Fig.

2. In each module, the processing structor, besides

pre-processing, invokes the respective processing

functional.

Figure 2: OFB functionals modularized. Rearranged

functional calling dependency graph for a generic kth

message block. The upper dashed lines module pre-

processes vectors, encrypts and saves them. The lower

module fetches message blocks, pre-processes them and

Xors each message block with its saved vector. This figure

uses the same conventions as the previous figure.

Independent pre-processing functionals which

are able to run in parallel in distinct machines need

independent structors. So, one has a VectorProc

structor and a separate MsgProc structor. These

structors are aware – by means of associations – of

the respective processing functionals which they are

able to invoke.

Table 3: OFB Strictly Linear Model – Modularity Matrix.

 S1=

Rand

S2=

Crypt

S4=Vec

Proc

S3=

Logical

S5=Msg

Proc

Rand Num Gen F1 1 0 0 0 0

Encryption Func F2 0 1 1 0 0

Vector-Pre-Proc F3 0 0 1 0 0

XOR F4 0 0 0 1 1

Msg-Pre-Proc F5 0 0 0 0 1

Row and column swap operations lead to a

block-diagonal matrix (Table 3). The diagonal

blocks in this matrix match the modules in Fig. 2.

The system matrix in Table 3 strictly obeys a

Linear Software Model. This means that all its

modules have linearly independent rows and

columns. Thus, each of its functionals is

distinguishable. For instance, according to the

matrix in Table 3 functional F2 is provided by

structors {S2, S4}.

The independent execution of VectorProc and

MsgProc, in time and space, clarifies the sense of an

independent software structor. It must be: a)

Loadable/Runnable – in a virtual or real machine; b)

Separable – i.e. able to run in separate machines.

The remaining of the paper is organized starting

from the basic theory (section 2), through concrete

case studies (section 3), to a discussion (section 4).

2 LINEAR SOFTWARE MODELS

OF COMPOSITION

The aim of this section is to describe the new

theoretical approach – the Linear Software Models

of Composition.

Linear Software Models are the simplest

theoretical models of software composition. Systems

obeying such a model are composed just by addition

of independent modules.

2.1 Modularity Matrices’ Linear
Independence

A Linear Software Model contains a list of software

structors and another of software functionals. Its

Modularity Matrix is defined as:

Definition 1 – Modularity-Matrix

A fully expanded Modularity-Matrix is a
Boolean matrix asserting links (1-valued
elements) between software functionals (rows)
and software structors (columns). The absence
of a link is marked by a 0-valued element.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

94

By definition, software structors are elementary

artifacts, which the software engineer decides to

look at them as indivisible into smaller structors.

Say, the OFB crypto structor (section 1.3) is not split

into – prime factorization or modulo arithmetic –

although decomposition is obviously possible. The

same holds true for functionals.

Besides being indivisible, only structors with

unique roles, as the OFB VectorProcessor and

MsgProcessor needed for parallelism, are in the

Matrix. Multiple structor copies, say by fault

tolerance reasons, are not included in the Matrix.

Independent structors must be represented by

distinct vectors. But, sets of differing vectors may

still be dependent. The generic criterion for

independent structors in any system subsets is linear

independence:

We now look at the links from the functional

point of view. In order to be able to distinguish a

functional, its set of links in the functional row must

be unequivocal. Again linear independence is the

relevant criterion:

For instance, for OFB (Table 3) the XOR

functional composition set is {S3, S5}.

2.2 Well-composed Modularity
Matrices are Square

A well-composed modularity matrix has additive

properties, i.e. it has composable functionals from

independent structors. Then:

A proof sketch is (detailed proofs will be given

in a long paper): Assume a matrix without empty

rows/columns. First, structors are used as a basis for

functional vectors. Then, functionals are a basis for

structor vectors. By linear independence, in each

case vector numbers cannot be greater than the basis.

As both cases must be simultaneously true, follows

the equality NS=NF. The matrix is square.

The theorem assumptions are very intuitive. An

analogy is the symptom sets to diagnose illnesses.

Say, high temperature, a very common symptom, is

not enough to identify a disease. Diseases with the

same symptom sets are indistinguishable. To

unequivocally diagnose an illness one needs

independent sets of symptoms.

This theorem does not force a one-to-one

functional/structor match. It is obeyed by matrices

with NVAL 1-valued elements greater than NS and NF

(see e.g. Table 4).

Table 4: Abstract square Modularity Matrix with

NVAL=6, while NS=NF=3.

 S1 S2 S3

F1 1 0 1

F2 0 1 1

F3 1 1 0

Algebraically, there are simple criteria for well-

composed matrices: non-zero matrix determinant or

matrix rank equal to the number of rows/columns.

2.3 Reducible Modularity Matrices

When a Modularity Matrix has disjoint dependency

sets, structors and their functionals can be grouped

into modules, such that vector sets in different

modules are linearly independent. This reduces the

matrix to block-diagonal (fig. 3), i.e. with smaller

squares of any size along the diagonal (Rowland,

Weisstein, 2006). All off-block elements are zero.

Definition 2 – Independent Structor

A software structor is independent of other
structors in the system, if it provides a non-
empty proper sub-set of functionals of the
system, given by the 1-valued links in the
respective column, and is linearly independent
of other columns in the Modularity Matrix.

Definition 3 – Composable Functional

A software functional is independently

composable or just composable in terms of

structors, if it corresponds to a non-empty

proper sub-set of system structors, given by the

1-valued links in the respective row, and is

linearly independent of other rows in the

Modularity-Matrix.

This set is the composition set of the functional.

Theorem 1 – Well-Composed Modularity-
Matrix

If in a Modularity-Matrix all its functionals are

composable with independent structors, the

Modularity-Matrix number of structors Ns is

equal to its number of functionals NF. The

matrix is Square.

Such a matrix is called a Well-Composed

Modularity-Matrix.

Linear Software Models for Well-composed Systems

95

Figure 3: Schematic Block-Diagonal Matrix.

A “union-set” is the union of composition sets

for a set of functionals. Then:

A proof sketch is: apply row and column

exchanges to bring the disjoint union-set to the

upper-left matrix corner. As the whole Modularity

Matrix is Well-composed, the disjoint union-set is

itself square (by Theorem 1) and its diagonal is

along the whole Matrix diagonal. The residual 1-

valued elements are thus also square bounded, along

the whole Matrix diagonal. This reasoning is

extensible to any number of blocks.

The previous theorems naturally lead us to define

linear software system models of composition. The

two theorems are combined in the Linear-Reducible

model, in the strict sense.

We identify modules with disjoint diagonal

blocks of structors/functionals, corresponding to the

intuitive notion of modular software systems. One

can express modularity quantitatively by the

diagonality of a Modularity-Matrix M, telling how

close its 1-valued elements are to the main diagonal.

It is the difference between the Trace, the diagonal

elements' sum, and offdiag, a new term dealing with

off-diagonal elements:

(1)

Offdiag sums over 1-valued Mjk off-diagonal

elements, times the absolute value of the difference

of the element’s column k and row j indices. For

each row j and column k:

(2)

The overall matrix offdiag is:

(3)

The next operations may unfold a whole

hierarchy of block levels, where a level is defined by

the matrix components explicit in that level:

a- Block collapse – transforms a block into a

single element black-box.

b- Block expansion – restores a collapsed black-

box back into a white-box.

To assure that these operations preserve

diagonality, black-boxes are labeled by the <Trace,

offdiag> diagonality value, of the original white-

box. To be able to restore the white-box, hidden

rows/columns should be stored elsewhere.

The modularity hierarchy is thus given by:

2.3 The Single Responsibility Theorem

The last theoretical piece of the Linear Models is a

linear algebraic formulation of the single

responsibility principle (Martin, 2003). It is valid

after one obtains a block-diagonal matrix:

This theorem is easily verified. It means that a

single module is responsible for providing each

functional exclusively by its structors. This is a

plausible interpretation of the familiar principle,

Theorem 2 – Modularity Matrix Reducibility

Any well-composed Modularity Matrix in which
the union-set for a given set of functionals is
disjoint to the other functional union-sets is
reducible, i.e. it can be put in block-diagonal
form.

Definition 4 – Linear Reducible Model

The Linear-Reducible model of software system
composition, in the strict sense, is characterized
by a well-composed and reducible Modularity
Matrix having at least two disjoint blocks.

Definition 5 – Number of modules at a level

The number of modules of a software system at a
hierarchy level is the number of blocks from the
modularity matrix partition into disjoint union-
sets at that level.

Theorem 3 – Single Responsibility

In a strictly block-diagonal modularity matrix
each structor column intersects a single module.
Similarly, each functional row intersects a single
module.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

96

since related structors and functionals are grouped in

a single module.

3 CASE STUDIES

The goal of this section is to demonstrate the power

of Linear Software models, showing by case studies

a range of concrete software systems obeying such a

model.

We have chosen representative software systems

of disparate purposes and sizes to illustrate the

Linear Models. It turns out that all systems are well-

composed. Small systems are strictly Linear-

Reducible – i.e. obey a model with a linearly

independent and reducible matrix – and larger

systems are bordered Linear-Reducible. In each

case, a modularity matrix is obtained, block-

diagonalized and analysed in terms of Linearity.

3.1 Small Systems are Strictly Linear
Reducible

Small systems and intermediate reusable building

blocks strictly obey the Linear-Reducible Software

model. These are Parnas’ KWIC index and the

Observer pattern. KWIC was thoroughly analysed

by Parnas to be a canonical example. The Observer

pattern was deliberately designed to be reused.

3.1.1 Parnas' KWIC Index

The 1972 Parnas paper (Parnas, 1972) described two

KWIC index modularizations. The system outputs

an alphabetical listing of all circular shifts of all

input lines. Functionals were extracted from Parnas’

own system description. Structors are explicit in the

paper – where they are called modules.

The Modularity Matrix of Parnas’ 1st

modularization is in Table 5 (0-valued elements are

omitted for clarity; blocks have a darker

background). It is almost block-diagonal, but two

features are problematic:

a- the Master Control column vector is not a

proper subset of the functionals;

b- non-zero outliers break block-diagonality.

The matrix clearly hints to couplings to be

resolved: the notably higher RowOffdiag=4 of the 3rd

row, contains all outliers, besides the master control

ones. The solution is: a- to delete the master control,

as quoting Parnas, it “does little more than

sequencing”, it is not a real structor; b- to add a new

Line-Storage structor, as Parnas informally argued,

Table 5: Parnas' 1st Modularization – Modularity Matrix.

Structors  Input Circular

Shifter

Master

Control

Alpha-

betizer

Output

Functionals 1 2 3 4 5

Input = ordered set of lines 1 1 1

Does circular shift on a line 2 1 1

Line= store line in word order 3 1 1 1 1

Sort lines in alphabetical order 4 1 1

Outputs circular shifted lines 5 1 1

to decouple the 3rd row "Line" functional from the

Input, Circular-shifter and Alphabetizer. The 2nd

Parnas’ modularization fits the strictly diagonal 5-

module matrix in Table 6.

Table 6: Parnas' 2nd Modularization – Modularity Matrix.

Structors  Input Circular

Shifter

Line

Storage

Alpha-

betizer

Output

Functionals 1 2 3 4 5

Input = ordered set of lines 1 1

Does circular shift on a line 2 1

Line= store line in word order 3 1

Sort lines in alphabetical order 4 1

Outputs circular shifted lines 5 1

We use decouple in a precise new meaning, of

enabling linearly independent composition.

The matrices in Tables 5 and 6 are not

equivalent, having different non-zero element

numbers. Which one is more modular? The 1st

matrix diagonality has a value –5. The 2nd

diagonality equals the Trace and is 5. Thus, the 2nd is

more modular.

We arrived at the same Parnas conclusions, by

formal Modularity Matrix arguments. This system

strictly obeys the Linear-Reducible Model.

3.1.2 Observer Design Pattern

The Observer Design Pattern abstracts one-to-many

interactions among objects, such that when a

"subject" – changes, all the "observers" – are

notified and updated.

The Observer Modularity Matrix is based upon

the Design Patterns’ GoF book (Gamma, et al.,

1995). Its sample code refers to an analog and a

digital clock, the "concrete observers", changing

according to an internal clock – the "concrete

subject".

The system structors (Table 7) are:

 generic Observer pattern entities, directly

taken from the pattern list of “Participants”;

(the first four rows of Table 7).

 specific application structors – a subject

resource, a GUI for each external clock and

an initiator which constructs the clocks.

Linear Software Models for Well-composed Systems

97

Table 7: Observer - Structors.

 Structors Description

1 abstract subject interface to attach/detach observers

2 abstract observer interface to update an observer

3 concrete subject stores global state; sends notifications

4 concrete observer implements the observer updating

5 subject resource internal timer ticks the global state

6 analog GUI inherits graphics analog clock widget

7 digital GUI inherits graphics digital clock widget

8 initiator to construct the clock objects

The Observer functionals were extracted from

the complete set of functions that may be invoked in

the sample code. These functions were trimmed by

elimination of linear dependencies.

State is not maintained in the same way in the

subject and in the observers. The unique subject sets

the state ("ticks") by means of a Keep-Global-state

functional, while observers, are updated at unrelated

times and Keep-Local-state. Table 8 shows the

Observer functionals.

Table 8: Observer – Functionals.

 Functionals Description

1 Keep-observers-list attaching/detaching observers

2 Notify observers notify when subject changes

3 Update observers update observers, after notify

4 Keep-Global-state keep time to allow updates

5 Keep-Local-state keep time in each observer

6 Draw-analog specific analog clock draw

7 Draw-digital specific digital clock draw

8 Constructor construct the clock objects

Row/column reordering of a quite arbitrary

initial matrix causes modules to emerge in a strictly

Linear-Reducible matrix. (Table 9). These modules

are a subject and an observer – the generic module

roles (Riehle, 1996) for this design pattern – each

one with the respective abstract/concrete structors,

and the specific clock application modules.

Table 9: Observer Linear Reducible – Modularity Matrix.

Structors  subject concrete

subject

subject

resource

concrete

observer

Obser

ver

Gui

analog

Gui

digital

Init

Functionals 1 2 3 4 5 6 7 8

Keep observer list 1 1

Notify observers 2 1 1

Keep-global-state 3 1 1

Keep-local-state 4 1

Update observers 5 1 1

Draw-analog 6 1

Draw-digital 7 1

Constructor 8 1

In Table 9, subject and observer modules

emerged from basic structors. Alternatively one can

deal with black-box collapsed modules (as defined

in sub-section 2.3) in a higher hierarchical level

matrix shown in Table 10.

In either format, one could analyse the pattern

matrix (subject and observer) as a generic building

block in separate from the specific clock application.

Table 10: Observer higher level Modularity-Matrix.

Structors  Subject Observer Clock Appl.

Functionals 1 2 3

Keep-global-state & Notify observers 1 <3.2>

Keep-local-state & Update observers 2 <2,1>

construct, draw clocks 3 <3,0>

The Observer analysis illustrates that, despite

arbitrary initial order, automatic reordering brings

about a matrix accurately reflecting the pattern

functionality.

The Observer pattern is a prototypical example.

It would be desirable to have all reusable building

blocks as the Observer, strictly obeying the Linear-

Reducible Model, to allow linearly independent

composition into larger software systems.

3.2 Larger Software Systems are
Bordered Linear Reducible

To show the Linear Model applicability to real

systems, we analysed larger projects from the

literature. The novel result is that the examined

systems are bordered Linear-Reducible.

3.2.1 Neesgrid Modularity Matrix

The NEESgrid “Network Earthquake Engineering

Simulation” project enables network access to

participate in earthquake tele-operation experiments.

The infrastructure was designed by the NCSA at

University of Illinois. Modularity Matrix functionals

were extracted from a report (Finholt, et al. 2004)

with exactly 10 upper-level structors.

An initial modularity matrix (Table 11) was

obtained by straightforward linearity considerations:

eliminating empty and identical rows; an empty

column, “Electronic Lab Notebook”, was deleted. A

column was assigned to a next-level structor Data-

Discovery (DataDis) as it neatly fits the SearchData

functional. The scattered non-zero elements are

typical of initial matrices in this kind of analysis.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

98

Table 11: NEESgrid initial Modularity Matrix.

Structors  chef Data

Rp

Data

Vu

Data

Str

Data

Dis

Tele

pre

Data

Ac
Hyb

Exp

Sim

Rep

Grid

Infr

Functionals 1 2 3 4 5 6 7 8 9 10

Collect_Data 1 1 1 1

Search_Data 2 1

Manage_Data 3 1 1

HybridExper 4 1

Data_View 5 1

Sync_Collab 6 1 1

Async_Collab 7 1

Other_Collab 8 1 1 1 1

SimulCodes 9 1

HighPerfComp 10 1

Pure algebraic row/column reorder, without

semantic concerns, brings about the almost block-

diagonal Matrix (in Table 12). Its modules –

diagonal blocks – are:

 Data manipulation – collect, search,

manage, view – the upper-left block;

 Collaboration tools – synchronous, async,

other – the middle block;

 Infrastructure – grid, codes – the lower-

right block.

Table 12: NEESgrid Bordered Linear-Reducible

Modularity Matrix.

Structors  Data

Str

Data

Dis

Data

Rp

Data

Vu

Data

Ac

Tele

pre

chef
Grid

Infr

Sim

Rep

Hybr

Exp

Functionals 4 5 2 3 7 6 1 10 9 8

Collect_Data 1 1 1 1

Search_Data 2 1

Manage_Data 3 1 1

Data_View 5 1

Other_Collab 8 1 1 1 1

Sync_Collab 6 1 1

Async_Collab 7 1

HighPerfComp 10 1

SimulCodes 9 1

HybridExper 4 1

Module interpretation is hinted by the respective

functional names – Data and Collab.

Outliers appear in the rows with maximal value

RowOffDiag=6, Collect_Data and Other_Collab.

The latter prefix "Other" hints at mixed functionals

to be decoupled.

This case study shows that: a- algebraic

reordering, without prior semantic knowledge,

obtains plausible modules; b- outliers are amenable

to interpretation, in particular matching project notes

(e.g. the row 8, column 10 outlier, marked "not

within the project scope” in project documents).

The significant result, common to large case

studies, is that there are few outliers, and all of them

are in columns/rows adjacent to the Linear Model

blocks. This is what we call bordered Linear-

Reducible.

4 DISCUSSION

4.1 Main Contribution: Linear
Software Models

This paper’s main contribution is the Linear

Software Models, as theoretical standards against

which to compare real software systems. The models

stand upon well-established linear algebra, as a

broad basis for a solid theory of composition –

beyond current principles and practices.

One can assert, from the Modularity Matrix

properties of a system, which structors are

independent and which functionals are

independently composable. One can then infer

which design improvements are desirable.

This view is very different from design models,

such as UML, whose purpose is not to serve as

theoretical standards. Design models freely evolve

with design and system development. Design models

have indefinite modifiability to adapt to any system,

in response to tests of system compliance to design.

4.2 Related Work

Matrices have been used to deal with modularity. A

prominent example is DSM (Design Structure

Matrix) proposed by Steward (Steward, 1981),

developed by Eppinger and collaborators e.g. (Sosa,

et al. 2005), (Sosa, et al. 2007)) and part of the

“Design Rules” approach by Baldwin and Clark –

see e.g. (Baldwin, Clark, 2000) and also (Cai,

Sullivan, 2006), (Sethi, et al. 2009). DSM and other

matrices, such as Kusiak and Huang’s (Kusiak,

Huang, 1997) hardware modularity matrix, are

meant to be evolving design models.

Linearity is the outstanding feature of our

standard models, not found in DSM. Essential

distinctions of Linear Software Models from DSM

are:

 Theoretical Standards vs. Design Models –

our models’ goal is to serve as system

standards and ultimately may lead to

automatic software composition, as

Linear Software Models for Well-composed Systems

99

opposed to DSM design models which

emphasize design process and

manufacturing.

 Functionals vs. Structures-only – our

modularity matrices display structor to

functional links, while both DSM matrix

dimensions are labeled by the same

structures.

Baldwin and Clark explicitly state in footnote 2,

page 63 of their book (Baldwin, Clark, 2000)

that “it is difficult to base modularity on functions…

hence their definition of modularity is based on

relationships among structures, not functions”. See

(Ulrich, 1995) for a different view.

In practice, modularity matrices may be much

more compact than DSM. For instance, Parnas’

KWIC DSM (Cai, Sullivan, 2006) has 20

rows/columns instead of just 5 in our Modularity

Matrix.

Although diagonality has seldom been calculated

within modularity, formulas have appeared in other

contexts. Clemins in (Clemins, et al. 2002) used for

speaker identification, the Frobenius norm – the sum

of the squares – of all off-diagonal elements to

measure diagonality. Our offdiag definition is better

suited to modularity, as it directly reflects distance to

the diagonal, while the Frobenius norm just sums

Boolean elements.

An indirect coupling metric is “similarity

coefficients” (Hwang, Oh, 2003), comparing matrix

row pairs, over all columns. The similarity for each

column is: both 1 elements, both 0, or different.

These coefficients ignore distances from the

diagonal.

The Modularity Matrix has a superficial

similarity to a traceability table. But their purposes

are definitely different. Traceability tables are used

to trace code and tests to requirements, while our

functionals' essence is to obtain measures of linear

independence.

The module detection literature is plentiful.

Tools to improve legacy code use clustering to

partition graphs (Mitchell, Mancoridis, 2006),

metrics to increase cohesion (Kang, Bieman, 1999)

and slicing of FDGs – Functional Dependence

Graphs (Rodrigues, Barbosa, 2006), tools to detect

modularity violations (Wong, et al., 2011). Even

with a quantitative flavor, they clearly differ from

the Linear Software Models’ approach.

4.3 Future Work

A mathematical characterization of modularity

matrix outliers deserves further investigation. This

relates to the broader issue of determining block

sizes, after exclusion of outliers, and module

refactoring.

A practical issue is to systematically obtain a

broad class of simple patterns strictly obeying the

Linear-Reducible Model – like the Observer – as

advocated for software building blocks.

Efficiency issues concerning modularity matrix

generation and reordering (cf. Borndorfer, et al.

1998) for large scale systems will be investigated.

This work has found that small software systems

are strictly Linear-Reducible, and some large

software systems are bordered Linear-Reducible.

This poses a variety of open questions.

The larger systems shown to be bordered Linear-

Reducible were developed before the proposal of the

Linear Model. It is conceivable, but still unclear, that

in view of this model they could be modified in a

natural way to comply with the strict Linear-

Reducible model. Similarly, future large scale

systems developed with awareness of linearity, may

show that strictly Linear-Reducibility rather than

limited to certain systems, is indeed applicable to a

wide variety of software systems.

4.4 Conclusions

Software has been perceived as essentially different

from other engineering fields, due to software’s

intrinsic variability, reflected in the soft prefix. This

versatility is often seen as an advantage to be

preserved, even though software composition has

largely resisted theoretical formalization.

We have found that Linear Software Models can

be formulated, without giving up variability. Thus,

software systems of disparate size, function and

purpose, may have Linearity in common.

REFERENCES

Baldwin, C.Y., and Clark, K.B., 2000. Design Rules, Vol.

I. The Power of Modularity, MIT Press, Cambridge,

MA, USA.

Borndorfer, R., Ferreira, C.E., and Martin, A., 1998.

“Decomposing Matrices into Blocks”, SIAM J.

Optimization, Vol. 9, Issue 1, pp. 236-269.

Cai, Y., and Sullivan, K.J., September 2006. “Modularity

Analysis of Logical Design Models”, in Proc. 21st

IEEE/ACM Int. Conf. On Automated Software Eng.

ASE’06, pp. 91-102, Tokyo, Japan.

Clemins, P. J., Ewalt, H. E., and Johnson, M.T., 2002.

“Time-Aligned SVD Analysis for Speaker

Identification”, in Proc. ICASSP02 IEEE Int. Conf.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

100

Acoustics Speech and Signal Proc., Vol. 4, pp. IV-

4160.

Finholt, T.A., Horn, D., and Thome, S., 2004. “NEESgrid

Requirements Traceability Matrix”, Technical Report

NEESgrid-2003-13, School of Information, University

of Michigan, USA.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.,

1995. Design Patterns: Elements of Reusable Object-

Oriented Software, Addison-Wesley, Boston, MA,

USA.

Hwang, H., and Oh, Y.H., 2003. “Another similarity

coefficient for the p-median model in group

technology”, Int. J. Manufacturing Tech. &

Management Vol. 5, pp. 38-245.

Kang, B-K., and Bieman, J.M., 1999. “A Quantitative

Framework for Software Restructuring”, J. Softw.

Maint. Research & Practice, Vol. 11, Issue 4, pp. 245-

284.

Kaufman, C., Perlman, R., and Speciner, M., 1997.

Network Security – Private Communication in a

Public World, Prentice-Hall, Englewood Cliffs, NJ,

USA.

Kusiak, A., and Huang, C-C., 1997. “Design of Modular

Digital Circuits for Testability”, IEEE Trans.

Components, Packaging and Manufacturing

Technology – Part C., Vol. 20, pp. 48-57 (1).

Martin, R. C., 2003. Agile Software Development:

Principles, Patterns and Practices, Prentice Hall,

Upper Saddle River, NJ.

Mitchell, B.S., and Mancoridis, S., 2006. “On the

Automatic Modularization of Software Systems Using

the Bunch Tool”, IEEE Trans. Software Engineering,

Vol. 32, pp. 193-208, (3).

Parnas, D.L., 1972. “On the Criteria to be Used in

Decomposing Systems into Modules”, Comm. ACM,

Vol. 15, pp. 1053-1058.

Riehle, D., 1996. “Describing and Composing Patterns

Using Role Diagrams”, in K-U. Mutzel & H-P. Frei.

(eds.) Proc. Ubilab Conf., Universitatsverlag

Konstanz, pp. 137-152.

Rodrigues, N.F., and Barbosa, L.S., 2006. "Component

Identification through program slicing", Electronic

Notes in Theoretical Computer Science, Vol. 160, pp.

291-304, Proc. Int. Workshop Formal Aspects of

Component Software (FACS 2005).

Rowland, T., and Weisstein, E.W., 2006. "Block Diagonal

Matrix." from MathWorld, http://

mathworld.wolfram.com/BlockDiagonalMatrix.html.

Sethi, K., Cai, Y., Wong, S., Garcia, A., and Sant’Anna,

C., 2009. “From Retrospect to Prospect: Assessing

Modularity and Stability from Software Architecture”,

in Proc. European Conf. on Software Architecture,

WICSA/ECSA, pp. 269-272.

Sosa, M.E., Agrawal, A., Eppinger, S.D., and Rowles,

C.M., September 2005. “A Network Approach to

Define Modularity of Product Components”, in Proc.

IDETC/CIE ASME International Design Engineering

Technical Conf. & Computers and Information in

Engineering Conf., Long Beach, CA, USA, pp. 1-12.

Sosa, M.E., Eppinger, S.D., and Rowles, C.M., 2007. “A

Network Approach to Define Modularity of

Components in Complex Products”, ASME Journal of

Mechanical Design, 129, 1118.

Steward, D., 1981. “The Design Structure System: A

Method for Managing the Design of Complex

Systems”, IEEE Trans. Eng. Manag., EM-29 (3), pp.

71-74.

Ulrich, K.T., 1995. “The Role of Product Architecture in

the Manufacturing Firm”, Res. Policy, 24, pp. 419-

440.

Wong, S., Cai, Y., Kim, M, and Dalton, M., 2011.

“Detecting Software Modularity Violations”, in Proc.

33rd Int. Conf. Software Engineering, pp. 411-420.

Linear Software Models for Well-composed Systems

101

