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Abstract: Modularity is essential for automatic composition of real software systems from ready-made components. 

But given ready-made components do not necessarily correspond exactly to the units and functionality of 

designed software system architecture modules. One needs a neat composition procedure that guarantees the 

necessary and sufficient components to provide required units. Linear Software Models are rigorous 

theoretical standards subsuming modularity. The Linear-Reducible model is proposed as a model of well-

composed software systems, above and beyond software variability. Indeed, case studies of representative 

systems recognized as well-composed, be they small, intermediate building blocks or large scale, are shown 

to be Linear-Reducible. The paper lays down theoretical foundations – upon exact linear independence and 

reducible matrix concepts – providing new precise meanings to familiar modularity ideas, such as the single 

responsibility theorem. The theory uses a Modularity Matrix – linking independent software structors to 

composable software functionals in a Linear Model. 

1 INTRODUCTION 

Significant progress since Parnas’ classical paper 

(Parnas, 1972) – which posed the modularity issue in 

the software context and treated it by informal 

reasoning – paved the way for automatic run-time 

system composition/update from ready-made 

software components. Yet there remain fundamental 

obstacles to make this vision concrete. 

Modularity’s wisdom of low dependency among 

modules has been informally stated in innumerable 

ways: recommendations such as single 

responsibility, source-code dependency metrics, 

design patterns and tools. But recommendations, 

metrics, patterns and tools never crystallized into a 

systematic theoretical approach. 

This is exactly the problem dealt with by this 

paper: to provide a solid and generic basis to treat 

software composition in a rigorous and consistent 

way, enabling theoretical models against which to 

check real systems. To this end, Linear Software 

Models are proposed upon well-established linear 

algebra techniques. 

 

 

 

1.1 The Software Composition 
Problem 

The software composition problem, analysed by this 

paper, is how to build a well-designed modular 

software system from available ready-made 

components that were not designed specifically for a 

particular system. 

Components are deployment units needed to 

actually run software systems. They are loaded to 

the computer memory as indivisible wholes. Typical 

examples are a C++ dll (dynamically linked library), 

a jar (Java archive) or a C# assembly. 

On the one hand, the software engineer, by using 

best practices, designs a modular software system in 

terms of desirable architectural units. Architectural 

units describe the structure and behaviour of a 

particular software system. 

On the other hand, components are assumed to 

be mainly purchased as COTS (Commercial Off-

The-Shelf) components from several manufacturers, 

and less frequently to be produced in-house. It is 

realistic to expect variability among COTS from 

distinct sources. 
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1.2 Linear Software Models: Structors 
and Functionals 

This paper describes Linear Software Models as a 

theory of software composition. In this theory, the 

architecture of a software system is expressed by 

two kinds of entities: structors and functionals.  

Structors – a new term reminding vectors – are 

architectural units, from the structural point of view. 

Structors generalize the notion of structural unit to 

cover diversity of types (structs, classes, interfaces, 

aspects) and hierarchical collections (sets of classes, 

as design patterns). Structors refer to types, not 

instances. Structors are loadable within components.  

Functionals are architectural system units from a 

behavioural point of view. These are potential 

functions that can be, but are not necessarily 

invoked. Typically these are Java or C# methods, 

related functions (e.g. a set of trigonometric 

functions) or roles – supplying the functionality of a 

design pattern (Riehle, 1996). Note: we use 

Functional as a noun, similarly to the mathematical 

concept with this name in the calculus of variations, 

and to the grammatical use of Potential in physics. 

Structors in general contain a finite set of 

functionals and are represented by finite vectors. 

Modules are architectural units in a higher 

hierarchical level of a system. Modules are 

composed of grouped structors and their 

corresponding functionals. 

Both components and systems contain structors. 

But the respective logics are different. Structors 

contained in a COTS component are fixed by the 

core technology of the component manufacturer and 

such structors must be assumed indivisible.  

Structors within a system are determined by the 

software system purpose. Thus, not all structors of a 

component may be required by a system. Similarly, 

not all functionals provided by structors are needed 

by a system, and some of them may never be 

invoked. The numbers of structors or functionals 

provided by a component are not constrained. 

Analysis starts with a list of structors and a list of 

functionals that must be in a system. If two structors 

provide distinct functionals, both are needed. If they 

provide the same functionals, one of them is 

redundant. For partial overlap, either one may be 

complemented by a third structor. But which one is 

preferable? Within a Linear Software Model the 

answer is clear: choose a linearly independent set of 

structors. 

Linear models are usually formulated in terms of 

matrices. The Modularity Matrix is a Boolean matrix 

with columns standing for structors and rows for 

functionals. A matrix element is 1-valued for a 

functional-structor link and 0-valued for no link. 

1.3 Modularity Matrix: An 
Introductory Example 

A simple yet useful system is here described in 

terms of a Linear Software Model to illustrate 

concepts found along the paper. It refers to OFB 

(Output Feed-Back) encryption of a long message 

(Fig. 1) before network transmission – e.g. 

(Kaufman, et al. 1997). A message is cut into N 

blocks of fixed length and each one is treated 

separately. 

A random number, the Initial Vector, is 

generated. Each block of the message is pre-

processed. A corresponding vector is also pre-

processed to be of the size of a block, and then 

encrypted. The encrypted output vector is fed back 

into the encryption function, through the vector pre-

processing. Feedback is done N times, obtaining one 

vector for each message block. The kth encrypted 

vector is then Xored with the kth message block. 
 

 

Figure 1: OFB encryption of long message. This is a 

functional calling dependency graph for a generic kth 

message block. Functionals are displayed as (blue) 

rounded rectangles. Some of the input/output dataflow is 

shown in regular rectangles. 

Table 1: OFB Functionals. 

# Functional Description 

1 Random number 

generator 

from a distribution 

2 Encryption function e.g. RSA encryption 

3 Xor a logical function 

4 Vector-Pre-Process Fetch(vector,size) 

5 Message-Pre-Process fetch & pad message  
 

The OFB software system has five functionals 

(Table 1) and the following four structors: S1) Rand 

- offers random distributions; S2) Crypto structor - 
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offers encryption protocols; S3) Logical - provides 

logical functions, say AND, OR, XOR; S4) Proc - a 

processor structor provides pre-processing functions. 

The resulting OFB modularity matrix (Table 2) 

has 2 identical lowest rows. The matrix reflects that 

the pre-processing functionals are not independent. 

Both functionals are provided by the same structor, 

thus they are not distinguishable. 

Table 2: OFB Rectangular Modularity Matrix with Linear 

Dependencies. 

  S1=Rand S2=Crypto S3=Logical S4=Proc 

Rand Num Gen F1 1 0 0 0 

Encryption Func F2 0 1 0 1 

XOR F3 0 0 1 1 

Vector-Pre-Proc F4 0 0 0 1 

Msg-Pre-Proc F5 0 0 0 1 
 

An interesting feature of OFB encryption is that 

one can prepare all encrypted vectors in advance, 

before there are any message blocks to be sent. 

Therefore, one can rearrange the functional calling 

graph, enabling totally separate execution.  

Two modules naturally appear, one dealing with 

vectors and the other with message blocks – see Fig. 

2. In each module, the processing structor, besides 

pre-processing, invokes the respective processing 

functional. 
 

 

Figure 2: OFB functionals modularized. Rearranged 

functional calling dependency graph for a generic kth 

message block. The upper dashed lines module pre-

processes vectors, encrypts and saves them. The lower 

module fetches message blocks, pre-processes them and 

Xors each message block with its saved vector. This figure 

uses the same conventions as the previous figure. 

Independent pre-processing functionals which 

are able to run in parallel in distinct machines need 

independent structors. So, one has a VectorProc 

structor and a separate MsgProc structor. These 

structors are aware – by means of associations – of 

the respective processing functionals which they are 

able to invoke. 

Table 3: OFB Strictly Linear Model – Modularity Matrix.  

  S1= 

Rand 

S2= 

Crypt 

S4=Vec 

Proc 

S3= 

Logical 

S5=Msg 

Proc 

Rand Num Gen F1 1 0 0 0 0 

Encryption Func F2 0 1 1 0 0 

Vector-Pre-Proc  F3 0 0 1 0 0 

XOR F4 0 0 0 1 1 

Msg-Pre-Proc F5 0 0 0 0 1 
 

Row and column swap operations lead to a 

block-diagonal matrix (Table 3). The diagonal 

blocks in this matrix match the modules in Fig. 2. 

The system matrix in Table 3 strictly obeys a 

Linear Software Model. This means that all its 

modules have linearly independent rows and 

columns. Thus, each of its functionals is 

distinguishable. For instance, according to the 

matrix in Table 3 functional F2 is provided by 

structors {S2, S4}. 

The independent execution of VectorProc and 

MsgProc, in time and space, clarifies the sense of an 

independent software structor. It must be: a) 

Loadable/Runnable – in a virtual or real machine; b) 

Separable – i.e. able to run in separate machines. 

The remaining of the paper is organized starting 

from the basic theory (section 2), through concrete 

case studies (section 3), to a discussion (section 4). 

2 LINEAR SOFTWARE MODELS 

OF COMPOSITION 

The aim of this section is to describe the new 

theoretical approach – the Linear Software Models 

of Composition. 

Linear Software Models are the simplest 

theoretical models of software composition. Systems 

obeying such a model are composed just by addition 

of independent modules. 

2.1 Modularity Matrices’ Linear 
Independence 

A Linear Software Model contains a list of software 

structors and another of software functionals. Its 

Modularity Matrix is defined as: 

 

 

Definition 1 – Modularity-Matrix 

A fully expanded Modularity-Matrix is a 
Boolean matrix asserting links (1-valued 
elements) between software functionals (rows) 
and software structors (columns). The absence 
of a link is marked by a 0-valued element. 
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By definition, software structors are elementary 

artifacts, which the software engineer decides to 

look at them as indivisible into smaller structors. 

Say, the OFB crypto structor (section 1.3) is not split 

into – prime factorization or modulo arithmetic – 

although decomposition is obviously possible. The 

same holds true for functionals. 

Besides being indivisible, only structors with 

unique roles, as the OFB VectorProcessor and 

MsgProcessor needed for parallelism, are in the 

Matrix. Multiple structor copies, say by fault 

tolerance reasons, are not included in the Matrix. 

Independent structors must be represented by 

distinct vectors. But, sets of differing vectors may 

still be dependent. The generic criterion for 

independent structors in any system subsets is linear 

independence: 
 

 
 

We now look at the links from the functional 

point of view. In order to be able to distinguish a 

functional, its set of links in the functional row must 

be unequivocal. Again linear independence is the 

relevant criterion: 
 

 
 

For instance, for OFB (Table 3) the XOR 

functional composition set is {S3, S5}. 

2.2 Well-composed Modularity 
Matrices are Square 

A well-composed modularity matrix has additive 

properties, i.e. it has composable functionals from 

independent structors. Then: 

 

 
 

A proof sketch is (detailed proofs will be given 

in a long paper): Assume a matrix without empty 

rows/columns. First, structors are used as a basis for 

functional vectors. Then, functionals are a basis for 

structor vectors.  By linear independence, in each 

case vector numbers cannot be greater than the basis. 

As both cases must be simultaneously true, follows 

the equality NS=NF. The matrix is square. 

The theorem assumptions are very intuitive. An 

analogy is the symptom sets to diagnose illnesses. 

Say, high temperature, a very common symptom, is 

not enough to identify a disease. Diseases with the 

same symptom sets are indistinguishable. To 

unequivocally diagnose an illness one needs 

independent sets of symptoms. 

This theorem does not force a one-to-one 

functional/structor match. It is obeyed by matrices 

with NVAL 1-valued elements greater than NS and NF 

(see e.g. Table 4).  

Table 4: Abstract square Modularity Matrix with 

NVAL=6, while NS=NF=3. 

 S1 S2 S3 

F1 1 0 1 

F2 0 1 1 

F3 1 1 0 
 

Algebraically, there are simple criteria for well-

composed matrices: non-zero matrix determinant or 

matrix rank equal to the number of rows/columns. 

2.3 Reducible Modularity Matrices 

When a Modularity Matrix has disjoint dependency 

sets, structors and their functionals can be grouped 

into modules, such that vector sets in different 

modules are linearly independent. This reduces the 

matrix to block-diagonal (fig. 3), i.e. with smaller 

squares of any size along the diagonal (Rowland, 

Weisstein, 2006). All off-block elements are zero. 

 

Definition 2 – Independent Structor 

A software structor is independent of other 
structors in the system, if it provides a non-
empty proper sub-set of functionals of the 
system, given by the 1-valued links in the 
respective column, and is linearly independent 
of other columns in the Modularity Matrix. 

Definition 3 – Composable Functional 

A software functional is independently 

composable or just composable in terms of 

structors, if it corresponds to a non-empty 

proper sub-set of system structors, given by the 

1-valued links in the respective row, and is 

linearly independent of other rows in the 

Modularity-Matrix. 

This set is the composition set of the functional. 

Theorem 1 – Well-Composed Modularity-
Matrix 

If in a Modularity-Matrix all its functionals are 

composable with independent structors, the 

Modularity-Matrix number of structors Ns is 

equal to its number of functionals NF. The 

matrix is Square.  

Such a matrix is called a Well-Composed 

Modularity-Matrix. 
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Figure 3: Schematic Block-Diagonal Matrix. 

A “union-set” is the union of composition sets 

for a set of functionals. Then: 
 

 
 

A proof sketch is: apply row and column 

exchanges to bring the disjoint union-set to the 

upper-left matrix corner. As the whole Modularity 

Matrix is Well-composed, the disjoint union-set is 

itself square (by Theorem 1) and its diagonal is 

along the whole Matrix diagonal. The residual 1-

valued elements are thus also square bounded, along 

the whole Matrix diagonal. This reasoning is 

extensible to any number of blocks. 

The previous theorems naturally lead us to define 

linear software system models of composition. The 

two theorems are combined in the Linear-Reducible 

model, in the strict sense. 
 

 
 

We identify modules with disjoint diagonal 

blocks of structors/functionals, corresponding to the 

intuitive notion of modular software systems. One 

can express modularity quantitatively by the 

diagonality of a Modularity-Matrix M, telling how 

close its 1-valued elements are to the main diagonal. 

It is the difference between the Trace, the diagonal 

elements' sum, and offdiag, a new term dealing with 

off-diagonal elements:  

 
(1) 

Offdiag sums over 1-valued Mjk off-diagonal 

elements, times the absolute value of the difference 

of the element’s column k and row j indices. For 

each row j and column k: 

 

 

(2) 

The overall matrix offdiag is: 

 

(3) 

The next operations may unfold a whole 

hierarchy of block levels, where a level is defined by 

the matrix components explicit in that level: 

a- Block collapse – transforms a block into a 

single element black-box. 

b- Block expansion – restores a collapsed black-

box back into a white-box. 

To assure that these operations preserve 

diagonality, black-boxes are labeled by the <Trace, 

offdiag> diagonality value, of the original white-

box. To be able to restore the white-box, hidden 

rows/columns should be stored elsewhere.  

The modularity hierarchy is thus given by: 
 

 

2.3 The Single Responsibility Theorem 

The last theoretical piece of the Linear Models is a 

linear algebraic formulation of the single 

responsibility principle (Martin, 2003). It is valid 

after one obtains a block-diagonal matrix: 
 

 
 

This theorem is easily verified. It means that a 

single module is responsible for providing each 

functional exclusively by its structors. This is a 

plausible interpretation of the familiar principle, 

Theorem 2 – Modularity Matrix Reducibility 

Any well-composed Modularity Matrix in which 
the union-set for a given set of functionals is 
disjoint to the other functional union-sets is 
reducible, i.e. it can be put in block-diagonal 
form. 

Definition 4 – Linear Reducible Model 

The Linear-Reducible model of software system 
composition, in the strict sense, is characterized 
by a well-composed and reducible Modularity 
Matrix having at least two disjoint blocks. 

 

Definition 5 – Number of modules at a level  

The number of modules of a software system at a 
hierarchy level is the number of blocks from the 
modularity matrix partition into disjoint union-
sets at that level. 

Theorem 3 – Single Responsibility 

In a strictly block-diagonal modularity matrix 
each structor column intersects a single module. 
Similarly, each functional row intersects a single 
module. 
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since related structors and functionals are grouped in 

a single module. 

3 CASE STUDIES 

The goal of this section is to demonstrate the power 

of Linear Software models, showing by case studies 

a range of concrete software systems obeying such a 

model.  

We have chosen representative software systems 

of disparate purposes and sizes to illustrate the 

Linear Models. It turns out that all systems are well-

composed. Small systems are strictly Linear-

Reducible – i.e. obey a model with a linearly 

independent and reducible matrix – and larger 

systems are bordered Linear-Reducible. In each 

case, a modularity matrix is obtained, block-

diagonalized and analysed in terms of Linearity. 

3.1 Small Systems are Strictly Linear 
Reducible 

Small systems and intermediate reusable building 

blocks strictly obey the Linear-Reducible Software 

model. These are Parnas’ KWIC index and the 

Observer pattern. KWIC was thoroughly analysed 

by Parnas to be a canonical example. The Observer 

pattern was deliberately designed to be reused. 

3.1.1 Parnas' KWIC Index 

The 1972 Parnas paper (Parnas, 1972) described two 

KWIC index modularizations. The system outputs 

an alphabetical listing of all circular shifts of all 

input lines. Functionals were extracted from Parnas’ 

own system description. Structors are explicit in the 

paper – where they are called modules. 

The Modularity Matrix of Parnas’ 1st 

modularization is in Table 5 (0-valued elements are 

omitted for clarity; blocks have a darker 

background). It is almost block-diagonal, but two 

features are problematic:  

a- the Master Control column vector is not a 

proper subset of the functionals; 

b- non-zero outliers break block-diagonality. 

The matrix clearly hints to couplings to be 

resolved: the notably higher RowOffdiag=4 of the 3rd 

row, contains all outliers, besides the master control 

ones. The solution is: a- to delete the master control, 

as quoting Parnas, it “does little more than 

sequencing”, it is not a real structor; b- to add a new 

Line-Storage structor, as Parnas informally argued,  
   

Table 5: Parnas' 1st Modularization – Modularity Matrix.  

Structors   Input Circular 

Shifter 

Master 

Control 

Alpha- 

betizer 

Output 

Functionals  1 2 3 4 5 

Input  = ordered set of lines 1 1  1   

Does circular shift on a line 2  1 1   

Line= store  line in word order 3 1 1 1 1  

Sort lines in alphabetical order  4   1 1  

Outputs circular shifted lines 5   1  1 

 

to decouple the 3rd row "Line" functional from the 

Input, Circular-shifter and Alphabetizer. The 2nd 

Parnas’ modularization fits the strictly diagonal 5-

module matrix in Table 6. 

Table 6: Parnas' 2nd Modularization – Modularity Matrix.  

Structors   Input Circular 

Shifter 

Line 

Storage 

Alpha- 

betizer 

Output 

Functionals  1 2 3 4 5 

Input  = ordered set of lines 1 1     

Does circular shift on a line 2  1    

Line= store  line in word order 3   1   

Sort lines in alphabetical order  4    1  

Outputs circular shifted lines 5     1 

 

We use decouple in a precise new meaning, of 

enabling linearly independent composition. 

The matrices in Tables 5 and 6 are not 

equivalent, having different non-zero element 

numbers. Which one is more modular? The 1st 

matrix diagonality has a value –5. The 2nd 

diagonality equals the Trace and is 5. Thus, the 2nd is 

more modular. 

We arrived at the same Parnas conclusions, by 

formal Modularity Matrix arguments. This system 

strictly obeys the Linear-Reducible Model. 

3.1.2 Observer Design Pattern 

The Observer Design Pattern abstracts one-to-many 

interactions among objects, such that when a 

"subject" – changes, all the "observers" – are 

notified and updated. 

The Observer Modularity Matrix is based upon 

the Design Patterns’ GoF book (Gamma, et al., 

1995). Its sample code refers to an analog and a 

digital clock, the "concrete observers", changing 

according to an internal clock – the "concrete 

subject". 

The system structors (Table 7) are: 

 generic Observer pattern entities, directly 

taken from the pattern list of “Participants”; 

(the first four rows of Table 7). 

 specific application structors – a subject 

resource, a GUI for each external clock and 

an initiator which constructs the clocks. 
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Table 7: Observer - Structors. 

 Structors Description 

1 abstract subject interface to attach/detach observers 

2 abstract observer interface to update an observer 

3 concrete subject stores global state; sends notifications 

4 concrete observer implements the observer updating 

5 subject resource internal timer ticks the global state 

6 analog GUI inherits graphics analog clock widget 

7 digital GUI inherits graphics digital clock widget 

8 initiator to construct the clock objects 

 

The Observer functionals were extracted from 

the complete set of functions that may be invoked in 

the sample code. These functions were trimmed by 

elimination of linear dependencies.  

State is not maintained in the same way in the 

subject and in the observers. The unique subject sets 

the state ("ticks") by means of a Keep-Global-state 

functional, while observers, are updated at unrelated 

times and Keep-Local-state. Table 8 shows the 

Observer functionals. 

Table 8: Observer – Functionals. 

 Functionals Description 

1 Keep-observers-list  attaching/detaching observers 

2 Notify observers notify when subject changes 

3 Update observers update observers, after notify 

4 Keep-Global-state keep time to allow updates 

5 Keep-Local-state keep time in each observer 

6 Draw-analog specific analog clock draw 

7 Draw-digital specific digital clock draw 

8 Constructor construct  the clock objects 

 

Row/column reordering of a quite arbitrary 

initial matrix causes modules to emerge in a strictly 

Linear-Reducible matrix. (Table 9). These modules 

are a subject and an observer – the generic module 

roles (Riehle, 1996) for this design pattern – each 

one with the respective abstract/concrete structors, 

and the specific clock application modules. 

Table 9: Observer Linear Reducible – Modularity Matrix.  

Structors   subject concrete 

subject 

subject 

resource 

concrete 

observer 

Obser 

ver 

Gui 

analog 

Gui 

digital 

Init 

Functionals  1 2 3 4 5 6 7 8 

Keep observer list 1 1        

Notify observers 2 1 1       

Keep-global-state 3  1 1      

Keep-local-state 4    1     

Update observers 5    1 1    

Draw-analog 6      1   

Draw-digital 7       1  

Constructor 8        1 

 

In Table 9, subject and observer modules 

emerged from basic structors. Alternatively one can 

deal with black-box collapsed modules (as defined 

in sub-section 2.3) in a higher hierarchical level 

matrix shown in Table 10.  

In either format, one could analyse the pattern 

matrix (subject and observer) as a generic building 

block in separate from the specific clock application. 

Table 10: Observer higher level Modularity-Matrix. 

Structors   Subject Observer Clock Appl. 

Functionals  1 2 3 

Keep-global-state & Notify observers 1 <3.2>   

Keep-local-state & Update observers 2  <2,1>  

construct, draw clocks 3   <3,0> 
 

The Observer analysis illustrates that, despite 

arbitrary initial order, automatic reordering brings 

about a matrix accurately reflecting the pattern 

functionality.  

The Observer pattern is a prototypical example. 

It would be desirable to have all reusable building 

blocks as the Observer, strictly obeying the Linear-

Reducible Model, to allow linearly independent 

composition into larger software systems. 

3.2 Larger Software Systems are 
Bordered Linear Reducible 

To show the Linear Model applicability to real 

systems, we analysed larger projects from the 

literature. The novel result is that the examined 

systems are bordered Linear-Reducible. 

3.2.1 Neesgrid Modularity Matrix 

The NEESgrid “Network Earthquake Engineering 

Simulation” project enables network access to 

participate in earthquake tele-operation experiments. 

The infrastructure was designed by the NCSA at 

University of Illinois. Modularity Matrix functionals 

were extracted from a report (Finholt, et al. 2004) 

with exactly 10 upper-level structors. 

An initial modularity matrix (Table 11) was 

obtained by straightforward linearity considerations: 

eliminating empty and identical rows; an empty 

column, “Electronic Lab Notebook”, was deleted. A 

column was assigned to a next-level structor Data-

Discovery (DataDis) as it neatly fits the SearchData 

functional. The scattered non-zero elements are 

typical of initial matrices in this kind of analysis. 
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Table 11: NEESgrid initial Modularity Matrix. 

Structors   chef Data 

Rp 

Data 

Vu 

Data 

Str 

Data 

Dis 

Tele 

pre 

Data 

Ac 
Hyb 

Exp 

Sim 

Rep 

Grid 

Infr 

Functionals  1 2 3 4 5 6 7 8 9 10 

Collect_Data 1  1  1   1    

Search_Data 2     1      

Manage_Data 3  1 1        

HybridExper 4        1   

Data_View 5   1        

Sync_Collab 6 1     1     

Async_Collab 7 1          

Other_Collab 8 1  1    1   1 

SimulCodes 9         1  

HighPerfComp 10          1 

 

Pure algebraic row/column reorder, without 

semantic concerns, brings about the almost block-

diagonal Matrix (in Table 12). Its modules – 

diagonal blocks – are: 

 Data manipulation – collect, search, 

manage, view – the upper-left block; 

 Collaboration tools – synchronous, async, 

other – the middle block; 

 Infrastructure – grid, codes – the lower-

right block. 

Table 12: NEESgrid Bordered Linear-Reducible 

Modularity Matrix. 

Structors   Data 

Str 

Data 

Dis 

Data 

Rp 

Data 

Vu 

Data 

Ac 

Tele 

pre 

chef 
Grid 

Infr 

Sim 

Rep 

Hybr 

Exp 

Functionals  4 5 2 3 7 6 1 10 9 8 

Collect_Data 1 1  1  1      

Search_Data 2  1         

Manage_Data 3   1 1       

Data_View 5    1       

Other_Collab 8    1 1  1 1   

Sync_Collab 6      1 1    

Async_Collab 7       1    

HighPerfComp 10        1   

SimulCodes 9         1  

HybridExper 4          1 

 

Module interpretation is hinted by the respective 

functional names – Data and Collab. 

Outliers appear in the rows with maximal value 

RowOffDiag=6, Collect_Data and Other_Collab. 

The latter prefix "Other" hints at mixed functionals 

to be decoupled. 

This case study shows that: a- algebraic 

reordering, without prior semantic knowledge, 

obtains plausible modules; b- outliers are amenable 

to interpretation, in particular matching project notes 

(e.g. the row 8, column 10 outlier, marked "not 

within the project scope” in project documents). 

The significant result, common to large case 

studies, is that there are few outliers, and all of them 

are in columns/rows adjacent to the Linear Model 

blocks. This is what we call bordered Linear-

Reducible. 

4 DISCUSSION 

4.1 Main Contribution: Linear 
Software Models 

This paper’s main contribution is the Linear 

Software Models, as theoretical standards against 

which to compare real software systems. The models 

stand upon well-established linear algebra, as a 

broad basis for a solid theory of composition – 

beyond current principles and practices.  

One can assert, from the Modularity Matrix 

properties of a system, which structors are 

independent and which functionals are 

independently composable. One can then infer 

which design improvements are desirable. 

This view is very different from design models, 

such as UML, whose purpose is not to serve as 

theoretical standards. Design models freely evolve 

with design and system development. Design models 

have indefinite modifiability to adapt to any system, 

in response to tests of system compliance to design. 

4.2 Related Work 

Matrices have been used to deal with modularity. A 

prominent example is DSM (Design Structure 

Matrix) proposed by Steward (Steward, 1981), 

developed by Eppinger and collaborators e.g.  (Sosa, 

et al. 2005), (Sosa, et al. 2007)) and part of the 

“Design Rules” approach by Baldwin and Clark – 

see e.g. (Baldwin, Clark, 2000) and also (Cai, 

Sullivan, 2006), (Sethi, et al. 2009). DSM and other 

matrices, such as Kusiak and Huang’s (Kusiak, 

Huang, 1997) hardware modularity matrix, are 

meant to be evolving design models. 

Linearity is the outstanding feature of our 

standard models, not found in DSM. Essential 

distinctions of Linear Software Models from DSM 

are: 

 Theoretical Standards vs. Design Models – 

our models’ goal is to serve as system 

standards and ultimately may lead to 

automatic software composition, as 
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opposed to DSM design models which 

emphasize design process and 

manufacturing. 

 Functionals vs. Structures-only – our 

modularity matrices display structor to 

functional links, while both DSM matrix 

dimensions are labeled by the same 

structures.  

Baldwin and Clark explicitly state in footnote 2, 

page 63 of their book (Baldwin, Clark, 2000) 

that “it is difficult to base modularity on functions… 

hence their definition of modularity is based on 

relationships among structures, not functions”. See 

(Ulrich, 1995) for a different view. 

In practice, modularity matrices may be much 

more compact than DSM. For instance, Parnas’ 

KWIC DSM (Cai, Sullivan, 2006) has 20 

rows/columns instead of just 5 in our Modularity 

Matrix. 

Although diagonality has seldom been calculated 

within modularity, formulas have appeared in other 

contexts. Clemins in (Clemins, et al. 2002) used for 

speaker identification, the Frobenius norm – the sum 

of the squares – of all off-diagonal elements to 

measure diagonality. Our offdiag definition is better 

suited to modularity, as it directly reflects distance to 

the diagonal, while the Frobenius norm just sums 

Boolean elements. 

An indirect coupling metric is “similarity 

coefficients” (Hwang, Oh, 2003), comparing matrix 

row pairs, over all columns. The similarity for each 

column is: both 1 elements, both 0, or different. 

These coefficients ignore distances from the 

diagonal. 

The Modularity Matrix has a superficial 

similarity to a traceability table. But their purposes 

are definitely different. Traceability tables are used 

to trace code and tests to requirements, while our 

functionals' essence is to obtain measures of linear 

independence. 

The module detection literature is plentiful. 

Tools to improve legacy code use clustering to 

partition graphs (Mitchell, Mancoridis, 2006), 

metrics to increase cohesion (Kang, Bieman, 1999) 

and slicing of FDGs – Functional Dependence 

Graphs (Rodrigues, Barbosa, 2006), tools to detect 

modularity violations (Wong, et al., 2011). Even 

with a quantitative flavor, they clearly differ from 

the Linear Software Models’ approach. 

4.3 Future Work 

A mathematical characterization of modularity 

matrix outliers deserves further investigation. This 

relates to the broader issue of determining block 

sizes, after exclusion of outliers, and module 

refactoring.  

A practical issue is to systematically obtain a 

broad class of simple patterns strictly obeying the 

Linear-Reducible Model – like the Observer – as 

advocated for software building blocks. 

Efficiency issues concerning modularity matrix 

generation and reordering (cf. Borndorfer, et al. 

1998) for large scale systems will be investigated. 

This work has found that small software systems 

are strictly Linear-Reducible, and some large 

software systems are bordered Linear-Reducible. 

This poses a variety of open questions.  

The larger systems shown to be bordered Linear-

Reducible were developed before the proposal of the 

Linear Model. It is conceivable, but still unclear, that 

in view of this model they could be modified in a 

natural way to comply with the strict Linear-

Reducible model. Similarly, future large scale 

systems developed with awareness of linearity, may 

show that strictly Linear-Reducibility rather than 

limited to certain systems, is indeed applicable to a 

wide variety of software systems.  

4.4 Conclusions 

Software has been perceived as essentially different 

from other engineering fields, due to software’s 

intrinsic variability, reflected in the soft prefix. This 

versatility is often seen as an advantage to be 

preserved, even though software composition has 

largely resisted theoretical formalization. 

We have found that Linear Software Models can 

be formulated, without giving up variability. Thus, 

software systems of disparate size, function and 

purpose, may have Linearity in common.  
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