
An Implementation Approach to Achieve Metamodel Independence

in Domain Specific Model Manipulation Languages

Jerónimo Irazábal
1,2,3

, Gabriela Pérez
1
, Claudia Pons

1,2,3
 and Roxana Giandini

1

1LIFIA, Facultad de Informática, Universidad Nacional de La Plata, La Plata, Argentina
2CONICET, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina

3UAI, Universidad Abierta Interamericana, Buenos Aires, Argentina

Keywords: Model Driven Engineering, Model Transformation Language, Domain Specific Language.

Abstract: Model Driven Engineering proposes a software development process in which the key notions are models

that allow engineers to precisely capture relevant aspects of a system from a given perspective and at an

appropriate level of abstraction. Then, models are manipulated with the goal of enabling the automated

development of a system from its corresponding models. Unlike general-purpose modeling languages,

domain-specific modeling languages can simplify the development of complex software systems by

providing domain-specific abstractions for modeling the system and its transformations in a precise but

simple and concise way. In this work we elaborate on the notion of domain specific model manipulation

language, that is to say a model manipulation language tailored to a specific domain. In contrast to well-

known model manipulation languages, such as EOL or ATL, the language syntax and semantics are directly

related to a specific domain and/or kind of manipulation, making manipulation easier to write and

understand. We present an implementation approach achieving complete platform-independence. We

illustrate the proposal through a practical example.

1 INTRODUCTION

Model Driven Engineering (MDE) (Stahl T. and

Völter, 2006) (Pons C. et. al., 2010) (Kleppe G. et.

al., 2003) proposes a software development process

in which the key notions are models that allow

engineers to precisely capture relevant aspects of a

system from a given perspective and at an

appropriate level of abstraction. Then, the automated

development of a system from its corresponding

models is realized by manipulating them. Model

manipulation consists of a number of operations on

the models, such as verifications, views, queries,

transformations from model to model,

transformations from model to code, etc.

Models can be expressed using different

languages. Unlike general-purpose modeling

languages (GPMLs), such us the UML, Domain-

specific modeling languages (DSMLs), such as the

Business Process Modeling Notation (BPMN)

(Weske M., 2008), can simplify the development of

complex software systems by providing domain-

specific abstractions for modeling the system in a

precise but simple and concise way. DSMLs have a

simpler syntax (few constructs focused to the

particular domain) but its semantics is much more

complex (all the semantics of the particular domain

is embedded into the language).

In a model-driven process, software is built by

constructing one or more models, and successively

manipulating them and transforming them into other

models, until reaching an executable program code.

A model manipulation program is a set of rules that

together describe how a model can be checked (e.g.

for consistency) and how a model written in the

source language is mapped to a model written in the

target language. Model manipulations are specified

using a model manipulation language. There are

already several proposals for model manipulation

specification, implementation, and execution, which

are being used by MDE practitioners (Czarnecki H.,

2006). The term "model manipulation language"

comprises all sorts of artificial languages used in

model manipulation development including general-

purpose programming languages, domain-specific

languages (DSLs) (Mernik M., 2005), modeling and

meta-modeling languages and ontologies. Examples

include languages such as the standard QVT (QVT,

62 Irazábal J., Pérez G., Pons C. and Giandini R..
An Implementation Approach to Achieve Metamodel Independence in Domain Specific Model Manipulation Languages.
DOI: 10.5220/0004082800620069
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 62-69
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

2005), ATL (ATL, 2006) (Jouault F., 2005) and

EOL (Kolovos D. et. al., 2006).

These languages are specific for defining model

manipulations but they are independent of any

modeling domain; so they contain complex

constructs referring to pattern matching

mechanisms, control structures, etc. This can

eventually compromise the primary aims for which

the DSML was built: domain focus and conciseness.

Consequently, an extra level of specialization should

be achieved on them; we can define a manipulation

language specifically addressed to a given domain,

that is to say, a Domain Specific Model

Manipulation Language (DSMML). For example,

we can create a language dedicated to the definition

of transformations between data-base models or a

language addressed to the definition of

transformations between business process models.

In this context, if we would like to take

advantage of a very specific manipulation language

we face the problem of implementing such a new

language. There exist powerful frameworks for the

definition of domain specific languages, such as

Eclipse (GME, 2006) (Gronback R., 2009) and

Microsoft DSL Tools (Cook S. et. al., 2007)

(Greenfield J. et. al., 2004).

In the present work we describe a proposal for

defining domain specific model manipulation

languages and also we analyze a novel way to define

their semantics. Our proposal consists in using MDE

tools themselves for the implementation of such

languages, which improves modularity and reuse.

The article is organized as follows. Section 2

presents the main features of our proposal to define

domain specific manipulation languages using MDE

tools. Section 3 illustrates the use of the approach by

the definition of a new DSMML. Section 4

compares our approach with related research and

finally Section 5 presents the conclusions.

2 DSMML SEMANTICS:

IMPLEMENTATION SCHEMA

Any language consists of two main elements: a

syntactic notation (syntax) which is a set of elements

that can be used in the communication, together with

their meaning (semantics). The term “syntax” refers

to the notation of the language. Syntactic issues

focus purely on the notational aspects of the

language, completely disregarding any meaning. On

the other hand, the “semantics” assigns an

unambiguous meaning to each syntactically allowed

phrase in the language. To be useful in the computer

engineering discipline, any language must come

complete with rigid rules prescribing the allowed

form of a syntactically well formed program, and

also with formal rules prescribing its semantics.

In programming language theory, semantics is

the field concerned with the rigorous mathematical

study of the meaning of languages. The formal

semantics of a language is given by a mathematical

structure that describes the possible computations

expressed by the language. There are many

approaches to formal semantics, among them the

denotational semantics approach is one of the most

applied. According to this approach each phrase in

the language is translated into a denotation, i.e. a

phrase in some other language. Denotational

semantics loosely corresponds to compilation,

although the "target language" is usually a

mathematical formalism rather than another

computer language. Formal semantics allows a clear

understanding of the meaning of languages but also

enables the verification of properties such as

program correctness, termination, performance,

equivalence between programs, etc.

Technically, a semantic definition for a language

consists of two parts a semantic domain and a

semantic mapping, denoted μ, from the syntax to the

semantic domain. In particular, our proposal consists

in using a well known manipulation language as the

semantic domain for the definition of the new

DSMML´s semantics. Then, the semantic function μ

is defined by a transformation written in a model-to-

text transformation language (such as MOFScript

(Oldevik J., 2006)). This M2T transformation takes

a program written in the DSMML as input, and

generates a program written in a general purpose

manipulation language (such as EOL) as output.

This schema is described in Figure 1.

Figure 1: Transformation scenario.

The advantage of this technique is that the well-

known manipulation language has already a well-

defined semantics and provides an execution

environment. So, the semantics of the new language

becomes formally described and it is executable.

An Implementation Approach to Achieve Metamodel Independence in Domain Specific Model Manipulation Languages

63

Additionally, the semantic definition is

understandable and adaptable because it is expressed

in terms of a well-known high-level language.

3 USE CASE

In this section we present a new DSMML using the

proposed approach. This section is organized as

follows; first we introduce the domain, then we

propose different meta-models for a simplified

version of the domain. Next, we present the new

DSMML trough some examples. And finally we

describe the most relevant issues of its

implementation.

3.1 Workout Plan Domain

In websites related to running we frequently see

tables such as the one showed in Figure 2. Such

tables describe workout plans to help people to reach

their fitness goals. The workout plan usually has a

duration expressed in weeks and each day of the

week contains a list of exercises that must be done

with specific requirements, such as intensity and

duration. Given that we are considering this domain

just to exemplify our approach, we will restrict its

functionality by giving to the user the possibility to

specify only the time for each exercise, but without

considering intensity or complex exercises.

Figure 2: A Workout Plan.

As we said before, the DSMML is independent

of the underlying meta-model. That is to say, the

language syntax will remain unchanged even if we

use a different but equivalent meta-model for the

domain. In order to provide concrete evidence about

this feature, we will present two meta-models for

this domain, which are displayed in Figure 3 and

Figure 4 respectively.

It is worth to mention that if we add or remove

information from the meta-model, the manipulation

language may get affected by these changes. For

example, if we add the possibility to specify the

intensity at which the exercises should be done, we

might change the language to support this new

feature. This fact does not mean that the language

depends on the underlying meta-model; on the

contrary the language just depends on the available

information while how that information was

represented in the meta-model is completely

irrelevant.

Figure 3: Workout Plan Meta-model, version 1.

Figure 4: Workout Plan Meta-model, version 2.

3.2 WPML: A DSMML fitting the
Workout Plan Domain

In this section we introduce WPML (Workout Plan

Manipulation Language). Given the high level of

abstraction of WPML we consider that the code is

self-explanatory. You can find detailed information

about the language in (DSMML, 2011). The

following WPML code creates the model showed in

Figure 2:

create plan "myplan.plan"

set title "My plan"

set weeks 4

add exercise Run

add exercise Gym

on weeks 1 and 2 {

 on days Monday and Wednesday and

 Friday {

 do Run as much as 50 minutes

 }

 on days Tuesday and Thursday {

 do Gym as much as 45 minutes

 }

 on days Sunday {

 do Run as much as 150% of Run

 on day Monday of week same week

 }

}

from week 3 to 4 {

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

64

 on all days {

 do Run as much as 120% of Run

on day same day of week 1

 do Gym as much as 100% of Gym

on day same day of week 1

 }

}

The code exhibited above generates a new

model. Additionally, WPML allows us to make

changes to an existent model. Obviously, in a real

situation if you have the WPML code that generates

the plan you would prefer to change the code, but

this may not always be the case, e.g. the model could

be generated by a tool or another language. So, for

example, given the model presented above, suppose

we would like to increment the Running time by a

10% on the entire plan and also we would like to

establish Sunday as the recovering day (day without

exercises) instead of Saturday. The new plan is

illustrated in Figure 5.

Figure 5: Modified Workout Plan.

The WPML code to make those changes on the

original model could be:

use plan "myplan.plan"

on all weeks {

on all days {

 increase Run by 10%

 }

 swap Saturday and Sunday

}

3.3 WPML: Implementation

This section covers the key aspects in the

implementation of WPML. The organization of this

section is as follows. First, the overall

implementation schema is showed; then the

functions and operations that are defined in the

specific domain are implemented emphasizing their

meta-model independence; finally, the WPML

compiler is partially presented and the compilation

results for the WPML are illustrated.

Figure 6: DSMML implementation schema using a

translational approach.

Figure 6 shows an overview of the

implementation schema where our domain specific

manipulation language is translated to a general

purpose manipulation language, in this case EOL.

The EOL code generated from the WPML code

imports a file named “core.eol”. This file contains

the implementation of all the functionality provided

by the specific manipulation language, such as

setting the number of weeks of the plan, adding

exercises, setting the duration of each exercise per

week, swapping the schedule between two days, etc.

The following code is a fragment of the file

“core.eol”; it uses the meta-model showed in Figure

3:

operation Plan doExerciseOnDayOfWeek

(ex:String,amount:Integer,

 day:Integer,week:Integer) {

 if (amount = 0) {

 self.removeExerciseInDayOfWeek(ex,

 day,week);

 } else {

 self.getOrCreateRegister(ex,day,

 week).amount := amount;

 }

}

operation Plan

increaseExerciseByPercentOnDayOfWeek

 (ex:String,percent:Integer,

 day:Integer,week:Integer) {

 var r : Register =

 self.getRegister(ex,day,week);

 if (r<>null) {

 r.amount = r.amount +

 r.amount * percent / 100;

 }

}

operation Plan swapDaysOnWeek

 (day1:Integer,day2:Integer,

 week:Integer) {

 for (r:Register in self.registers){

An Implementation Approach to Achieve Metamodel Independence in Domain Specific Model Manipulation Languages

65

 if (r.week = week) {

 if (r.day.value = day1) {

 r.setDay(day2);

 } else {

 if (r.day.value = day2) {

 r.setDay(day1);

 }

 }

 }

 }

 }

With the aim of showing more evidence about meta-

model independence we have also implemented the

language using a different meta-model. Next we

present a fragment of the code contained in the file

named “core.eol” adapted to the meta-model showed

in Figure 4.

 operation Plan doExerciseOnDayOfWeek

 (ex:String,amount:Integer,day:Integer,

 week:Integer) {

 if (amount = 0) {

 self.removeExerciseInDayOfWeek(ex,

 day,week);

 } else {

 self.getOrCreateToDo(ex,day,

 week).amount := amount;

 }

 }

 operation Plan

 increaseExerciseByPercentOnDayOfWeek

 (ex:String,percent:Integer,

 day:Integer,week:Integer) {

 var toDo : ToDo =

 self.getToDo(ex,day,week);

 if (toDo<>null) {

 toDo.amount = toDo.amount +

 toDo.amount * percent / 100;

 }

 }

 operation Plan swapDaysOnWeek

 (d1:Integer,d2:Integer,w:Integer) {

 for (d:Day in self.getWeek(w).days) {

 if (d.day.value = d1) {

 d.setDay(d2);

 } else {

 if (d.day.value = d2) {

 d.setDay(d1);

 }

 }

 }

 }

Afterward, the compiler written with XTend (XText,

2011) creates an EOL file from a WPML file. This

file imports the core.eol file and invokes its

functions according to the WPML code. The

following code is a fragment of the compiler:

 def compile(Manipulation m) '''

import "../src/core.eol";

var p : Plan = getPlan();

«FOR c:m.metaChanges»

«c.compileMetaChange»

«ENDFOR»

«FOR c:m.changes»

«c.compileWeekChange»

«ENDFOR»

'''

…

def compileMetaChangeSetTitle(

MetaChangeSetTitle c) '''

p.setTitle("«c.title»");

'''

…

def compileWeekChangeForAllWeeks(

WeekChangeForAllWeeks c) '''

for (w in Sequence{1..p.getWeeks()})

{

 «FOR dc:c.changes»

 «dc.compileDayChange»

 «ENDFOR»

}

'''

…

def compileDayChangeSwapDays(

DayChangeSwapDays c) '''

 p.swapDaysOnWeek(«c.day1.value»,

 «c.day2.value»,w);

The EOL code that we show next was generated by

the compiler with the WPML code given before for

the creation and manipulation of a plan respectively.

import "../src/core.eol";

var p : Plan = getPlan();

p.setTitle("My plan");

p.setWeeks(4);

p.addExercise("Run");

p.addExercise("Gym");

for (w in Sequence{ 1, 2 }) {

 for (d in Sequence{0,2,4}) {

 p.doExerciseOnDayOfWeek("Run",

 50,d,w);

 }

 for (d in Sequence{1,3}) {

 p.doExerciseOnDayOfWeek("Gym",

 45,d,w);

 }

 for (d in Sequence{6}) {

 p.doExerciseOnDayOfWeek("Run",

((p.getAmountOfExerciseOnDayOfWeek("

Run",0,w))*150/100),d,w);

 }

}

for (w in Sequence{3..4}) {

 for (d in Sequence{0..6}) {

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

66

 p.doExerciseOnDayOfWeek("Run",((p.g

etAmountOfExerciseOnDayOfWeek("Run",d,1

))*120/100),d,w);

 p.doExerciseOnDayOfWeek("Gym",((p.g

etAmountOfExerciseOnDayOfWeek("Gym",d,1

))*100/100),d,w);

 }

}

The EOL code showed next is generated by the

compiler with the WPML code showed before for

the modification of a previously created plan.

import "../src/core.eol";

var p : Plan = getPlan();

for (w in Sequence{1..p.getWeeks()})

{

 for (d in Sequence{0..6}) {

 p.increaseExerciseByPercentOnDayOf

 Week("Run",10,d,w);

 }

 p.swapDaysOnWeek(5,6,w);

}

4 RELATED WORK

There are a number of features of our work that can

be contrasted to previous works:

 The schema presented in this work could be

considered as an evolution of the implementation

schemas presented in (Irazábal et al., 2010), where

the first approach covered consisted of writing a

transformation in a general transformation language

(e.g. ATL) taking two models as input, one with the

model to by manipulated and the other with the

statements to be executed, and building a model as

the result of applying those statements to the model

given as input; the other schema consisting in a two

step transformation scenario, the first transformation

(a model to text transformation) takes a model

conforming the new DSMML and translates it to a

general transformation language (e.g. ATL). Then,

the generated transformation when executed over a

model of the domain of interest performs the desired

changes to it. In our current work, the transformation

is written in a general transformation language (e.g.

EOL) with the characteristic of being parameterised

code. This way, the statements written in the new

DSMML are translated (with a model to text

transformation) to invocations to the previously

written transformations, setting the parameters

according to the elements to be manipulated. This

way, the transformations are simpler and

modularized.

 Abstraction and modularization of model

transformations: Our approach can be seen as a

technique for abstraction and modularization in that

each high level manipulation (written in the

DSMML) is associated with a lower level

manipulation (written in a more general purpose

language), but the users do not need to be aware of

the details of the low level manipulations. In this

sense, the works that propose techniques to build

complex transformations by composing smaller

transformation units are related to our proposal. In

this category we can mention the composition

technique described in (Kleppe A., 2006), the Model

Bus approach (Blanc X., et. al., 2004), the modeling

framework for compound transformations defined in

(Oldevik J., 2005) and the module superimposition

technique (Wagelaar D., 2008), among others. In

contrast to these works, our approach generates the

composed transformation specification in a simpler

way, without introducing any explicit composition

machinery.

 Creating languages that abstract from other

more abstract languages: This subject has been

intensely discussed in the literature on DSLs. For

example, the MetaBorg (Bravenboer M. and Visser

E., 2004) is a transformation-based approach for the

definition of embedded textual DSLs implemented

based on the Stratego framework. Similarly to our

work, the MetaBorg approach defines new concepts

(comparable to our notion of an abstract language)

by mapping them to expansions in the host language

(comparable to our notion of a concrete language).

Johannes shows how to develop DSLs as

abstractions of other DSLs by transferring

translational approaches for textual DSLs into the

domain of modelling languages (Johannes J. et. al.,

2009). The underlying notion of an embedded DSL

has been discussed in (Hudak P., 1998). The idea of

forwarding has been introduced in (Van Wyk E. et.

al., 2002). An important distinction between these

works and our work is the application to the MDE

field. The AMMA framework (Kurtev I. et. al.,

2006) allows us to define the concrete syntax,

abstract syntax, and semantics of DSLs. In (Jouault

F. et. al., 2006) (Barbero M. et. al., 2007) (Di Ruscio

D. et. al., 2009) the reader can analyze a number of

scenarios where the AMMA framework has been

used to define the semantics of DSLs in terms of

other languages or in terms of abstract state

machines (ASMs). Our proposal is similar to the one

of AMMA, but we present a novel alternative, where

the language semantics is realized as the

interpretation of the DSMML into a general purpose

model manipulation language, by means of a

An Implementation Approach to Achieve Metamodel Independence in Domain Specific Model Manipulation Languages

67

transformation written in a M2T transformation

language.

 Concrete-syntax-based transformations:

Contrary to traditional approaches to model

transformation, our approach, such as the one

presented in (Baar T. and Whittle J., 2007), uses the

concrete syntax of a language for expressing

transformation rules. The claim is that this simplifies

the development of model transformations, as

transformation designers do not need deep

knowledge of the language's metamodel. In our

approach, we use the abstract DSMML with a

similar purpose: users do not need to count with any

knowledge of the abstract syntax of the involved

modeling languages; they just use the simple syntax

of the DSMML.

5 CONCLUSIONS

In this article we have explained the concept of

domain specific model manipulation language, that

is to say model manipulation languages tailored to a

specific domain. In contrast to well-known model

manipulation languages, such as EOL and ATL, the

language syntax and semantics are directly related to

a specific domain and/or kind of manipulation,

making manipulation easer to write and understand.

In contrast to an approach where a general

purpose model manipulation language is used, our

approach provides the following benefits: the

complexity of model manipulation programs gets

reduced. A program is composed by few lines of

high expressive commands. Domain experts will feel

more comfortable using a specific language with

constructs reflecting well-known concepts (such as,

exercise and week in our example); consequently it

is predictable that they will be able to write more

understandable and reusable manipulation programs

in a shorter time. Manipulation developers do not

need to know the intricate details of the model

manipulation languages, as these are encapsulated in

the DSL constructs. This leads to a natural

separation into a language designer and a

manipulation programmer role, with a reduced

learning effort for the later.

Also, we have proposed an implementation

schema in which the transformation that compiles

the DSMML sentences consists of invocations to

previous defined operations written in a well known

transformation language (e.g. EOL). This fact

provides several advantages: the language semantics

is formally described; it is executable; the semantics

is understandable because it is written in a well-

known language; the semantics can be easily

modified by adding new transformation rules or

even by radically changing the target language.

Although this transformation may be considered as a

compiler, the amount of programming skills required

to create it is smaller than for creating a compiler to

source code.

As an experimental example in this article we

have reported the definition of a DSMML in the

domain of workout plans and we have described its

implementation using MDE tools. The experience

was successful; showing the advantages of defining

DSMML for model transformations within the same

language, that is to say, transformations that locally

change an existent model producing a new model

that conforms to the same metamodel. Currently we

are working in the definition of other DSMMLs in

other domains.

It is also important to take the benefits coming

from the platform-independence of the model

manipulation language into account; on one hand the

language is independent of the underlying

metamodel and on the other hand we are able to

transform and execute the manipulation programs

onto different model manipulation platforms, in the

examples we have used EOL and ATL, but any

other manipulation language can be used.

REFERENCES

ATLAS MegaModel Management. (2006). http://

www.eclipse.org/gmt/am3/.

Baar, T., and Whittle, J. (2007). On the Usage of Concrete

Syntax in Model Transformation Rules. In Book:

Perspectives of Systems Informatics. LNCS 4378,

Springer Heidelberg, Berlin.

Barbero, M., Bézivin, J., and Jouault, F. (2007). Building a

DSL for Interactive TV Applications with AMMA. In

Proceedings of the TOOLS Europe 2007 Workshop on

Model-Driven Development Tool Implementers

Forum. Zurich, Switzerland.

Blanc,X., Gervais, M., Lamari, M. and Sriplakich, P.

(2004). Towards an integrated transformation

environment (ITE) for model driven development

(MDD). In Proceedings of the 8th World Multi-

Conference on Systemics, Cybernetics and Informatics

(SCI’2004), USA.

Bravenboer, M., and Visser, E. (2004). Concrete syntax

for objects: Domain-specific language embedding and

assimilation without restrictions. In OOPSLA'04:

Proceedings of the 19th Annual ACM SIGPLAN

Conference on Object-Oriented Programming,

Systems, Languages, and Applications, ACM Press.

pp. 365–383.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

68

Cook Steve, Gareth Jones, Stuart Kent, and Alan Cameron

Wills. (2007). Domain-Specific Development with

Visual Studio DSL Tools. Addison-Wesley

Professional. ISBN 0321398203.

Czarnecki, Helsen. (2006). Feature-based survey of model

transformation approaches. IBM System Journal, v.45,

n.3.

DSMML (2011) http://www.lifia.info.unlp.edu.ar/eclipse/

DSMML/.

Di Ruscio, D., Jouault, F., Kurtev, I., Bézivin, J., and

Pierantonio, A. (2009): Extending AMMA for

Supporting Dynamic Semantics Specifications of

DSLs.Downloaded:http://hal.ccsd.cnrs.fr/docs/00/06/6

1/21/PDF/rr0602.pdf.

Jouault Frédéric and Ivan Kurtev. (2005).Transforming

Models with ATL. In: Jean-Michel Bruel (Ed.),

Satellite Events at the MoDELS 2005 Conference,

LNCS 3844. Springer Berlin / Heidelberg., Montego

Bay, Jamaica (pp. 128-138) .

Jouault Frédéric, Jean Bézivin, Charles Consel, Ivan

Kurtev, and Fabien Latry. (2006). Building DSLs with

AMMA/ATL, a Case Study on SPL and CPL

Telephony Languages in Proceedings of the First

ECOOP Workshop on Domain-Specific Program

Development. Nantes, France.

GME (2006). http://www.isis.vanderbilt.edu/Projects/gme.

Greenfield, J., Short, K., Cook, S., Kent, S., and Crupi, J.

(2004). Software Factories: Assembling Applications

with Patterns, Models, Frameworks, and Tools (1st

ed.): Wiley.

Gronback R. C. (2009). Eclipse Modeling Project: A

Domain-Specific Language (DSL) Toolkit. Addison-

Wesley Professional. ISBN: 0-321-53407-7.

Hudak, P. (1998). Modular domain specific languages and

tools. In ICSR’98: Proceedings of the 5th International

Conference on Software Reuse, IEEE Computer

Society Press. pp. 134–142. June. Victoria, B.C.,

Canada.

Irazábal J., Pons C., Neil C. (2010). Model transformation

as a mechanism for the implementation of domain

specific transformation languages. SADIO Electronic

Journal of Informatics and Operations Research. vol.

9, no.1.

Johannes, J., Zschaler, S., Fernandez, M., Castillo, A.,

Kolovos, D., and Paige, R. (2009). Abstracting

Complex Languages through Transformation and

Composition. In MoDELS’09: Proceedings of the

ACM/IEEE 12th International Conference on Model

Driven Engineering Languages and Systems. USA,

LNCS, Springer. October. Denver, Colorado, USA.

Kleppe, Anneke G., Warmer Jos, and Bast, Wim. (2003).

MDA Explained: The Model Driven Architecture:

Practice and Promise. Boston, MA, USA. Addison-

Wesley Longman Publishing Co., Inc.

Kleppe, Anneke. (2006). MCC: A Model Transformation

Environment. A. Rensink and J. Warmer (Eds.):

ECMDA-FA 2006, LNCS 4066, Spain (pp. 173 –

187).

Kolovos, D. S., Paige, R. F., and Polack, F. A. C. (2006).

The Epsilon Object Language (EOL). In: Rensink, A.,

Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol.

4066, pp. 128-142. Springer Heidelberg.

Kurtev, I. and Bézivin, J. and Jouault, F. and Valduriez, P.

(2006) Model-based DSL frameworks. In: Companion

to the 21st ACM SIGPLAN conference on Object-

oriented programming systems, languages, and

applications, Portland, Oregon, USA. (pp. 602-616).

ACM Press. ISBN 1-59593-491-X.

Mernik Marjan, Heering Jan, and Sloane Anthony M.

(2005). When and how to develop domain specific

languages. ACM Computing Surveys, v.37 n.4, p.316-

344.

Meta Object Facility (MOF) 2.0. (2003). http://www.

omg.org.

OCL. (2006). http://www.omg.org/spec/OCL/2.0.

Oldevik, J. (2005).Transformation Composition Modeling

Framework. DAIS 2005. Lecture Notes in Computer

Science 3543, (pp. 108-114).

Oldevik Jon. (2006). MOFScript User Guide. http://

www.eclipse.org/gmt/mofscript/doc/MOFScript-User-

Guide.pdf.

OMG. (2011). http://www.omg.org.

Pons Claudia, Giandini Roxana, and Pérez Gabriela.

(2010). “Model Driven Software Development.

Concepts and practical application”. Buenos Aires,

Agentina. EDUNLP and McGraw-Hill Education.

Pons Claudia, Irazábal Jerónimo, Giandini Roxana and

Pérez Gabriela. (2011). On the semantics of domain

specific transformation languages: implementation

issues. Software Engineering: Methods, Modeling, and

Teaching, Chapter 13. ISBN: 9789588692326.

QVT Adopted Specification 2.0. (2005). http://www.

omg.org.

Stahl, T., and Völter, (2006). M. Model-Driven Software

Development. Chichester, England. John Wiley &

Sons, Ltd.

Van Wyk, E., de Moor, O., Backhouse, K., and

Kwiatkowski, P. (2002). Forwarding in attribute

grammars for modular language design. In Horspool,

R.N., ed.: Int Conf. on Compiler Construction. LNCS

2304, Springer, Berlin / Heidelberg pp. 128–142.

Wagelaar, Dennis. (2008). Composition Techniques for

Rule-based Model Transformation Languages. Procs.

of ICMT2008 – Conference on Model Transformation.

Zurich, Switzerland.

Weske Mathias. (2008). Business Process Management:

Concepts, Languages, Architectures. Springer, (pp. 3-

67). ISBN 978-3-540-73521-2.

XTend. (2011). http://www.eclipse.org/Xtext/#xtend2

XText. (2011). http://www.eclipse.org/Xtext/

An Implementation Approach to Achieve Metamodel Independence in Domain Specific Model Manipulation Languages

69

