
Aspect-based On-the-Fly Testing Technique for Embedded Software

Jong-Phil Kim, Jin-Soo Park and Jang-Eui Hong
Department of Computer Science, Chungbuk National University, Cheongju, Rep. of Korea

Keywords: Aspect-oriented Programming, On-the-Fly Testing, Embedded Software.

Abstract: Various techniques for testing embedded software have been proposed as a result of the increased need for

high quality embedded systems. However, it is hard to perform accurate testing with these techniques on

failures that can occur unexpectedly in a real environment, because most of the tests are performed in

software development environment. Therefore, it needs a testing technique that can dynamically test

software’s latent faults in a real environment. In this paper, we propose an aspect-based On-the-Fly testing.

The purpose of which is to test the functionalities and non-functionalities of embedded software using

aspect-oriented programming at run-time in a real environment. Our proposed technique provides some

advantages of prevention of software malfunction in a real environment and high reusability of test code.

1 INTRODUCTION

Many types of embedded software, especially

aerospace software and national defense software

are tested on functionality and non-functionality in a

development environment as well as in an

operational environment. These tests are expensive

and require much time and heavy test harness

(Michael, 2006). In spite of such testing, embedded

software malfunctions frequently occur in real

operation. To address these problems, a built-in

testing approach and aspect-based testing approach

have been attempted. However, the built-in testing

was performed for interface conformance testing to

integrate a reusable component in component-based

development, and aspect-based testing was

performed to test the functionality of software

during development. Therefore, the existing research

has various limitations to test unexpected behaviors

that can happen to the run-time of embedded

software.

In this paper, we propose an On-the-Fly testing

technique to perform self-testing while embedded

software is executed in a real environment. This

technique can perform testing in a real operation

environment including some test cases that are not

covered in development testing. Our proposed

testing technique can provide a method to prevent

malfunction that can happen during real operation of

a system, since the technique uses aspect

components defined with aspect-oriented

programming concepts to test embedded software.

Using the aspect components, we can develop

separately the function code of embedded software

and the test code. The test code is installed in the

target system by weaving with the function code of

the embedded software. The test code can inspect

that execution of a program code is performed

correctly at run-time and can prevent the occurrence

of unexpected failures, which were not detected in

host-based testing. In this way, our testing technique

provides advantages of prevention of software

malfunction in a real environment and high

reusability of test code.

The paper is organized as follows. Section 2

surveys related work about existing aspect-based

testing techniques. Section 3 explains the issues that

we want to test in our research. In section 4 we

design aspect components to test the issues

described in section 3. We present a process to

perform On-the-Fly testing using aspect

components, and show a case study of our approach

in section 5. The paper concludes with a summary of

our research and directions for future work in

section 6.

2 RELATED WORK

To test whether reusable components have the

correct functionalities, an aspect with Built-in testing

characteristics is proposed (Jean et al, 2003). In

375Kim J., Park J. and Hong J..
Aspect-based On-the-Fly Testing Technique for Embedded Software.
DOI: 10.5220/0004081503750380
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 375-380
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

(Dehla and Matthias, 2003), they developed an

aspect to test the problem of inheritance or

information concealment etc. in object-oriented

programming. In (Martin and Cristina, 2000), they

defined an aspect to inspect grammatical difference

(i.e. difference of data type) between unit modules.

Also, in (Fernando et al, 2007), they defined an

aspect to perform error handling. In (Jani, 2006), he

tested mobile operating systems by weaving a

testing aspect into the Symbian operating system.

However, these researches focused on development

testing and the role of a test agent or a test oracle.

Our proposed testing technique is able to

perform on-the-fly testing in a real operation

environment using aspect components which can

independently perform a test by itself and can

control the behavior of software with the testing

results.

3 ISSUES OF ON-THE-FLY

TESTING

Software testing is generally categorized into

functional testing and non-functional testing. In

particular, embedded software is important to test

non-functional issues such as platform portability,

memory constraints etc. as well as normal

functionality (Mirko et al, 2005). Figure 1 shows

issues to be tested for embedded software.

Figure 1: Testing issues of embedded software.

3.1 Functional Testing Issues

3.1.1 Condition-based Behavioural Test

The condition-based behavioural test is to test the

pre-condition or post-condition of a specific module

during execution. This inspects whether input events

or state variables of a target module satisfy specific

conditions. Figure 2 shows the procedure of a

condition-based behavioural test. In order to explain

the procedure, we define the following basic

functions.

 int Fun(Pi,i=1…n): function to test a target

module that has n input parameters and the

return value of integer type

 Get(x): function to read input variable or state

variable x

 Cond(x)::={true|false}: function to inspect

whether the current value of variable x

satisfies a functional requirement

 Alarm(): function to notify exception

occurrence

 IHR(): function to perform exception handling

Figure 2: Procedure of pre-condition based behavioural

Test.

3.1.2 Execution-based Behavioural Test

The execution-based behavioural test is to inspect

the execution result of a module by analysing the log

data after logging the state changes for module

execution. For example, after the booting-up module

of an embedded system is executed, this test can be

used to confirm that the initialization of the system

was executed correctly.

3.2 Non-functional Testing Issues

3.2.1 Time Constraint Test

The time constraint test is to inspect whether the

execution time of a specific module or a method

satisfies the time constraint specified in the

requirements. Figure 3 shows the procedure of the

time constraint test. To describe the test procedure,

we define the following a basic function. Other

functions have the same behaviour as the condition-

based behavioural test.

 Set(T): function to save current time clock

Figure 3: Procedure of time constraint test.

3.2.2 Memory Usage Test

The memory usage test checks that the available

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

376

memory of the system is enough to execute a

module. If there is more available memory than

required memory, this executes the relevant

function. Otherwise it exits executing the function.

Such behaviours are represented in Figure 4.

Figure 4: Procedure of memory usage test.

4 DESIGN OF ASPECT

COMPONENT

4.1 New Pointcut for Non-functional
Testing

The existing aspect-oriented programming (AOP)

languages provide pointcut designators that pick out

a point in execution flow, for example, when a

method is called. Advices are executed at that join

points which is defined by pointcut designators.

However, a non-functional testing such as time

constraint test and memory usage test can need

advices that are called when a specific code block is

executed because it is necessary to test a non-

functional requirement in a specific behavior area.

The existing AOP languages do not allow

developers to pick out the area in time while a code

block is executed.

To address this limitation of AOP, we define a

new pointcut, which we call “testing pointcut”. As

shown in Figure. 5, the testing pointcut picks out a

join point which is the code block selected by a

tester.

Figure 5: Testing pointCut for non-functional testing.

For example, in Figure 5, the testing pointcut of

aspect A specifies the call to orders.elements() as the

beginning of the testing pointcut and the call to

printDetails() as the end of it. So, it is able to

perform a selective non-functional testing for time-

critical or memory usage-critical code block,

because all statements within a code block specified

by the testing pointcut are defined as the join point.

The matching of the testing pointcut is performed

through control flow graph that specifies the event

sequence of a target system. The following syntax

defines a testing pointcut tp:

tp::=testing pointcut[call(a); call(a)]

a::=class name.method()

For example, the following testing pointcut:

4.2 Example System for Testing

For easy understanding of our further explanation,

we introduce an example robot application with the

following requirements.

4.3 Functional Behaviour Test
Component

The functional behaviour test checks whether

function codes can be executed correctly. This test

can examine the pre-condition and post-condition of

the test target using “before” or “after” advice.

For example, a malfunction of the example robot

system can happen when input data transmitted by a

sound sensor of the robot is out of a predefined data

range. Therefore, we define an aspect to examine

this malfunction. The aspect component is

represented in Figure 6 using AspectJ (Gregor,

2001). This aspect tests whether the value of decibel

inputted from a sensor exists between 80dB and

120dB. If the decibel value is out of the allowed

range, the aspect logs the status and exits the

execution of the target module.

4.4 Time Constraint Test Component

General embedded software has time constraints in

its functional execution. Because satisfying the time

constraints is an important issue of embedded

software, it is critical to test the time constraints in a

A military reconnaissance robot receives external sound

from sound sensors. This robot recognizes the input sound

and identifies the direction from which the sound originated.

Then, the robot takes a picture of the object using a camera

after a change of direction to the origin of the sound. The

robot must be able to react quickly to movement of the

sound (with a maximum of one second until turning of

direction).

Aspect-based On-the-Fly Testing Technique for Embedded Software

377

Figure 6: Aspect component to test functional behaviour.

Figure 7: Aspect component to test time constraint.

real environment. Figure 7 shows an aspect

component to test a requirement of time constraints.

This aspect tests the time requirement that the

turning action to change the direction of the robot

toward sound direction should be performed within

1000ms in our robot application. That is, if the

change of direction is not executed within 1000ms,

the test result is invalid. The “before” advice of this

aspect sets up the timer before the soundDirection()

method is called and the “after” advice is used to test

time over after the method is executed.

4.5 Memory Usage Test Component

The embedded software that should be operated with

a restricted resource can lead to invalid action when

the system does not have enough memory for

execution. Thus, if the system cannot provide the

memory that is needed for execution, the system

should exit the execution or wait until enough

memory to execute is guaranteed. Memory usage

required in the execution of a specific module can be

analysed using a tool such as Eclipse Profiler and the

analysed result is used to test the condition of

memory usage in the advice of aspect component.

Figure 8 shows an aspect component to test memory

usage using the testing pointcut, which specifies

selected code block for test target. The role of this

aspect component is to stop the operation of the

system when the current memory size of the system

is smaller than 19,900 bytes.

Figure 8: Aspect component to test memory usage.

5 ASPECT-BASED DYNAMIC

TESTING

To test embedded software using aspect

components, a source code and testing aspect should

be woven with each other through compiling. The

woven execution file can examine and cope with

exceptional cases that can occur while the system is

running. We define “On-the-Fly testing” with such

dynamic testing while the system is running.

5.1 On-the-Fly Testing Process

If the aspect component arrivals statements that is

described at join point, while the function modules

are executed sequentially in a real environment, the

aspect component starts the testing of the function

module. This aspect tests whether the corresponding

module may perform the correct action or whether

the input parameters for the function module are

valid. According to the test result, it is determined

whether the function module should be executed.

Therefore, our On-the-Fly testing can dynamically

cope with those cases that cannot be detected in

development testing. Figure 9 shows the On-the-Fly

testing process of embedded software.

Figure 9: On-the-fly testing process.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

378

5.2 Applying Aspect to Example
System

To test the requirements (i.e. testing issues) of our

example system, we apply three aspects, designed in

section 4. The experiment for each test issue is

performed by weaving only a single aspect for the

adequate examination of a single requirement.

5.2.1 Experiment Environment

The test environment for aspect-based On-the-Fly

testing is developed using JDK 1.6.0, Eclipse 3.6,

AspectJ 2.1.0 and Aspect Bench Compiler

(Avgustinov, 2005). We extended the AspectJ with

the Aspect Bench Compiler for the new pointcut.

Also, an assistance tool is used, Eclipse Profiler

0.5.33 (Eclipse, 2007), to measure memory usage.

The target machine for our robot application is Mind

Storm Robot NXT #9797 that has 32bits ARM7

processor and 64K RAM. Figure 10 shows the

experiment environment to test our example system.

In order to do an experiment, we developed function

code using NXJ Java language and aspect

components using AspectJ. These are executed after

installing in the brick board of NXT and the

experiment result is displayed on the LED of the

Robot.

Figure 10: Experiment environment of example system.

5.2.2 Test Result of Functional Behaviour

The goal of the functional behaviour test in our

experiment is to confirm that the Robot’s sound

sensor correctly recognizes and processes sound of

fixed range. The test result of the method

Sensor.rvc() using the aspect component of Figure 6

is shown in Table 1. From Table 1, two test cases t3

and t5 do not satisfied the input condition of test

module Sensor.rvc().

Table 1: Test result of functional behaviour.

Test

Module

Test

case

Input

conditions Expected

results

Actual

results decibe

l
hertz

Sensor.rvc

t1 98 1200 valid-turning turning

t2 85 1200 valid-turning turning

t3 67 1200
invalid-no

change

no

change

t4 104 1200 valid-turning turning

t5 71 1200
invalid-no

change

no

change

5.2.3 Test Result of Memory Usage Test

The estimated values of memory usage are used as a

test oracle for aspect component. This aspect

component judges whether the amount of available

memory of the system is enough or not. If the

memory amount is not enough, the execution of the

function module is stopped. Table 2 shows the test

result of memory usage of the selected code block in

our example application.

Table 2: Test result of memory usage.

Test

Module

Test

case

Estimate

d

memory

Availabl

e

memory

Expecte

d results

Actual

results

Selected

behavior

block

t1 19900 32440 valid valid

t2 19900 31244 valid valid

t3 19900 28046 valid valid

t4 19900 14586 valid invalid

t5 19900 34228 valid valid

The memory usage of the code block estimated

by Eclipse Profiler was 19,900 bytes. The amount of

available memory measured by the

runtime.freeMemory() method of Java Virtual

Machine is represented in the available Memory

field of Table 2. When we consider the system

memory size of the NXT board, all expected results

are valid. However, unfortunately the actual result of

test case t4 is invalid. From this result, we knew that

a memory leakage occurs by memory garbage

during execution of t4. Therefore execution of the

selected code block is stopped at test case t4.

5.2.4 Test Result of Time Constraint

The time constraint test is to calculate the elapsed

time from recognizing an input sound data to turning

the direction of the robot wheel. However, the

accurate elapsed time of the module execution is

hard to measure because the execution can be

interfered by external or internal factors. Therefore,

we added statements that can measure the elapsed

time within the aspect component. Table 3 shows the

result of time constraint testing.

Aspect-based On-the-Fly Testing Technique for Embedded Software

379

Table 3: Test result of time constraint.

Test

Module

Tes

t

cas

e

Input

condition

(decibel)

Estimate

d

Time

(ms)

Actual

time

Expected

results

Actual

results

Sound

Direction

t1 88 1000 610 valid valid

t2 97 1000 600 valid valid

t3 115 1000 600 valid valid

t4 43 1000 590 valid valid

t5 139 1000 610 valid Valid

6 CONCLUSIONS

In spite of various techniques on testing of

embedded software, the frequent failures of

embedded systems occur in real operation

environments. The cause of these failures exists

fundamentally in the software itself, but the problem

is that the defects for such failure are not discovered

in development testing. Therefore we proposed an

On-the-Fly testing technique to perform self-testing

while the system is running in a real environment.

The proposed testing technique can find defects

missed during development testing and can prevent

unexpected malfunctions that can happen during real

operation of a system. In a hard real-time system, the

test execution of aspect components can cause delay

of response time. However, because our aspect

components are very small in size and simple in

complexity compared with function modules, there

is no large delay on execution time. We believe that

our proposed On-the-Fly testing technique gives

some benefits of a real test of unexpected input

conditions, prevention of software malfunction, and

high reusability of test components.

Our future work is to develop techniques that can

test issues such as dead lock, pre-emption

scheduling and race condition between modules

through extension of the aspect concept. Also, we

are also going to apply our testing technique to a

large-scale embedded application.

ACKNOWLEDGEMENTS

This research was supported by Next-Generation

Information Computing Development Program

(No.2011-0020523) and also partially supported by

Basic Science Research Program (2011-0010396)

through the National Research Foundation of

Korea(NRF) funded by the Ministry of Education,

Science and Technology.

REFERENCES

Michael, J.K., William, I.B., Carl, B.E., 2006. Effective

Test Driven Development for Embedded Software. In

International Conference on Electro/Information

Technology, pp. 382-387.

Jean, M.B., Joao, A., Ana, M., Albert, R., 2003. Using

Aspects to Develop Built-in Tests for Components. In

International Workshop on UML, pp. 1-8.

Dehla, S., Matthias, V., 2003. An Aspect-Oriented

Framework for Unit Testing. In International

Conference on QOSA/SOQUA, pp. 257-270.

Martin, L., Cristina, V.L., 2000. A Study on Exception

Detection and Handling Using Aspect-Oriented

Programming. In International Conference on

Software Engineering, pp. 418-427.

Fernando, C.F., Alessandro, G., Cecilia, M.F., 2007. Error

Handling as an Aspect. In International Workshop on

BPAOSD.

Jani, P., 2006. Extending Software Integration Testing

Using Aspects in SymbianOS. In International

Conference on Practice Research Techniques, pp.

147-151.

Mirko, L., Tiziana, M., Graziano, P., Bernhard, S., 2005.

Dynamic and formal verification of embedded systems.

Journal of Parallel Programming, Vol. 33, pp. 585-

611.

Gregor, K., Erik, H., Jim, H., Mik, K., Jeffrey, P., William,

G.G., 2001. An Overview of AspectJ. Springer LNCS,

Vol. 2072, pp. 327-353.

Avgustinov, P., 2005. abc – an extensible AspectJ

compiler. In International Conference on AOSD, pp.

87-98.

Eclipse, 2007. Eclipse Profiler. http://eclipsecolorer.

sourceforge.net/index_profiler.html.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

380

