
Enterprise Ontology Driven Software Engineering 

Steven J. H. van Kervel
2
, Jan L. G. Dietz

1
, John Hintzen

2
, Tycho van Meeuwen

2
 and Bob Zijlstra

2
 

1Delft University of Technology, Delft, The Netherlands 
2Formetis Consultants BV, Hemelrijk 12 C, Boxtel, The Netherlands 

Keywords: Model Driven Software Engineering, Enterprise Ontology, Demo, Adaptive Case Management Systems. 

Abstract: Model Driven Engineering (MDE) has been with us for quite some time, the most well known MDE 

approach being OMG’s Model Driven Architecture. Current MDE approaches suffer from two major 

shortcomings. First, they are unable to deliver domain models that comprise all functional requirements. 

Second, the models to be produced during the system development process, are not formally defined. One 

of the theoretical pillars of Enterprise Engineering (EE) is the Generic System Development Process 

(GSDP). It distinguishes between the using system and the object system, and it states that any software 

development process should start from the ontological construction model of the using system. In addition, 

EE’s systemic notion of Enterprise Ontology provides us with a formalized ontological model of an 

organization that satisfies the C4E quality criteria (Coherent, Consistent, Comprehensive, Concise, and 

Essential). An operational application software generator is presented that takes this ontological model, 

with some extensions, as source code input and executes the model as a professional software application. 

Changes in the software, as required by any agile enterprise, are brought about ‘on the fly’, through re-

generation, based on the modified ontological model of the enterprise’s organization. 

1 INTRODUCTION 

In this paper, the scope of interest is enterprises; 

cooperatives of human beings for delivering 

valuable results to other human beings, and their 

supporting IT systems. Enterprises are social 

systems, i.e. the elements are social individuals 

(human beings). The operating principle of 

enterprises is that these individuals, commonly 

called actors, make commitments and communicate 

regarding the bringing about of products for the 

benefits of actors in the environment of the 

enterprise. This notion of enterprises is based on the 

theory of enterprise ontology (Dietz, 2006). 

Enterprise ontology is a “formal, explicit 

specification of a conceptualization shared between 

stakeholders” (Gruber, 1993). It provides a shared 

vocabulary represented as a set (of limited size) of 

symbols of objects, used to model enterprises.  

Enterprise ontology is also an ontology with 

empirical evidence of a high degree of ontological 

appropriate and truthfulness (Mulder, 2008), notions 

that are describes by Guizzardi (2005). 

Enterprise Information systems (EIS) are those 

information systems that support the operation of an 

enterprise. There are other information systems in 

organizations that are not an EIS, for example 

accounting systems, CRM systems, etc.  

Current state of the art engineering 

methodologies that should result into high quality IT 

systems, fail too often. We focus on three major 

problems but ignore management, political and  

strategic problem sources. 

The first problem is the mismatch between the 

specified functionality of IT systems and the 

expectations of the stakeholders; a lack of business-

IT alignment [ITGI]. Empirical evidence of the 

Standish Group (2009), Tata and others confirms 

this. We are obviously unable to produce high 

quality IT system functional specifications. 

The second problem is that IT projects do not 

deliver IT systems within controllable financial 

budgets and resources (Sauer and Cuthbertson, 

2003). Delivered software components need often 

overhaul cycles and programming is too demanding.  

The third problem is that the costs of 

maintaining IT systems grow exponentially over 

time (Lehman, 1985). This problem is clarified and 

addressed by the theory of Normalized Systems 

(Mannaert and Verelst, 2008). 

205J. H. van Kervel S., L. G. Dietz J., Hintzen J., van Meeuwen T. and Zijlstra B..
Enterprise Ontology Driven Software Engineering.
DOI: 10.5220/0004080902050210
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 205-210
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)



ontology ontology

re
ve

rs
e 

en
g
in

ee
ri
n
g

eng
in

eerin
g

using system
construction

ob jec t  sys tem
construction

ob jec t
system
function

func t i ona l
pr inc i p les

archi tecture

construction

des ign

function

des ign

func t i ona l
requirements

constructional
requirements

techno logy techno logy

constructional
pr inc i p les

im
plem

entation

im
plem

entation

 

Figure 1: The generic System Development Process (GSDP). 

If software engineers are provided with high 

quality specifications, they are usually able to 

construct high quality software systems for complex 

domains, for example GPS systems, cell phone 

systems and the Internet. EIS specifications 

apparently lack quality. Consequently, programmers 

have to take design and implementation decisions 

they should not take because they are not qualified 

to do this. There is unwanted design freedom and 

ambiguity.  

In general, EIS specifications lack 

comprehensiveness: “everything” that should be 

included must be there. Other shortcomings are 

irrelevant information or lacking conciseness; 

hidden anomalies and inconsistencies or lacking 

consistency; and specifications that do not match 

semantically, lacking coherence. Programmers need 

software specifications matching the four quality 

criteria, comprehensiveness, conciseness, 

consistency and coherence (C4-ness) to deliver high 

quality IT systems. 

2 SOFTWARE ENGINEERING 

PROBLEMS AND 

CHALLENGES 

As a framework for discussing the problems 

mentioned above, we adopt the Generic Systems 

Development Process (GSDP) (Dietz, 2008). The 

GSDP is a generic model for developing any kind of 

artifact. It comprises all basic steps that need to be 

taken in a development process. The GSDP supports 

two distinctive perspectives on systems, the 

construction perspective and design principles, 

represented by white box models, and the function 

perspective and design principles, represented by 

black box models. This is especially important for 

software engineering. 

Fig. 1 exhibits the basic steps in a system 

development process. The starting point is the need 

by some system, called the using system (US), of a 

supporting system, called the object system (OS). By 

nature, this need stems from the construction of the 

US, so one starts with a white-box model of the US. 

Ideally, this starting model is a purely ontological 

model of the US. This includes that the model is an 

instance of an appropriate metamodel, and that it is 

fully implementation independent. The first 

development step is function design, resulting in the 

functional specifications of the OS. By nature, these 

specifications constitute a black-box model of the 

OS, expressed in ‘the language’ of the US, i.e. in 

terms of the construction and operation of the US.  

We consider them to include the so-called non-

functional requirements, regarding various 

performance and quality aspects.  

The next step is construction design, resulting in 

the constructional model of the OS. It can usefully 

be divided into ontological design and 

implementation design (engineering in Fig. 1). By 

the ontological design we mean the highest level 

white-box model of the OS; ideally it is purely 

ontological, meaning that it does not contain 

implementation choices.  

A thorough analysis of this white-box model must 

guarantee that building the OS is feasible, given the 

available technology. There is the important 

recognition that designing is an iterative process, 

which is, however, not indicated in the figure. The 

end result of a design process is a balanced 

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

206



compromise between (reasonable) requirements and 

(feasible) specifications. Regarding IT systems, this 

model is the source code of the system. This 

understanding of engineering is fully compliant with 

MDE. Both function design and construction design 

are ‘fed’ by requirements and principles. 

An important advantage of applying ontological 

models, both of the US and of the OS, is that these 

models possess C4-ness quality. An ontological 

specification that is completely implementation 

independent may be used at an early stage for 

validation and assessment. This helps to avoid 

expensive re-implementation cycles.  

3 ONTOLOGY BASED MODEL 

DRIVEN ENGINEERING 

Model driven engineering (MDE) (OMG, 2001) is 

generally considered to address the problems we 

have discussed above. In MDE, software is 

developed in a series of model transformations. The 

process starts from the functional specifications and 

ends with the ‘source code’ in some formal 

language. However, a major cause of problems is 

still present. Projected on the GSDP, MDE proceeds 

in three phases: function design, construction 

design, and implementation design (engineering in 

Fig. 1). Each of these phases is prone to errors. 

Regarding the first one, it means that the functional 

specifications (the black-box model of the OS) are 

different from the user expectations. Regarding the 

second phase, it means that the ontological 

construction specifications do not fully match the 

functional specifications. Regarding the third phase, 

it means that the resulting implementation model 

does not fully match the ontological model of the 

OS. Another major cause of failures in applying 

MDE seems to be the lack of rigor in (formally) 

defining the distinct kinds of models, including the 

ignorance of the fundamental differences between 

functional and constructional models. One cannot 

just ‘transform’ a functional model into a 

constructional one. 

In the MDE approach we propose, these 

drawbacks are excluded. This is achieved first by 

noting that any complete and correct implementation 

of the ontological model of a US, makes the US 

‘alive’, once put into operation. Therefore we will 

consider any EIS, which is completely supporting 

some enterprise, as a possible implementation of the 

ontological model of the enterprise. By this, 

obviously correct, observation, we actually make the 

ontological model of the OS (our EIS) isomorphic to 

the ontological model of the US (the enterprise). 

Informally stated: everything in the US ontology 

exists also in the OS ontology, and everything in the 

OS ontology exists also in the US ontology.  

By doing this, we skip the function design phase 

and the construction design phase. 

Second, we consider the operating EIS as a real-

time simulation of its ontological model. By doing 

this, we skip the engineering phase (implementation 

design) in the GSDP. For the MDE approach we 

have in mind, it means that we need a software 

system that executes ontological enterprise models. 

We call this system the DEMO processor. 

Concluding, we have fully addressed the first major 

cause of problems in applying MDE, as discussed 

above. 

The second major cause (the lack of 

formalization) is also fully eliminated, by basing our 

MDE approach on the quality criteria as developed 

by Guizzardi (2005). Fig 2 exhibits Guizzardi’s 

conceptual framework, slightly adapted to our 

purposes. Guizzardi distinguishes between a 

collection of real world phenomena R and a 

collection of real world phenomena m, which are  

  

Model

M

Specification 

S

expressed 
in language  L

Modeling

Language
L

used to

compose

instance

of

represented by

interpreted as

represented by

interpreted as

used to

compose

instance

of

US ontology

C

Real World

Phenomena
R

Real World

Phenomenon

m

abstracts

used to

compose

abstracts

truthfulness &
appropriateness 

qualities

C4-ness quality

model specifications

OS

Ontology

OS
software 

engine

instance

of

 

Figure 2: The GSDP MDE approach in Guizzardi’s framework. 

Enterprise Ontology Driven Software Engineering

207



instances of the things in R. Applied to our 

purposes, R is the collection of all enterprises, and 

actors, transactions etc. from R. A conceptual model 

of an R is called a C. In our case, C is the notion of 

enterprise ontology, as defined by the -theory 

(Dietz, 2006). Thus, such a model consists of 

transaction kinds, actor roles, and the connections 

between them. Next, every M is a conceptual model 

of a particular enterprise m, as well as an instance of 

C (by definition). In our case, this means that every 

M is an ontological enterprise model according to 

the -theory. Guizzardi requires that the mapping 

from R to C, and consequently, from every m to its 

corresponding M, satisfies the qualities of 

truthfulness and appropriateness. Truthfulness refers 

to the extent to which the concepts of the ontology 

are able to represent phenomena in reality in a 

truthful way for all stakeholders (Krogstie, 2000). 

The ontological appropriateness quality (Krogstie, 

2000) refers to how well and useful the ontology 

supports understanding and shared reasoning 

between stakeholders. A lack of truthfulness renders 

a model expressed in the ontology useless. A lack of 

appropriateness renders a model less valuable. 

Because we know that our US ontology (which 

is the notion of enterprise ontology according to the 

-theory) has the C4-ness qualities, it is possible to 

design a high quality modeling language L, in which 

enterprise ontological models can be expressed. So, 

L comprises the diagrams, tables, and other model 

representations of DEMO. The specification (S) of 

the ontological model of an enterprise (M) in L is 

called the DEMO model of the enterprise. For every 

(DEMO) model M there is one and only one 

specification S in L. Every specification S is 

interpreted as one and only one (DEMO model) M. 

Put differently, S is equivalent to one and only one 

specific DEMO model, and vice versa. 

We have also developed an XML-based 

language, called DMOL (DEMO Modeling 

Language) of which the metamodel is isomorphic to 

the metamodel of L. Specifications in our L are 

automatically transformed into DMOL 

specifications, after a specification S in L has been 

input into the DEMO processor. This process is 

model translation, not programming. Subsequently, 

the DEMO processor (Section 4) can execute the 

specification and make it operational. 

In order to arrive at high quality specification 

languages, Guizzardi (2005) postulates a cardinality 

law that guarantees that anomalies such as construct 

excess and construct overload are eliminated: 
 

m : M : S = 1 : 1 : 1   [Cardinality law] 

It states that for every phenomenon m (in our 

case: an enterprise), there is one and only one model 

M (in our case: the enterprise ontological, i.e. the 

DEMO, model of the enterprise). Next, every model 

M is represented by one and only one specification S 

in L (in our case: the specification of the DEMO 

model in the DEMO language, later on transformed 

into DMOL). Conversely, every model specification 

in L represents one and only one model M (in our 

case: one DEMO model). Guizzardi states that if the 

cardinality law applies to the US ontology C and the 

language L, then there are valuable advantages; 

lucidity, ontological clarity and the elimination of 

construct overload and construct excess. Every 

model M can directly be mapped to a specification 

S, which is a straightforward process. This applies 

also to the atomic model elements and relations of C 

and the language primitives and constructs of L. 

4 THE DEMO PROCESSOR 

The DEMO processor (the OS software engine in fig 

2), executes (reads, writes, constructs, destroys) 

DMOL (XML DEMO Modeling Language) 

representations of the four DEMO aspect models 1; 

the Construction Model, the Process Model, the 

Action Model, and the State Model (cf. (Dietz, 

2006)).  

The DEMO model that executes a model is an 

EIS. The implementation is precisely in line with 

section 3, meaning that any DEMO model is 

equivalent - isomorphic to the software of the EIS of 

the enterprise and also isomorphic to the enterprise 

producing a production instance. The essence is that 

the ontological model is the executable software. 

4.1 Operation 

The DEMO processor executes the enterprise model 

dynamically and delivers simulation results for 

model validation and production. Dynamic 

simulation means that any changes of the dynamic 

state of the enterprise over time are immediately 

reflected in equivalent dynamic state changes of the 

model under execution, vice versa.  

At any moment the model under execution can 

be rendered as an DMOL XML file with full state 

information and temporarily stored in a model 

                                                           
1 Here we use the term ‘model’ also for a ‘specification 

expressed in a language’. From the context is clear what is 

meant. 

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

208



 

model rendering

==>

<--

parsing & 

model building

Simulation

results

Validation

Results

DEMO

Processor

DEMO 

4 aspect models

Actor 1
Communication

& Control

Actor n
Communication

& Control

1 .. n

Edit 

model

DMOL XML models

Repository

 

Figure 3: DEMO processor simulation and validation of an enterprise model. 

instance repository. DEMO models under execution 

can be linked / aggregated at runtime into 

aggregated models that represent production chains 

of enterprises of unlimited size.  

4.2 Enterprise Model Compliance En-
forcement 

Model execution delivers also a prescriptive 

specification of all allowed actor actions and 

prevents not allowed actor actions for each 

individual actor. DEMO models under execution are 

hence also a BPM (Business Process Model) 

execution machine, similar to a workflow system. 

Guerreiro (2011) investigated the DEMO processor 

as a role-based access control (RBAC) system. This 

is a control system enforcing model compliance of 

the enterprise to the model; the operaton of the 

enterprise cannot deviate from the model under 

execution. The workflow capability is completely 

calculated from the DEMO models, any BPM(-like) 

modeling is obsolete. At early development stages 

the models can be simulated for model validation, 

which supports a better business-IT alignment.  

4.3 Model Instance Driven Case Man-
agement Systems 

The EISs are characterized by the fact that the 

DEMO processor executes a model instance that is 

precisely related to a specific production instance. 

The model instance under execution represents in a 

truthful way the current production instance; any 

changes of the production instance, which is a state 

change of the production instance, is precisely 

calculated for the model instance under execution. 

In a large enterprise with many production 

instances, each of these production instances is in a 

unique state, more or less further advanced in 

production. The DEMO processor supports therefor 

model instance driven IT systems, also described as 

“adaptive case management systems”. 

4.4 Support for the Agile Enterprise 
and Evolving Information Systems 

An agile enterprise is defined as an enterprise that 

continuously scans its environment and adapts itself 

whenever the need occurs. Enterprise agility is 

supported by the adaptation of the EIS through 

redesigned enterprise models, enabled by this 

approach.  

5 CONCLUSIONS 

The first DEMO processor application in full 

production is an adaptive case management system 

for a public utility company. The production 

consists of complex document-based contracts, 

subjected to business rules. This casus shows 

feasibility as a production IT system. 

The business-IT alignment problem is addressed 

using an ontology with evidence of appropriateness. 

Direct execution of ontological models provides 

therefor a good degree of business-IT alignment of 

the EIS.  

The possibility of subjecting models to 

validation at a very early project stage supports also 

a good degree of business-IT alignment. 

The problem of uncontrolled software 

programming costs is addressed by the direct 

execution of DEMO models as the executable 

source code of the DEMO processor. In the first 

professional DEMO processor application, software 

programming is limited to interfaces with legacy 

systems etc; the core application is generated from 

models.  

The deterioration of software quality during 

ongoing modifications is eliminated since the 

Enterprise Ontology Driven Software Engineering

209



DEMO processor is strict Normalized Systems 

(Mannaert, Verelst, 2008) compliant.  

The DEMO processor offers also full workflow 

capabilities, elimination of anomalies such as 

deadlocks (Nuffel, 2009),  and  any  BPM(-like) 

modeling is obsolete.  

ACKNOWLEDGEMENTS 

The authors thank the Endinet staff, especially Mrs. 

Marjolein Sigmans, for their cooperation in the first 

professional DEMO processor based IT project. 

REFERENCES 

Ciao Consortium; online: www.ciaonetwork.org 

DEMO Knowledge Centre, Enterprise Engineering insti-

tute; http://www.demo.nl. 

Dietz J.L.G. Enterprise Ontology. 2006, ISBN-10 3-540-

29169-5, Springer Berlin Heidelberg New York. 

Gruber, T. R  ‘A Translation approach to portable Ontolo-

gy Specifications’, 1993, Knowledge Acquisition, 

5(2): 199-220, 1993. Knowledge Systems Laboratori-

um, Computer Science Department, Stanford Univer-

sity. 

Guerreiro, S. Vasconcelos, A. Tribolet, J. Adaptive Ac-

cess Control Modes enforcement in Organizations. 

Proceedings CENTERIS 2010, Springer-Verlag Berlin 

Heidelberg, Part II, CCIS 110, pp. 283–294, 2010. 

Guizzardi, G. Ontological Foundations for Structural 

Conceptual Models. 2005, PhD thesis, University of 

Twente, The Netherlands. ISBN 90-75176-81-3. 

ITGI, The IT Governance Institute. (URL: http:// 

www.itgi.org/). 

Krogstie, J.  ‘Evaluating UML: A practical Application of 

a Framework for the understanding of Quality in Re-

quirements Specifications and Conceptual Modeling’. 

Norwegian Informatics Conference (NIK) 2000. 

Lehman M, ‘Program Evolution – Processes of Software 

Change’. 1985. MM Lehman LA Belady, 

Mulder, J. B. F. Rapid Enterprise Design. PhD thesis, 

2008. ISBN 90-810480-1-5. 

Mannaert H, and Verelst J, ‘Normalized Systems’, 2008.  

ISBN: 978 90 77160 008. J. Koppa, Kermt Belgium.  

Nuffel van D, Mulder H, van Kervel, S. 2009. ‘Enhancing 

the formal foundations of BPMN using Enterprise On-

tology.’ CAiSE CIAO 2009. 

Object Management Group Inc, 2009. Business Process 

Modeling Notation ( BPMN) Specifications. http:// 

www.omg.org/spec/BPMN/1.2/PDF/ (2009) 

Sauer, C., and Cuthbertson, C., November 2003, “The 

state of IT project management in the UK.” Templeton 

College, Oxford University. 

Standish Group, CHAOS Summary 2009, (http:// www1. 

standishgroup.com/newsroom/chaos_2009.php) 

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

210

http://www.demo.nl/
http://www.demo.nl/

