
Inverting Thanks to SAT Solving∗
An Application on Reduced-step MD⋆

Florian Legendre1, Gilles Dequen2 and Michaël Krajecki1
1UFR Sciences, University of Reims Champagne-Ardennes, Moulin de la Houssse, Reims, France

2MIS, University of Picardie Jules Verne, Amiens, France

Keywords: Logic, Cryptanalysis, Hash Function, MD5, Satisfiability.

Abstract: The SATisfiability Problem is a core problem in mathematical logic and computing theory. The last decade
progresses have led it to be a great and competitive approach to practically solve a wide range of industrial
and academic problems. Thus, the currentSAT solving capacity allows the propositional formalism to be an
interesting alternative to tackle cryptanalysis problems. This paper deals with an original application of the
SAT problem to cryptanalysis. We thus present a principle, based on a propositional modeling and solving, and
provide details on logical inferences, simplifications, learning and pruning techniques used as a preprocessor
with the aim of reducing the computational complexity of theSAT solving and hence weakening the associated
cryptanalysis. As cryptographic hash functions are central elements in modern cryptography we choose to
illustrate our approach with a dedicated attack on the second preimage of the well-knownMD⋆ hash functions.
We finally validate this reverse-engineering process, thanks to a genericSAT solver achieving a weakening of
the inversion ofMD⋆. As a result, we present an improvement of the current limit of best practical attacks on
step-reducedMD4 andMD5 second preimage, respectively up to 39 and 28 inverted rounds.

1 INTRODUCTION

The SATisfiability Problem (short forSAT) is a well-
known decision NP-Complete problem (Cook, 1971).
The interest in studyingSAT has grown significantly
over the last years because of its conceptual simplic-
ity and ability to express a large set of various prob-
lems. Within a practical framework, a lot of works
highlight SAT implications in ”real world” problems
as diverse as planning (Kautz and Selman, 1996),
model checking (Biere et al., 2006), VLSI design and
also cryptography (Potlapally et al., 2007; Massacci
and Marraro, 2000) . . . In recent years, several im-
provements dedicated on the one hand, to the original
backtrack-searchDLL procedure (Davis et al., 1962),
and on the other hand to the logical simplification
techniques (Bacchus and Winter, 2003) have allowed
SAT solvers to be very efficient in solving huge prob-
lems from industrial areas (Zhang et al., 2001). In
addition cryptography remains ubiquitious and cryp-
tographic primitives (cryptosystems) play a key role
in computer security. Cryptanalysis usually refers to
all techniques that measure the security of a primi-
tive with a view to finding weaknesses in it that will
∗This work is partly supported byDGA

facilitate the retrieval any of secret information. Sev-
eral general approaches have been proposed over the
years such as differential (Biham and Shamir, 1990)
or linear (Matsui and Yamagishi, 1992) ones. This
paper focuses on a particular type of algebraic crypt-
analysis which consists in measuring the security of a
cryptosystem thanks to a two-steps process following
a boolean modeling and then a dedicatedSAT solving.
This was first described in (Massacci and Marraro,
2000) and namedlogical cryptanalysis. The model-
ing phase is to express,in extensoand independently
from the solving phase, the algorithmic process asso-
ciated to a cipher primitive, a hash function or more
generally a dedicated attack, to a set of boolean equa-
tions (aSAT formula) describing the whole process
where the sequentiality disappeared. In this way, the
solving phase is to estimate the security of theSAT

modeled attack by finding a solution thanks to aSAT

solver.

1.1 About Logical Cryptanalysis

Recent tremendous progresses of theSAT community
on practical solving allowed some promising logi-
cal cryptanalysis results. First, (Massacci and Mar-

339Legendre F., Dequen G. and Krajecki M..
Inverting Thanks to SAT Solving - An Application on Reduced-step MD*.
DOI: 10.5220/0004077603390344
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 339-344
ISBN: 978-989-8565-24-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

raro, 2000) proposed a first logical cryptanalysis at-
tack on the U.S. Data Encryption Standard algorithm.
The idea was to find out the cipher key by instanc-
ing the variables corresponding of input/output plain-
texts thanks to aSAT encoding of the stream cipher.
Afterwards, (Mironov and Zhang, 2006) modeled a
whole differential path for the best known hash func-
tions (MD⋆ andSHA-⋆) into a boolean circuit and ob-
tained conclusive results by using some of the best
SAT engines. In (De et al., 2007), the authors tack-
led the second preimage of reduced version ofMD4
and MD5. Their encoding enables them to break
the second preimage of 28-step-reducedMD4 and a
26-step-reducedMD5 thanks toSAT solving. They
also improved their attack against a 39-step-reduced
MD4 by adding some information from the Dob-
bertin’s attack (Dobbertin, 1996). Attacks on pseudo-
preimage (Sasaki and Aoki, 2008; Aumasson et al.,
2008) or partial pseudo-preimage (Leurent, 2008) are
a hopeful way to weaken cryptographic functions.Fi-
nally, note to date the best results ofMD⋆ cryptanaly-
sis remain attacks by collisions (Wang and Yu, 2005;
Klı́ma, 2005; Yu and Wang, 2007; Wang et al., 2009).

1.2 Our Approach

This paper deals with a logical cryptanalysis of hash
functions ofMD⋆ family. The main contributions are
aboutSAT encoding of theMD4 andMD5 primitives
on which we apply some logical inference rules. We
then illustrate our approach by improving, than to par-
allel SAT solving, the current limit of best practical
attacks on step-reducedMD4 andMD5 second preim-
age, respectively up to 39 and 28 inverted steps.

The paper is organized as follows: In section 2,
we present some definitions and outline the benefits
of a SAT encoding within the context of the inversion
problem. In section 3, we describe a dedicatedSAT

encoding ofMD5 hash function. As an illustration of
this technique, we describe the method to obtain an
encoding of a classical adder circuit and then show
how SAT solving can be useful for inverting a hash
function. The section 4 presents some results about
breaking reduced-stepMD4 andMD5 thanks to paral-
lel SAT solving. Finally, the section 5 concludes about
our works and opens future works.

2 BACKGROUND

2.1 Brief Overview of the SAT Problem

Let V = { v1, ..., vn } be a set ofn boolean vari-
ables. A signed boolean variable is named aliteral.

We denote,vi andvi the positive and negative liter-
als referring to the variablevi respectively. The lit-
eral vi (resp. vi) is TRUE (also saidsatisfied) if the
corresponding variablevi is assigned toTRUE (resp.
FALSE). Literals are commonly associated with logi-
cal AND andOR operators respectively denoted∧ and
∨. A clauseis a disjunction of literals, that is for in-
stancev1 ∨ v2 ∨ v3 ∨ v4. Hence, a clause is satisfied
if at least one of its literals is satisfied. ASAT formula
F is usually considered as a conjunction of clauses
and said underConjunctiveNormalForm (CNF). Con-
sequently,F is satisfied if all its clauses are satisfied.
SAT is the problem of determining if exists an assign-
ment ofV on {TRUE, FALSE} such as to make the
formulaF TRUE. If such an assignment exists,F is
said SAT and UNSAT otherwise. In the following, 1
(resp. 0) could meanTRUE (resp.FALSE).

In order to solve theSAT problem, two classes of
techniques are commonly used by the community.

• Completeapproaches guarantee an answer in a fi-
nite but exponential runtime. These methods are
mainly based on theDLL (Davis et al., 1962) algo-
rithm which consists in a systematic enumeration
of truth assignments thanks to a binary search-
tree. We choose to use this type of solving ap-
proach within the context of this paper.

• IncompleteSAT solving methods are those that
cannot guarantee an answer in a finite runtime.
Among the incomplete approaches toSAT solv-
ing, one of the most efficient is based ongsat
andwalksat algorithms which can be briefly de-
scribed as noisy and greedy searches into the
search-space. The reader should refer to (Biere
et al., 2009) for more details.

2.2 Cryptographic Hash Functions

Cryptographic hash functions are central elements of
modern cryptography. A hash function can be de-
fined as a deterministic process that generates a fixed-
length bit string, usually nameddigest, from any-
length bit string also named themessage. It is com-
monly used for integrity checking of files or commu-
nications but also in authentification protocols. It is
interesting to notice for a given message, a crypto-
graphic hash function computes a unique digest. On
the other hand, a single digest could be associated to
several messages. Two different messages hashing the
same digest is acollision. Finally, a process that leads
to yield a message from a given digest faster than ex-
haustive search is apreimageattack.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

340

2.3 About MD5

MD5 was designed in 1991 by Ron Rivest as an
evolution of MD4, strengthening its security by
adding some improvements. The operating princi-
ple of this function is based on the Merkle-Damgard
model (Merkle, 1989; Damgård, 1989) and consists
in a hashing process where four states are initialized
and then modified at each of the 64 steps.

The compression function is required to satisfy
three properties : (i) Collision Resistance, (ii) Second
Preimage Resistance and (iii) Preimage Resistance.

A step is determined as follows :

Si ← Si−4 + f (Si−1, Si−2, Si−3) + W[j] + T[i]

Si ← Si ≪ r i

Si ← Si + Si−1, i ∈ { 1, ...,64}

where :

• Si is the current state.S−3,S−2,S−1,S0 are the IV.

• W[j] is the jth word of 32 bits,j ∈ { 0,1, ...,15},
from the input message.

• T[i] among 64 predefined constants

• f a non-linear function∈ { F, G, H, I}

• ≪ r i the circular shifting to the left(rotating) byr i
bits position.

The non-linear functions are defined by:

F(x,y,z) = (x∧ y) ∨ (x∧ z) ; G(x,y,z) = F(z,x,y)
H(x,y,z) = x⊕ y ⊕ z ; I(x,y,z) = y⊕ (x ∨ z)

More generally, a step computation merely con-
tains an addition of four operands, a circular shifting
to the left and an addition of two operands (See Fig.1).
At the end of the process, an ultimate addition be-
tween the last states and the initial values is computed.
From this results theMD5 digest.

Non linear

function

Si

Si-2

Si-1

Si-3

W[m] T[j]

ri

Figure 1: Hashing process ofMD5.

3 ABOUT SAT ENCODING OF MD 5

Even, if few works exists on this subject, a good mod-
eling can be crucial to decrease the runtime of aSAT

instance. This section is about theSAT encoding of
the well-knownMD5 function.

3.1 Some Logical Simplifications

SAT can be seen as a tool allowing to express any
problem thanks to boolean equations. The solving
of such an instance is achieved with a dedicatedSAT

engine (also namedsolver) that deals with reasoning
techniques from I.A. Within this framework, infor-
mation is treated by adding pertinent clauses and
removing redundant information thanks to logical
simplifications. Consider the formulaF having
the following clauses, and look at three interesting
logical simplifications:

c1 = (a∨b) c2 = (b∨c)
c3 = (c∨d) c4 = (a∨d∨e)
c5 = (b∨c∨ f) c6 = (e∨ f ∨g)
c7 = (e∨ f ∨g)

• Observe that c5 is equal to (c2∨ f). In this case,
c5 contains as much information as c2 and if c2 is
satisfied, necessarily c5 is satisfied too. This well-
know process is called asubsumption, and since
c2 subsumec5, c5 is withdrawn.

• Now focus on c6 and c7 and note these clauses dif-
fer only in the signedness of the variableg. This
scheme is known asresolution. From this spe-
cial scheme, a new clause namedresolventcan
be generated and consists of all the variables of
the two previous clauses except the one that dif-
fers in signedness. Hence, we can add the clause
c8 = (f ∨ g). c8 contains as much information
as in c6 and c7 . Moreover, in that case, c8 sub-
sumesboth c6 and c7 and could be helpful within
the solving.

• Finally, note if a =FALSE then by propagation
b = c = d = e=FALSE. In this sense, we have
(a ⇒ e) and its corresponding clause(a∨ e).
This is a pertinent clause to add, because it repre-
sents also the relation (e ⇒ a) and before adding
it, from e it was impossible to deduce something
abouta.

RegardingMD5, the hashing process is composed of
three operations: an addition of four operands, a cir-
cular shifting and an addition of two operands. We de-
scribe an encoding of each of these components into
the most compressive expression. A noteworthy point
by modelingMD5 into aSAT formula is that the gen-
erated instance keeps starting features from the initial
cipher function, especially its behavior, its statistical
data and its cryptanalytic weaknesses.

3.2 The Addition of Two Operands

To implement the addition of two operands, we di-
rectly express intoSAT clauses the logical rules as-

Inverting�Thanks�to�SAT�Solving�-�An�Application�on�Reduced-step�MD*

341

sociated to the classical arithmetical addition. In
this sense, and considering a simple adder circuit,
this can be seen as two operations of implications:
(operands)⇒ (sum) and (operands)⇒ (carries). A
modeling of this simple adder is presented on Fig.2,
wheresi corresponds of the sum ofai andbi , andci+1
is the ouput carry generated by this addition. Arrows
represent generation of carries, from one adding col-
umn to the corresponding next one. Based on this
model, we set up the associated boolean truth table.
In white cases, the input variables and in gray, the
output variables. Finally, this table describes the in-
ference rules that define the reasoning of an addition
of two operands. Then, we conclude in a generation

ai

ci

bi

si

ci+1

aici bi si

00 0 0

00 1 1

10 0 1

0

0

0

ci+1

10 1 0

01 0 1

01 1 0

1

0

1

11 0 0

11 1 1

1

1

Figure 2: Model of an addition of two operands and its core-
sponding truth table of two 1-bit operands.

of SAT equations, where from each line of the table
corresponds two clauses (one clause to each output
variable). For instance, letci , ai, bi , ci+1, si be five
boolean variables, the second line of the table in Fig.2
can be read asci = 0, ai = 0, bi = 1 impliesci+1 = 0
andsi = 1. This can be formulated as follows:

(ci ∧ai ∧bi ⇒ ci+1)∧ (ci ∧ai ∧bi ⇒ si)

And then:

(ci ∨ai ∨bi ∨ci+1)∧ (ci ∨ai ∨bi ∨ s)

This type of algebraic modelisation leads to lost
the notion of temporality during the solving process.
We propose to illustrate this crucial point with an in-
stance of a 4 bits addition with holes. We denote by
xi the variablex∈ {c,a,b,s} at the indexi.

op a

op b

sum s

1

-

-

1

-

-

1

-

-

1

-

1

0

-

-

1

3 12 0Index

+

=

car c

Figure 3: Holed addition of two binary operands.

Mathematically, looking at the Fig.3 it is quite
easy to seea≥ 100(2), b≥ 10(2), eithera or b is odd
ands∈ {((1)1101)(2),((1)1111)(2)}. However, it is
not so easy to export something from the row of the
carries becausec depends ofa, b andc. Note also

that work in binary field leads to have a very detailed
notion of carries while it’s not the case from a larger
scale. Moreover, inSAT, as the reasoning is logical
we deduce some other bits. Firstly, fromc0 ands0,
we can deducec1 = 0 and fromc3, a2 ands3, we can
infer c2 = b2 = 1. Accordingly, only four solutions
stay possible:

(a,b) ∈ {(0110,0111)(2),(1110,1111)(2),

(0111,0110)(2),(1111,1110)(2)}

3.3 Modeling the Four Operands
Addition

To implement the four operands addition we need to
consider that two levels of carries is outputed. There-
fore, as for the addition of two operands, carries in
output must be considered as input in the next row.
Consequently, the addition of four operands becomes
an addition of six operands (See Fig.4).

Ai

ca1i

Bi

sCi

Di

Si

ca2i

ca1i+1

Ai-1

ca1i-1

Bi-1

sCi-1

Si-1

ca2i-1ca2i+2 ca2i+1

Di-1

Figure 4: Model of an addition of four operands.

3.4 The Non-linear Functions

Anchored in each of the 64 steps, non-linear functions
are another mean to give rise to chaos and strengthen
to the MD5 cipher. Although the logical formalism
of these functions is an additional constraint to the
cryptanalysts, for us it’s an advantage as we just need
to add them to our modeling.

3.5 Modelisation ofMD⋆

Following the previously described method, thanks to
all the bricks we define, we are able to model the
whole MD5. These components are then cimented
during the generation of clauses thanks to the variable
encoding. Finally, the completeMD5 process consists
in a SAT formula with 12,721 variables and 171,235
clauses. In the same way, we use this framework to
generateSAT formula for the completeMD4 and some
reduced instances for bothMD5 andMD4.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

342

4 RESULTS

In order to tackle the second preimage ofMD⋆, we
first generate a formula representing a reduced-step
process of the hash function and secondly instance
variables corresponding to a particular digest. Thanks
to some of reasoning techniques described in the sec-
tion 3 the formula is preprocessed to decrease its prac-
tical complexity. The resulting formula is then solved
with a SAT engine. In our knowledge, the best prac-
tical result of a second preimage attack of reduced
versionMD⋆ is described in (De et al., 2007). They
broke 1 round 12 steps ofMD4 and 1 round 10 steps
of MD5. With our approach, we break 1 round 15
steps forMD4 and 1 round 12 steps forMD5 in a few
minutes. Our benchmarks have been achieved on a
Westmere-EP 12 cores thanks toplingeling (Biere,
2010) for bothMD4 andMD5. Hereafter, some results
input/output values, in big endian, where the digests
correspond to the ones obtained after the last addition
of theMD⋆ algorithm.

1 round 15 steps onMD 4

Fixed Hash:
0x00000000 0x00000000 0x00000000 0x00000000
Input found:
0x184937d5 0x6348828c 0x65e7547c 0x0201b903
0xba4f5298 0x12edc6df 0xbbe4a23e 0xa4c25972
0x5d9019f8 0x40bd880b 0x352f6960 0xbcb22ec4
0x43e0debc 0x0a4838d4 0xdf6a3b9f 0xcec88113

1 round 12 steps onMD 5

Fixed Hash:
0x01234567 0x89abcdef 0xfedcba98 0x76543210
Input found:
0x0bd86c16 0x6dea158a 0x3fea904c 0x5930a4a1
0xf733709c 0x7e818951 0xdc6f481b 0x21f85c42
0x7a6b2051 0x09762af5 0xbf21286b 0xb70fe9bc
0xb6e76e81 0x0ba31a2c 0x71512697 0xbc2931af

We are also interested in the evolution of the run-
time relative to the number of steps modeled. We
draw these observations in Fig.5, achieved on an av-
erage of several instances.

For bothMD4 andMD5 an exponential growth of
the runtime according to the number of steps modeled
is observed. In this manner, these hash functions are
a priori relatively secure against preimage attacks by
SAT SOLVER. However, the solving method presented
in this paper is near from a brute-force attack in that
the generatedCNF just represents the hashing process
with a fixed-hash. To improve our results, we should
add some pertinent information to reduce the search

Figure 5: Runtime for solving reduced-stepMD4.

space. In this way, we transpose the Dobbertin’s al-
gebraic attack (Dobbertin, 1996) to our reduced-step
MD4 formulae.

Improving Attacks

A good mean to improve our preimage attack is to use
some tricks of crytanalysts. As in (De et al., 2007),
we used the Dobbertin’s attack by instantiating some
variables. More precisely, let be Qi , the modified state
at the stepi ∈ {1, ...,64}, and Mj the jth input 32-bit
sub-block,j ∈ {0, ...,15}. We fixed:

• Q14, Q15, Q17 = 0x00000000

• M1, M2, M4, M5, M6, M8, M9, M10 = 0xa57d8667

By propagation, we also have:

• Q18, Q19, Q21, Q22, Q23, Q25, Q26, Q27 =
0x00000000

The instance is preprocessed, reduced to its most
compacted expression andplingeling is then appli-
cated in order to find a solution. Our best result for
MD4 was improved from 1 round 12 steps to 2 rounds
7 steps. Hereafter an example of a input/output value.

2 rounds 7 steps onMD 4

Fixed Hash:
0x00000000 0x00000000 0x00000000 0x00000000
Input found:
0x321838cd 0x67867da5 0x67867da5 0x4bd844ff
0x67867da5 0x67867da5 0x67867da5 0x60babe30
0x67867da5 0x67867da5 0x67867da5 0x2e731890
0xb84655eb 0x1094c071 0xce0cfe36 0x0252233c

We focus on the evolution of the runtime of
our solved instances and note the representative
curve is very special. Indeed, there is a gap between
steps 35 and 36, then the runtime is quasi-linear to
39 steps and a gap is again observed to up to 40
steps (unsolved after several hours of computation).
This is due to the search space is correlated to the
steps affected by the Dobbertin’s attack. In fact,
Dobbertin’s attack fix some input sub-blocks that
appear at steps 34, 35, 37, 38, 39, 41,. . . Note, steps

Inverting�Thanks�to�SAT�Solving�-�An�Application�on�Reduced-step�MD*

343

Figure 6: Runtime for reduced-stepMD4 + Dobbertin’s at-
tack.

36 and 40 are not in this set that is why constraints
are more numerous and the search space is decreased.

5 CONCLUSIONS

In this paper, we considered second preimage attack
againstMD⋆. Our work is based on logical cryptanal-
ysis and described a two phases approach. As a result,
we broke step-reduced instances for bothMD4 and
MD5 and improved results in existing practice (See
Table.1). Since many other hash functions likeRIPE-
MD, TIGER, SHA-⋆ are built on the same schema as
MD4, our angle of view is hopeful to be generalized.
Indeed, we show an application ofSAT as a great tool
to cryptanalyse hash functions. Furthermore, our in-
stance combined with added information led us to be-
lieve we could improve our attack. From our studies
or from the literature aboutMD⋆, we can adapt and
exploit weaknesses of hash functions to enrich our re-
verse engineering.

Table 1: Practical attacks on step-reducedMD4 and
MD5 second preimage.

Type of CNF In [*] Our attack
MD4 Brute force 28 steps 31 steps
MD4 + info up to 39 steps up to 39 steps

MD5 Brute force 26 steps 28 steps
MD5 + info X X

[*] (De et al., 2007)

REFERENCES

Aumasson, J., Meier, W., and Mendel, F. (2008). Preim-
age attacks on 3-pass haval and step-reduced md5. In
Selected Areas in Cryptography, pages 120–135.

Bacchus, F. and Winter, J. (2003). Effective preprocessing
with hyper-resolution and equality reduction.

Biere, A. (2010). Lingeling, plingeling, picosat and pre-
cosat at sat race 2010. InTech. Rep. 10/1, FMV Re-
ports Series, Johannes Kepler University, Altenberg-
erstr. Linz, Austria, pages 244–257.

Biere, A., Heljanko, K., Junttila, T., Latvala, T., and Schup-
pan, V. (2006). Linear encodings of bounded LTL
model checking.Logical Methods in Computer Sci-
ence.

Biere, A., Heule, M. J. H., Maaren, H. V., and Walsh, T.,
editors (2009). Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Appli-
cations. IOS Press.

Biham, E. and Shamir, A. (1990). Differential cryptanalysis
of des-like cryptosystems. InCRYPTO, pages 2–21.

Cook, S. A. (1971). The Complexity of Theorem Proving
Procedures.In 3rd ACM Symp. on Theory of Comput-
ing, Ohio, pages 151–158.

Damgård, I. (1989). A design principle for hash functions.
In CRYPTO, pages 416–427.

Davis, M., Logemann, G., and Loveland, D. (1962). A Ma-
chine Program for Theorem-Proving.Journal Associ-
ation for Computing Machine, (5):394–397.

De, D., Kumarasubramanian, A., and Venkatesan, R.
(2007). Inversion attacks on secure hash functions us-
ing satsolvers. InSAT, pages 377–382.

Dobbertin, H. (1996). Cryptanalysis of md4. InFSE, pages
53–69.

Kautz, H. and Selman, B. (1996). Pushing the envelope:
Planning, propositional logic and stochastic search. In
Proc. of 30th national AI and 8th IAAI.

Klı́ma, V. (2005). Finding md5 collisions on a notebook pc
using multi-message modifications. InIACR Cryptol-
ogy ePrint Archive, page 102.

Leurent, G. (2008). Md4 is not one-way. InFSE, pages
412–428.

Massacci, F. and Marraro, L. (2000). Logical cryptanalysis
as a sat problem.J.Autom.Reasoning, pages 165–203.

Matsui, M. and Yamagishi, A. (1992). A new method
for known plaintext attack of feal cipher. InEURO-
CRYPT, pages 81–91.

Merkle, R. (1989). One way hash functions and des. In
CRYPTO, pages 428–446.

Mironov, I. and Zhang, L. (2006). Applications of sat
solvers to cryptanalysis of hash functions. InSAT,
pages 102–115.

Potlapally, N. R., Raghunathan, A., Ravi, S., Jha, N. K.,
and Lee, R. B. (2007). Aiding side-channel attacks on
cryptographic software with satisfiability-based anal-
ysis. IEEE Trans. VLSI Syst., 15(4):465–470.

Sasaki, Y. and Aoki, K. (2008). Preimage attacks on step-
reduced md5. InACISP, pages 282–296.

Wang, X. and Yu, H. (2005). How to break md5 and other
hash functions. InEUROCRYPT, pages 19–35.

Wang, X., Yu, H., Wang, W., Zhang, H., and Zhan, T.
(2009). Cryptanalysis on hmac/nmac-md5 and md5-
mac. InEUROCRYPT, pages 121–133.

Yu, H. and Wang, X. (2007). Multi-collision attack on the
compression functions of md4 and 3-pass haval. In
ICISC, pages 206–226.

Zhang, L., Madigan, C., Moskewicz, M., and Malik, S.
(2001). Efficient conflict driven learning in a boolean
satisfiability solver. InICCAD, pages 11–16.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

344

