
A New Paradigm for Web App Development, Deployment,

Distribution, and Collaboration

Chao Wu and Yike Guo
Department of Computing, Imperial College London, London, U.K.

Keywords: Web Application, Web Development, Cloud-enabled Web Application.

Abstract: Web application is getting great prosperous while web browser is becoming one of the most important

platforms not only on PCs, but also on mobile devices. And web application producing and consuming are

going through a process of transformation sharped by the trends including Cloud computing, social

networking, online application store, etc. It’s necessary to look at the whole web application paradigm and

get vision for its future. In this paper, we gave our insight on the web application paradigm, discussing its

aspects of development, deployment, distribution, economic model, cloud platform, social diffusion and so

on, and represent both the architecture and implementation based on our understanding.

1 INTRODUCTION

Web browser is becoming a key platform for

applications. And Web applications have a superior

position in gathering users, and have advantages

including platform independency, no client side

deploying, better accessibility, etc. So they are

important for both producers and consumers.

Producers would like to deliver utility through Web

application to user, and gain considerable profit as

return. And users would like to gain utility to fulfil

their requirements within an acceptable budget. We

believe current paradigm of Web application cannot

fully fulfil demands from both sides.

For producers, their requirements include:

 Development: Web development could be

easier and take less time, if reusability could

reach a new level, and if much manual work

could be done automatically.

 Deployment: Deployment costs a lot of time

and money (for setting up machine, OS, Web

application server, database, libraries, domain

name, building environment, etc.).

 Scaling up: When user amount booms,

deployment server needs be to scale up easily.

 Distribution and promotion: it’s a challenge

for producers to sell and promote their

applications. They might spend a lot of time

on tasks like SEO, trying to get attention from

users.

 Understanding users’ requirement: developers

normally cannot meet users, and sometimes

can hardly understand users, which hinder

them from developing desired application.

 Cost and risk: Development, deployment,

scaling up, distribution, and all these activities

cost money. And the risk is that we do not

know whether the application would success

while spending money.

 Credit and reputation: Producers need to build

reputation among users, and their credit could

be an important indicator for collaboration in

developer community.

For consumers, their requirements include:

 Utilities and performance: Web application is

a mean of delivering utilities. User pays for

the utility they want, not those useless

functions. Also the performance should be

promising: a large amount of users would not

affect individual access.

 Accessibility: Web application should be

attached to a user, not a browser. Users access

their applications like their own instruments

whenever needed.

 Low cost: User just pays for the utility they

get. And there should have multiple pricing

schemas for an application to fit different

usage pattern.

 Participation: Users should be able to

participate application’s evolution, through

mechanism like social rating and feedback.

433Wu C. and Guo Y..
A New Paradigm for Web App Development, Deployment, Distribution, and Collaboration.
DOI: 10.5220/0004072904330438
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 433-438
ISBN: 978-989-8565-19-8
Copyright c
 2012 SCITEPRESS (Science and Technology Publications, Lda.)

User can claim their requirements to

encourage the producing of new application.

Also users can share or recommend

applications to their social network.

To meet these requirements, many technologies

have emerged in recent years:

 Cloud computing: Cloud computing (Hayes,

2008; Armbrust et al. 2009) provides a new way

of delivering computing as a service. It

enables the elasticity for resource

consumption, which is necessary in Web

application development in different levels: in

infrastructure level, services like Amazon EC2

allow developers to rent virtual computers to

host their Web applications; in platform level,

services like Google App Engine enable the

development and deployment in centrally

managed data centre. There are some other

services on Cloud designed for Web

application development, such as database

(Hacigumus, 2002) and testing. Notably, a few

platforms labled ”Cloud Enabled Application

Platform” (Natis et al., 2010) emerged.

 Tools for automation: The dream of

application development without programmers

was proposed many years ago (Martin, 1982).

Since then, many automatic methodologies

and tools are proposed and realized, such as

MDA (Sendall and Kozaczynski , 2003), and

tools like maven and jenkins. Now, the whole

producing cycle of Web application is

supported by these automatic methodologies

and tools.

 Web application marketplace: Both consumers

and producers benefit from the idea of

application store as a distribution platform.

Majority of application stores are distribution

platforms for mobile application, with the

model of distributing digital copies of mobile

applications and then installing them on users’

devices. But Web application means a

different story: the marketplace sells the utility

of the application, rather than copies.

 Social application: Many works have

discussed the impact of social network on

product diffusion. Web application could also

be promoted and diffused through social

networking approach. Facebook made this

approach real and popular. Currently, there are

many social games and other Web

applications relying on Facebook to gather

users.

These approaches facilitate the development of

Web application. However, concentrating on a

single aspect, rather than considering them as a

whole, limits their effects. For example, if there is

no economic consideration of distributing during

development phase, the application would be not

flexible for different pricing schemas. As a result,

we must consider these trends as a whole paradigm

for Web application. For such paradigm, we believe

four principles should be emphasized according to

our vision:

 Utility. Utility refers to the satisfaction

received from consuming a Web application.

Computation is about converting resources to

utilities, and delivering utilities to consumers.

The application producer consumes resources

from resource provider (such as cloud

provider), convert the resource (computation,

storage, etc.) with business logic to build a

service to deliver utility. Web application

consumer uses a Web application to gain the

utility without caring about the underlying

resource or way’s of constructing application.

So in designing Web application paradigm,

it’s crucial to make sure that it facilitates the

conversion and delivery of utility.

 Economics. Economic mechanism should be

adopted to drive the whole paradigm: 1)

producer would like to maximize its profit

with the budget of resource consuming for

converting a certain amount of utilities; 2)

consumer would like to maximize received

utilities within the budget of application

consuming. Consuming of both resources and

applications should have the properties of

elasticity, which means paying by their usage.

This ’pay by usage’ principle should be

considered not just in phase of distribution and

promotion, but also in development and

deployment.

 Automation. Many activities of Web

application producing could be standardized

and automatized, which increases the

reusability, lowers the cost, and saves the

time. For standardization and automation, it’s

important to design a platform rather than a

set of tools.

 Social Network. Applications are built for

users, and users make applications alive.

Users should be able to share applications and

recommend them to the others. They help the

evolution of an application by giving

feedback, requesting new feature, and

purchasing it. Users and developers should be

able to communicate with each other

efficiently. So it’s necessary to adopt a social

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

434

network as a communication and collaboration

infrastructure to support the whole paradigm.

According to these principles, in this paper we

design an architecture and example system to

demonstrate our vision of new Web application

paradigm. Our architecture of new Web application

is presented in Section 2. And an implementation of

example system for demonstration and experiment is

described in Section 3. Finally, Section 4 gives the

conclusions and future work.

2 ARCHITECTURE

Based on the analysis before, in this section we give

reference architecture for Web application paradigm,

and the implementation would be presented in the

next section. The whole architecture is shown in

Figure 1, which could be viewed as four service sets

for development, deployment, marketplace, and

social network.

Figure 1: Architecture for Web application paradigm.

2.1 Development

Development should be done in an automatic

services aided environment to improve reusability

and productivity. These services include:

1. Initialization: Currently, to create a new Web

application, we need to setup the environment

containing OS, libraries, framework, Web server /

database server, etc. These preparation works would

be automatically done in a configured development

environment with necessary components, and then

delivered to developers with the form of 'Web

application template', which is the skeleton code for

a certain type Web application.

2. Management and teamwork: With this service,

developers could easily do the management job

including editing, testing, etc. These activities are

done with automatic tools support such as a

synchronized IDE workspace. And it's not necessary

for a project team to create and maintain its own

version control environment. Furthermore,

communication and collaboration features should

also be supported. Although there are lots of

communication and collaboration tools, it would be

better if they can be integrated with the development

environment.

3. Programming SDK: To fit the deployment,

marketplace, and social networking environment,

SDK should be provided to support: 1) the access to

the cloud service like data/storage, messaging, etc.;

2) the interfaces for marketplace like signal sign on,

usage monitoring, and restricted zone; 3) the

interfaces for social network like recommendation

and sharing; 4) the interoperability to support open

access.

4. Code marketplace: To improve the reusability,

a marketplace for source code could be provided,

where developers share or sell their codes and

components.

With these services, Web application

development would be done with the way shown in

Figure 2.

Figure 2: Web application development service.

2.2 Deployment

Automatic and continuous deployment is necessary

for Web application, making it easy to migrate from

development environment to deployment

environment, and from deployment environment to

application marketplace. It's desirable to utilize

Cloud infrastructure for deployment environment,

which overcomes the common problem of over-

provision or under-provision for Web application.

On Cloud, application server would be extended

with cloud-supporting functionality, such as

enabling multi-tenancy at the container level. Beside

application server, data/storage services are also

provided in cloud-based deployment environment.

We gave a design of extended application

container (EAC) in (Sijin et al., 2012).

Both the application server and data/storage

services should be implemented on the cluster, and

A New Paradigm for Web App Development, Deployment, Distribution, and Collaboration

435

support the function of resource monitoring and

dynamic provision. The cost of resource consuming

should be able accountable, and the deployment

ability can be scaled up or down when the users

request amount doesn't match the workload of

current deployment environment. With these

services, deployment would be done with the way

shown in Figure 3.

Figure 3: Deployment service.

2.3 Marketplace

Web application marketplace allows users to browse

and use Web applications either for free or at a cost.

Marketplace mechanism changes the ecology of

Web application producing and consuming as shown

in Figure 4. In traditional process of Web application

development and accessing, producers have an idea,

turn it to development activity, and deploy/publish

the application to the Web; Users have their demand

for some function, so they search or browse for

target application.

Figure 4: Change of ecology for Web application

producing and consuming.

It's not easy for the suppliers to meet the

requester. Marketplace provides a convenient place

for both sides to find each other. Users are easier to

find suitable application (through mechanisms in

marketplace like social rating, relevant app

recommendation, etc.). Producers could also quickly

find the demand from users.

Marketplace should be able to provide different

pricing schemas. Producers can choose one or

multiple pricing schemas suitable for their

application and then provide them to users. The

purchased applications can be accessed by users

through different forms of personal portal including

website, Web browser (with plug-in), and mobile

gateway application.

There should also be a crowdsourcing

marketplace for users to have a place to specify their

demand, and request developers to realize it. Some

successful examples of crowdsourcing platform

showed that using marketplace and economic

mechanism, producers would be well motivated and

organized.

2.4 Social Network

Social Network is a crucial infrastructure to support

Web application's distribution and collaboration,

providing following services:

 Application sharing.

 Application recommendation.

 Feedback and communication.

 Reputation and credit.

Summarization. With social networking infra-

structure, marketplace, and cloud-enabled applica-

tion development and deployment. The pattern of

Web application producing and consuming would

change, as shown in Figure 5. Marketplace and

social network are positioned in the centre, and

facilitate the flow of utilities, demands, resources

between consumer, producer, and application.

Figure 5: New pattern of Web application producing and

consuming.

3 IMPLEMENTATION

We implemented a platform for demonstration and

experiment, based on the principles and architecture

described before. The platform was built on IC

Cloud (Gu et al., 2010) as its cloud infrastructure,

and implemented with open protocols and tools

(including maven, jenkins, git, tomcat, etc.). The

platform has 6 subsystems, which would be

described below:

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

436

3.1 Development Service

This subsystem provides a set of automatic services,

which make Web application development easier

and cost less. Here are the main services in this

subsystem:

1. Web Application Template and SDK. In this

platform, developers start development by creating a

Web project through a few clicks on the website, or

through commend line, or through the eclipse plug-

in.

Programming templates are provided, including

"Spring Java framework", "GWT App", etc. In

templates, a programming SDK is included with

APIs for:

 Single sign-on: provides user management and

single sign-on function. With it, users on the

platform access all the applications without

creating additional account.

 Usage monitoring: helps the application to

notify and record when a user is gaining the

utility from the application. It's similar to the

process of declaring a database transaction.

 Restricted zone: lets the application to declare

some part of its function is restricted and

could only be accessed after users pay for it.

 Data and storage service: enables the

application to access data and storage services

provided by the platform.

 Other APIs include OAuth support, URL

fetch, etc.

These APIs are mainly Web services provided by

deployment environment, so a test server is provided

for local development.

2. Code Repository and Automatic Build. A

git repository is created automatically for a project.

Once codes are pushed to git repository, the platform

would build the project automatically. Jenkins with

plugins like POM is adopted, so reports for building

could be accessed. After build, the project would be

automatically deployed to deployment environment.

3. IDE Support and Test Server. We integrated

development services and a test server in Eclipse, so

user can 1) create a new project; 2) access a new

data/storage services; 3) version control with git; 4)

and push code for deployment in Eclipse.

3.2 Deployment Environment

This subsystem provides a convenient way to deploy

and scale up Web application, with Cloud

infrastructure. Specifically, several services are

provided:

1. Application server cluster and load balancer:

Httpd load balancer and tomcat cluster are used to

build application server cluster. Tomcat application

server is packaged in a VM image, and created and

clustered automatically when needed.

2. Data and storage service: Three types of data

and storage services are provided: RDBMS services

based on MySQL cluster, NoSQL data services

based on MongoDB, and S3 style storage services.

3. Resource monitoring and scaling-up/scaling-

down: JavaMelody is adopted to monitor Web

application in application server node. Once the

request amount exceeds the capacity of current

cluster, deployment environment would scale up,

which is mainly the processing of allocating new

application server nodes, adding them to the cluster,

and deploying the application to them.

Developer can view the current scale of

deployment, or set it.

4. Interface to application marketplace: After

deployment, producers can publish the application to

Web application marketplace. Different pricing

schemas are supported, and producers can set single

or multiple pricing schemas for their applications.

3.3 User Service

This subsystem provides consumer interface to

search, browse, purchase, and access Web

applications. It contains following services:

1. Application marketplace: Users search,

browse, and purchase the (usage of) Web application

they needed. Different pricing schemas could be

chosen. Users can view their report of usage, as well

as related applications, user ratings, and other

information. With single sign-on function, all the

users in the marketplace become the potential user

for the application. With usage API, the usage of

user on an application would be logged, and the

usage report and billing would be automatically

generated.

2. Personal portal: Purchased Web

applications would be accessible from users'

personal portal. Meta-data of the purchase would be

checked by a filter to assure the users' permission.

User can access his/her portal through multiple

approaches including website, Web browser

(through plug-ins), and mobile device application.

3.4 Social Networking Interface

Services for social networking are provided:

A New Paradigm for Web App Development, Deployment, Distribution, and Collaboration

437

1. Application sharing and social promotion:

Users can share and recommend their applications

for their friends in Facebook.

2. Social rating and developer credit: Users can

directly rate the application, or indirectly rate it

through purchasing, sharing, and recommendation.

These social rating would be used as the basis to

determine the developers' credit.

3. Communication system: Users and developers

can communicate with each other. Developers could

ask for advice while the application is still in

prototyping.

3.5 Crowd Sourcing

This subsystem provides a place for end users to

post their requirement, and motivate developers to

fulfil it. Users can submit a post in requirement

marketplace, specifying the application they want, as

well as the reward.

3.6 Development Marketplace

This subsystem is provided to encourage the sharing

and reuse of code. Developers could share their

source code, and other developers can search the

code, and reuse it.

4 CONCLUSIONS AND FUTURE

WORK

In this paper, we gave our vision of the new

paradigm for Web application, which is becoming

one of the most important types of application for

both users and developers. Our understanding of this

new paradigm emphasized the considerations of

utility, elasticity, economics, and social networking.

Based on these considerations, we designed

reference architecture and implemented an

experiment platform for demonstration. During the

presentation, we did not discuss much about the

technological detail, but tried to convey our overall

vision of this paradigm, because in practical

platform these details would very much.

For example, in our platform implementation, all

the services are included in a single system and

hosted in a signal data centre. However, in practice,

the whole paradigm could be formed with multiple

providers for different component, and hosted across

multiple data centres.

Many works are planned to be done in future,

such as how to federate the different service

providers to an integrated environment, how to

design a new type of copyright to fit the

crowdsourcing development, how to estimate the

application resources on the cloud so that application

producers can choose suitable pricing strategy, and

how to optimize the architecture of deployment

component during scaling-up. We would work on

these problems based this paper, and revise the

platform implementation continuously.

REFERENCES

Natis, Y. V., Pezzini, M., \& Knipp, E. (2010). Gartner

Reference Architecture for Cloud-Enabled Application

Platforms. Analysis, (July).

Guo, L., Guo, Y., \& Tian, X. (2010). IC Cloud: A Design

Space for Composable Cloud Computing. 2010 IEEE

3rd International Conference on Cloud Computing,

394-401. Ieee.

Hacigumus H. Providing Database as a Service. Data

Engineering. 2002.

Sendall S, Kozaczynski W. Model transformation: the

heart and soul of model-driven software development.

IEEE Software. 2003;20(5):42-45.

Hayes B. Cloud computing. Communications of the ACM.

2008;51(7):9.

Armbrust M, Fox A, Griffith R, et al. Above the Clouds :

A Berkeley View of Cloud Computing Cloud

Computing : An Old Idea Whose Time Has (Finally)

Come. Computing. 2009:07-013.

James Martin. Application Development without

Programmers. Prentice Hall PTR, Upper Saddle River,

NJ, USA, 1982.

Sijin H., Li G., Yike G., Chao W., Moustafa G. (2011).

Elastic Application Container: A Lightweight

Approach for Cloud Resource Provisioning. AINA-

2012

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

438

