
Sevigator: Network Confinement of Malware Applications and
Untrusted Operating Systems

Denis Efremov and Nikolay Pakulin
Institute for System Programming, Alexander Solzhenitsyn st. 25, Moscow, Russian Federation

Keywords: Virtualization-based Security, Network Access Control, Hypervisor, Virtual Machine Monitor, Virtualization,
Security, Privacy Protection.

Abstract: This project is an attempt to combine the advantages of software flexibility and security of hardware firewalls.
It aims at the implementation of these advantages in the hypervisor source code for the purpose of creating
user data confidentiality protection against its leakage from the personal computer through the network. The
hypervisor implementation is based on the hardware virtualization extensions of both processors and moth-
erboards. This constitutes a key feature, which enables hypervisor to combine the following advantages: the
advantages of access to the OS environment and hardware protection against various intruders’ methods of
compromise, including those capable of exploiting OS kernel resources for performing the malicious actions.

1 INTRODUCTION

Traditional firewalls provide only partial protection
from viruses and alikes, since they do not know ex-
act context for IP packets — whether the sender is a
trusted process or a malware, whether the contents of
the packet is valid or it is altered by a malicious soft-
ware. This statement holds for both bump-in-the-wire
firewalls that run on physically separate computer or
router, and firewalls running on the same network
node with the malware. The reason is that modern
monolithic OS grant low-level software virtually un-
bounded rights. If a malware managed to compromise
OS and installed a driver deep into the kernel, it can
either mimic a system process or even inject malware
code into running trusted application.

This paper presents Sevigator – a toolkit for net-
work confinement when only trusted application gain
access to local network while other application and
even OS kernel have no networking at all. Sevigator
is based on hardware virtualization support: a cus-
tom hypervisor hides network interface card from the
OS kernel and delegates network-related system calls
of trusted applications to a dedicated service virtual
machine. To prevent code injection or data alteration
by a malicious kernel code or driver the hypervisor
maintains integrity of the trusted applications bina-
ries, shared objects and in-memory data.

2 ARCHITECTURE

In Sevigator the hypervisor ensures simultaneous ex-
ecution of two virtual machines (VM), primary and
service, completely isolated from each other. The pri-
mary VM contains secured applications; it is the VM
that potential users have access to. The service VM is
designed to process network input/output for trusted
application of the primary VM. (Ta-Min et al., 2006);
(LeVasseur et al., 2004)

A user works in the primary VM, which controls
all devices except for the network adapter, through
which the information leakage might occur. The pri-
mary VM contains sensitive data, and software han-
dling this data (both trusted and untrusted). The data
are stored in a plaintext (unencrypted) form, and pro-
tection system does not limit read access of processes
(both system and user level) to these data making its
processing possible by any programs including un-
trusted ones.

When primary VM starts the hypervisor blocks
its access to the network interface. An OS running
in it believes a network adapter to be physically ab-
sent. Therefore any attempt to establish a network
connection from within this VM and transfer data to
the remote computer will unavoidably lead to an error.
Hence the malicious code running within the primary
VM with any level of hardware processor privileges
will not be able to transfer data, even though it man-
ages to get read access to it.

395Efremov D. and Pakulin N..
Sevigator: Network Confinement of Malware Applications and Untrusted Operating Systems.
DOI: 10.5220/0004070103950398
In Proceedings of the International Conference on Security and Cryptography (SECRYPT-2012), pages 395-398
ISBN: 978-989-8565-24-2
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



Among all user programs included in the primary
VM, a number of trusted programs is distinguished.
The service VM is used to provide network access
to them. This VM runs in background mode. Any
application within this VM can interact with remote
network computers.

The support of network communication for the
trusted applications is implemented by means of re-
mote servicing of the required set of system calls from
the primary VM to the service VM. The only data
communicated outside the primary VM are explicitly
specified by the arguments of a trusted process system
call. Transfer of data outside this VM is performed by
the trusted code - the hypervisor.

The trusted processes are executed under an un-
trusted OS. In the absence of proper control by the
security system, the malicious code in the OS kernel
can inject code into the address space of the trusted
process, pass control to it, and the trusted process in
its own name may send sensive data to a remote com-
puter controlled by intruder. To avoid this threat, se-
curity system protects the context of the trusted appli-
cation from an unauthorized modification by any code
in the primary VM, including privileged code.

3 PROTECTION OF THE
TRUSTED APPLICATIONS
CONTEXT

Malicious software in OS kernel has capabilities to al-
ter application’s executable file or modify the shared
libraries that the application uses. As a countermea-
sure we perform transparent validation of the appli-
cation’s executable file and its shared libraries when
a trusted application is being launched. Authenticity
is validated by means of secure control sums of the
pages of the memory-mappedfile of the application or
a library. Checksums are 160-bit SHA-1 hashes, one
for each page of static data and code in a binary file.
Checksum failure for at least one hash causes loss of
the trusted status of the application. The procedure of
checksum verification is implemented in the hypervi-
sor. System administrator has ability to dynamically
load them into the hypervisor during the system oper-
ation.

Besides the libraries specified in the executable,
an application may dynamically load libraries. The
hypervisor intercepts mapping of those files into
memory and validate the libraries.

Every trusted process is executed in a separate se-
curity domain. It is essential to maintain statuis of
control tables and ensure access interception to the

desired memory pages. Security domain is nothing
more than a dynamically changeable set of physical
pages with specified read and write access rights. An
attempt of an executable code to get access to the
physical page outside its domain as well as an access
to the page within its domain accompanied by the ac-
cess violation is intercepted by the hypervisor.

The implementation of security domain technique
is based on nested page tables for each domain (NPT)
(AMD, 2008). Nested tables specify translation of
nominal physical VM addresses to the actual abso-
lute physical addresses. The hypervisor creates a new
(empty) set of nested tables for a process when it en-
ters the trusted mode for the first time. Every time the
control is passed to the process, the hypervisor sets
the nested tables for this process as active for the vir-
tual machine. Upon the interruption of process execu-
tion and control pass to the OS, the hypervisor toggles
active nested tables and sets the tables of an untrusted
domain (domain of kernel and untrusted processes).
(Chen et al., 2008); (Yang and Shin, 2008)

4 THE HYPERVISOR AND VM
DATA COMMUNICATION
METHODS

Remote servicing of the system calls is implemented
by the hypervisor in association with the system com-
ponents, working in both VMs, primary and service.
During the system initialization modules are dynami-
cally loaded into the kernel of the primary and service
VM.

Each module allocates continuous physical mem-
ory space for ring buffer, registers several interrupt
handlers which are used by the hypervisor to notify
virtual machine of incoming events or processing, and
communicates this information (buffer address and
interrupt numbers) to the hypervisor through a hy-
percall (AMD, 2011). Synchronous nature of hyper-
call makes it possible to transfer hypercall parameters,
much as the user process transfers parameters to the
OS kernel during the system call execution: numeri-
cal parameters and memory area addresses are passed
through the registers, the hypervisor reads virtual ma-
chine memory area at the specified addresses and
fetches addition information from there (or records it
there) when needed.

To notify VM about event the hypervisor uses a
capability to throw interrupts and exceptions into the
virtual machine by means of the corresponding fields
in the VM control structure VMCB (AMD, 2011)
provided by the virtualization hardware. Upon VM

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

396



resumption, the hardware ensures interrupt delivery
immediately before the execution of the first VM in-
struction. In response to the interrupt OS passes con-
trol to the corresponding interrupt handler which was
registered in the interrupt handlers table by the kernel
module during the system initialization process.

System call parameters are passed through the
ring buffer. If the buffer is overflowed, the request
delivery is suspended until space in the buffer is freed
up. The data structure representing a ring buffer el-
ement is common for all system calls and includes
fields for all possible fixed-size parameters. Variable-
size parameters are transferred through a separate
buffer allocated in the storage (hypervisor memory).
The coordinates of a variable-size parameter, an off-
set from the storage origin and a size, are specified
in the data structure of the ring buffer. The hypervi-
sor maintains a separate storage copy for every trusted
process.

Upon the receipt of a request containing variable-
size parameters, the VM code for which this request
is intended performs a hypercall for the storage ac-
cess sending a requested parameter coordinates and
an address of the buffer in its own memory intended
for holding the data from the storage. The hypervisor
services the call and resumes VM execution.

5 REMOTE SERVICING OF THE
NETWORK SUBSYSTEM
SYSTEM CALLS

User applications use sockets for networking. One
of the parameters specified during creation of a new
socket is a protocol type. This parameter defines
which handlers need to be called by the OS kernel
for correct completion of a system call and creation
of a new socket. In the subsequent data reading, writ-
ing, and other actions with the created socket the OS
kernel handlers related to this protocol are called.

Figure 1: Configuration of the security system components
in charge of remote execution of the system calls, and sim-
plified chart of their interaction.

To ensure data confidentiality for trusted applica-
tions, untrusted applications and OS kernel in the pri-
mary VM are deprived of network access: when ker-
nel enumerates PCI bus the hypervisor intercepts all
replies from network card. As a result, the primary
VM gets no knowledge about available network facil-
ities and runs in network-less mode. For application
it means that only loopback adapter is available, no
ways to send or receive data from outside of VM.

Network access to trusted applications is provided
by means of a dedicated stub in the kernel that routs
all network requests to the service VM through hyper-
visor. To make the data routing transparent to applica-
tion the system callsocket is intercepted by hypervi-
sor: it substitutes protocol family parameter with the
ID of the stub protocol.

Stub crotocol can be divided into client and server
parts, with server part running in the service VM, and
the client – in the primary VM (Figure 1).

When a trusted application invokes asocket sys-
tem call, the execution of the primary VM is inter-
rupted and control is passed to the hypervisor. The hy-
pervisor substitutes the protocol identifier in the argu-
ments of the system call by a special one correspond-
ing to the stub protocol. The hypervisor also copies
certain parameters of system call from the trusted ap-
plication. Then the execution of the primary VM is
resumed. System call is received by the OS kernel. It
analyses the system call parameters and passes con-
trol to the registered handlers in the client part of the
stub protocol.

The client part allocates required kernel resources,
creates packet containing system call arguments,
writes it to the ring buffer and notifies the hypervisor
through the hypercall. The hypervisor partially com-
pares previously stored system call arguments with
those transferred through the ring buffer of the pri-
mary VM. Since the primary VM kernel is considered
to be untrusted, such a comparison is required to avoid
data leakage to forged addresses and ensure data in-
tegrity. In case of comparison error the received sys-
tem call will not be executed in the service VM.

The hypervisor writes received data into the ring
buffer of the service VM and throws an interrupt to
it. Interrupt handler passes the control to the server
part of the protocol. The data from the ring buffer
are then unpacked. Then the standard handling of a
system call with the received arguments is performed,
as if this call was received from the user application
running in the service OS without security system.
The track presented above results in socket creation
and IP packets been sent out by the service VM for a
trusted application. Processing of inbound packets is
performed in the reverse order.

Sevigator:�Network�Confinement�of�Malware�Applications�and�Untrusted�Operating�Systems

397



The hypervisor guarantees that only parameters
explicitly specified in the system call of trusted pro-
cess address ranges may be modified. To accom-
plished it the stub driver allocates memory area of the
required size and modifies the system call parameters,
OS writes results in this memory area. The hypervisor
copies the data into the corresponding memory area
of the trusted process upon the return from the system
call.

6 IMPLEMENTATION

Currently, the protection system is implemented as
extension of KVM hypervisor. KVM runs in a host
operating systems and uses x86 emulator QEMU for
device emulation. In our work, we use KVM 88 ver-
sion, QEMU 0.15 version and Linux kernel of 2.6.32
version.

6.1 Performance

In order to measure overhead of memory protection
and system call servicing, we have performed several
tests. In each measurement there was only one trusted
process. The list below presents results of the tests for
a few popular applications. Percent value is the ex-
tra time spent by the trusted application compared to
the time spent by the same application with protection
system disabled.

Table 1: Measurements.

Software Description Overhead
Apache Flood test. 2%

Ttcp Ordinary execution. 2%
SSH&SCP SCP 4Gb file copy. 22%

7 CONCLUSIONS

This article presents an approach to protect applica-
tion confidentiality from untrusted (potentially com-
promised) OS. The approach is implemented by se-
lectively granting a network resource access to the
specific trusted user applications. Confidentiality is
achieved by preventing untrusted, malware or com-
promised OS components from communication chan-
nels to the outside world.

The implementation of the approach is based on
the execution of the untrusted OS within a virtual ma-
chine and placement of the trusted part of the secu-
rity system in the hypervisor body. It allows achiev-
ing full control of access of the processes executed

under VM to the hardware resources. The security
system therewith remains inaccessible for attacks by
malicious software.

Facilities of system call intercepting, reading their
parameters, and writing syscall results provided by
virtualization makes it possible to protect access to
any peripheral hardware resources.

The possibility to grant to certain processes a con-
trolled access to the resources not accessible by the
OS itself, provides a way to effectively solve particu-
lar issues of the user data confidentiality preservation
problem and confines untrusted applications, includ-
ing the OS kernel, within the network node, making
malicious networking impossible.

At the moment the implementation of the hyper-
visor is based on KVM for Linux on AMD platform
and it supports network confinement for Linux only.
Future research goals are extension of the approach to
Intel VT-x platform, support MS Windows family of
operating systems, and “bare-metal” execution of the
hypervisor.

REFERENCES

(2008).AMD-VTMNested Paging. Advanced Micro Devices
Inc.

(2011). AMD64 Architecture Programmer's Manual Vol-
ume 2: System Programming. Advanced Micro De-
vices Inc.

Chen, X., Garfinkel, T., Lewis, E. C., Subrahmanyam, P.,
Waldspurger, C. A., Boneh, D., Dwoskin, J., and
Ports, D. R. (2008). Overshadow: a virtualization-
based approach to retrofitting protection in commod-
ity operating systems. InASPLOS XIII: Proceedings
of the 13th international conference on Architectural
support for programming languages and operating
systems, pages 2–13, New York, NY, USA. ACM.

LeVasseur, J., Uhlig, V., Stoess, J., and Götz, S. (2004).
Unmodified device driver reuse and improved sys-
tem dependability via virtual machines. InOSDI'04:
Proceedings of the 6th conference on Symposium on
Opearting Systems Design & Implementation, pages
2–2, Berkeley, CA, USA. USENIX Association.

Ta-Min, R., Litty, L., and Lie, D. (2006). Splitting inter-
faces: making trust between applications and operat-
ing systems configurable. InOSDI '06: Proceedings
of the 7th symposium on Operating systems design
and implementation, pages 279–292, Berkeley, CA,
USA. USENIX Association.

Yang, J. and Shin, K. G. (2008). Using hypervisor to
provide data secrecy for user applications on a per-
page basis. InProceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual
execution environments, VEE ’08, pages 71–80, New
York, NY, USA. ACM.

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

398


