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Abstract: Video foreground/background segmentation is to extract relevant objects (the foreground) from the 
background of a video sequence, which is an important step in many computer vision applications. In this 
study, the spatially distributed model is built by a splitting process using Gaussian probability distribution 
functions in spatial and color spaces. Then, edge-based shadow cancellation is employed to obtain more 
robust segmentation results. The proposed approach can well handle illumination variations, shadow effect, 
and dynamic scenes in video sequences. Based on experimental results obtained in this study, as compared 
with two comparison approaches, the proposed approach provides the better video segmentation results. 

1 INTRODUCTION 

Video foreground/background segmentation is to 
extract relevant objects (the foreground) from the 
background of a video sequence, which is the 
important step in many computer vision applications. 
Because a video sequence may contain illumination 
variations, shadow effect, dynamic scenes, …, video 
foreground/background segmentation is a 
challenging task. 

Existing video foreground/background segmen-
tation approaches include three categories, namely, 
thresholding, background subtraction, and motion-
based. The first category of approaches is based on 
thresholding pixel differences between two related 
frames (two consecutive frames or the current frame 
and a background frame). Because segmentation 
results are sensitive to thresholding values, various 
adaptive thresholding approaches were proposed 
(Tsaig and Averbuch, 2002); (Kim and Hwang, 
2002). 

For the second category of approaches, Heikkila 
and Pietikainen (2006) proposed an efficient texture-
based method for background modeling. The local 
binary pattern (LBP) texture operator is employed, 
which has several good properties for background + 
modeling.  Zhang et al. (2008)  proposed a novel dy- 
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dynamic background subtraction approach based on 
the covariance matrix descriptor. The covariance 
matrix integrates the pixel-level and region-level 
features together and efficiently represents the 
correlation between features. Wang et al. (2008) 
presented three algorithms (running average, median, 
mixture of Gaussian) for modeling the background 
directly from the compressed video. Their approach 
utilizes DCT coefficients at block level to represent 
background, and adapts the background by updating 
DCT coefficients. Li et al. (2004) proposed a 
Bayesian framework that incorporates spectral, 
spatial, and temporal features to characterize the 
background appearance. A Bayes decision rule is 
derived for classification based on the statistics of 
principal features. 

For the third category of approaches, motion-
based foreground/background segmentation can be 
treated as fitting a collection of motion models to 
spatiotemporal image data. Mezaris et al. (2004) 
proposed a model-based foreground/background 
segmentation approach including three stages: initial 
segmentation of the first frame using color, motion, 
and position features, a temporal tracking algorithm, 
and a trajectory-based region merging procedure. 
Wang et al. (2005) proposed a Bayesian network to 
model interactions among the motion vector field, 
the intensity segmentation field, and the video 
segmentation field. The Markov random field is then 
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used to encourage the formation of continuous 
regions. 

2 PROPOSED APPROACH 

In proposed approach, spatial and color information 
are used as frame features and the camera is 
assumed to be stationary. Each pixel in frame t is 
described as a 5-dimensional feature vector txv = [x, y, 
Y, U, V]T, where (x,y) is the pixel coordinate, color is 
encoded by the YUV format, and T denotes 
transpose. The probability distribution function of 

txv  for model component j is given by: 
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where the parameters θ(j, t) = {ω(j, t), μ(j, t), Σ(j, t)} are 
the weight, mean, and covariance matrix of model 
component j in frame t, and the dimensionality d is 5. 
As shown in Figure 1, a spatially distributed 
background model, a Gaussian foreground detection 
process, and edge-based shadow cancellation are 
employed in the proposed approach. 

2.1 Building the Background Model 

To remove noise and tune the boundaries of 
foreground objects, the Gaussian smoothing filter is 
applied on each video frame, which is described as: 
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The background model is initialized, based on the 
first video frame of a video sequence. It is assumed 
that no foreground objects appear in the first frame. 
Then, an iterative splitting procedure, namely, 
principal direction divisive partitioning (PDDP) 
(Boley, 1998) is employed to initialize background 
component(s). 

Initially, the whole background frame is treated 
as a single component, and the support map value of 
each background pixel is set to 1. Then, a single 
iteration of the splitting procedure divides each 
existing component into two new components. 
Given the background frame and the current 
components, each component having the highest 
spatial variance will be determined. Here, it is 
assumed that the spatial and color distributions are 
independent. Using the spatial covariance matrix of 
each component, the eigenvalue s

jλ  and the 

corresponding eigenvector s
jv  of component j with 

spatial distribution s can be computed. The splitting 
component s

spC is given by 
}.{maxarg s

jj
s
spC λ=  (3)

If s
sp

s
sp T>λ , where s

spT is a predefined threshold, then 
the splitting component is split and a new 
component is generated and reassigned as the pixels
xv of the splitting component which satisfy 
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where s
spμ is the spatial mean of the splitting 

component s
spC . That is to place a separating plane 

through the spatial mean, perpendicular to s
spv . The 

parameter sets of two corresponding components are 
then re-estimated based on their newly assigned 
pixels, respectively, and the support map value of 
each pixel is updated correspondingly. The proposed 
approach applies the splitting procedure on both the 
spatial and color component frames. The splitting 
procedure will be iterated until the largest 
eigenvalue of a splitting component is smaller than a 
threshold. 

Because a component may contain two or more 
spatially disconnected regions, which should be split. 
Here, the connected component algorithm (Haralick 
and Shapiro, 1992) is employed to further split a 
component containing two or more spatially 
disconnected regions. The initial background model 
is thus completely constructed for the background. 

For a subsequent frame, each pixel txv is assigned 
to the most likely model component, i.e., each pixel 
can be assigned to the component with the 
maximum posterior probability Cmap defined as 

))}.|({log(maxarg jtjmap xpC θv=  (5)

Because the spatial and color distributions are 
assumed to be independent, the distribution function 
in Eq. (5) can be re-expressed as the function of a 2-
D spatial Gaussian and a 3-D color Gaussian with 
parameter sets s

jθ and c
jθ for the spatial vector

Ts
t yxx ],[=v  and the color vector Tc

t VUYx ],,[=v , 
respectively. Hence, Cmap can be modified as 
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The support map value of each pixel of the new 
frame is updated to respond the new assignment. 
Additionally, to obtain stable assignments, a pixel 
can only be assigned to a background component if  

,))|((log s
lik

s
j

s
t Txp >θv  (7)

where s
likT is a predefined threshold. 
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Next, to detect new foreground object(s) in the 
new frame, the “unassigned” pixels in the support 
map should be detected. Here, if pixel txv  of a 
component satisfies 

 ,))|((log unassignCt Txp
map

≤θv  (8)

where Tunassign denotes a minimum probability 
threshold, then txv  is determined as an “unassigned” 
pixel. 

2.2 Foreground Detection and 
Introducing Foreground Model  

Initially, all the initial model components of a frame 
are labeled as the background. A foreground 
component is detected when some region of pixels 
having a low probability under the mixture model. 
Such a region appears in the support map as a region 
having high density of “unassigned” pixels. The 
support map is divided into nonoverlapping blocks 
of size 16×16 pixels. For a block, if the number of 
“unassigned” pixels exceeds a threshold Td, it is 
detected as a “foreground” block. Initially, a single 
foreground component is built for all unassigned 
pixels in these “foreground” blocks. Then, similar to 
the background model, the splitting procedure is 
recursively applied to build the foreground model. 

After pixel assignment and foreground detection, 
the parameters of both background and foreground 
components of a frame are re-estimated. Given the 
parameters of the previous frame ,)1,( −tjθ  the new 
parameters ),( tjθ  of the current frame can be 
computed (using an adaptive learning rate) as 

 ,)-(1 )1,(),(),( −+= tjjCmapjjtj αα θθθ  (9)

where αj is a vector of learning rates updated by a 
variable factor ,w

jα  which is proportional to the area 
fraction of each foreground/background component 
within a frame. 

2.3 Edge-based Shadow Cancellation 

After foreground detection, the initial foreground 
mask FMt of frame t usually contains both moving 
objects and some shadows. A shadow often appears 
in an area where the pixel (gray-level) values change 
“gradually” from the background to the shadow 
region. Here, the Canny edge detector (Canny, 1986) 
is used to generate a binary edge map CEt of frame t, 
where “1” denotes the edge and “0” denotes 
otherwise. 

Using the binary edge maps of 5 successive 

frames, the integrated Canny edge map ICEt is 
defined as 
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where xv denotes a pixel. 
Based on ICEt and FMt of frame t, the moving 

Canny edge MCEt can be defined as 
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whereas the edges of the foreground mask EFMt can 
be defined as 
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where NG( xv , x′v ) is a logic function that returns true 
when xv and x′v are 4-connected neighbors. Note that 
MCEt provides important information for seed point 
selection in region growing (as an illustrated 
example shown in Figure 2). Because some gaps 
exist in moving Canny edges MCEt, in this study, 
morphologic dilation with a 3×3 structure element is 
applied on MCEt, resulting in DMCEt.  

Because region growing is used to detect shadow 
regions, some seed points are required. The shadow 
region edges SRE t in FM t may be employed as seed 
points, which can be defined as 
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where Tsre is a threshold confining the searching 
neighbor and ||•|| denotes the Chebyshev distance. 
Additionally, SREt also contains some sporadic 
pixels (the edges of moving objects). To remove 
sporadic pixels, the connected component algorithm 
(Haralick and Shapiro, 1992) is also used to connect 
initial seed points. Each connected region with its 
number of pixels more than a threshold Tseed is 
included in the final shadow region edges .final

tSRE
The pixels in final

tSRE serve as seed points of the 
region growing algorithm (Adam and Bischof, 1994) 
used for shadow detection, which are expanded pixel 
by pixel in FMt, resulting in the detected shadow

.shadow
tFM  Note that the pixels in DMCEt should not 

be included in shadow
tFM  (as an illustrated example 

shown in Figure 3). 
Based on FMt and ,shadow

tFM the initial moving 

object MOt (obtained as shadow
ttt FMFMMO −= ) 
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contains some noisy pixels and holes, which will be 
processed by a post-processing procedure. In the 
post-processing procedure, to remove noisy pixels 
and holes, morphologic erosion with a 3×3 structure 
element is first applied on MOt, then the connected 
component algorithm (Haralick and Shapiro, 1992) 
is used to remove small connected regions with 
threshold Tsre, and finally morphologic dilation with 
a 3×3 structure element is applied to obtain the final 
foreground/background segmentation results (as an 
illustrated example shown in Figure 4). 

3 EXPERIMENTAL RESULTS 

In this study, 12 test video sequences and the 
corresponding ground truth hand segmentations are 
employed. They are “Office,” “Outdoor,” “Browse1,” 
“LightSwitch,” “NightCar,” “IntelligenRoom,” 
“ParkingLot,” “OneLeaveShopReenter,” 
“WavingTree1,” “WavingTree2,” “Raining,” and 
“Boat.” Here, sequences 1-3 contain some gradual 
illumination variations, whereas sequence 4 contains 
great illumination variations. Sequences 5-8 contain 
both gradual illumination variations and shadow 
effect. Finally, sequences 9-12 contain some 
dynamic scenes, such as waving tree, raining, and 
moving water. To evaluate the effectiveness of the 
proposed approach, two comparison methods, 
namely, self-organizing background subtraction 
(SOBS) (Maddalena and Petrosino, 2008) and 
spatially distributed model (SDM) (Dickinson et al., 
2009) are implemented in this study. The parameter 
values and thresholds used in the proposed approach 
are listed in Table 1, which are empirically 
determined in this study. 

To evaluate the performance of the three 
comparison approaches, the Jaccard coefficient Jc by 
Rosin and Ioannidism (2003) and the total error 
(Etot) by Toyama et al. (1999) are employed. A pixel 
being classified as “foreground” by both the 
approach and the ground truth is denoted as “true 
positive” (TP). If it is classified as “foreground” by 
only the approach, it is denoted as “false positive” 
(FP). If it is classified as “foreground” by only the 
ground truth, it is denoted as “false negative” (FN). 
If TP, FP, and FN denote the numbers of “true 
positive,” “false positive,” and “false negative” 
pixels in a video sequence, respectively, then 

,
)( FNFPTP

TPJ c ++
=  (14)

.FNFPE tot += (15)

In Figure 5, as compared with two comparison 

approaches, the proposed approach can handle video 
sequences containing shadow effect and gradual 
illumination variations, whereas in Figure 6, as 
compared with two comparison approaches, the 
proposed approach can handle video sequences 
containing dynamic scenes, such as waving tree, 
raining, and moving water. 

Additionally, in terms of two performance 
indexes, namely, Jaccard coefficients and total errors 
listed in Table 2, the performance of the proposed 
approach is better than those of two comparison 
approaches. 

4 CONCLUDING REMARKS 

In this study, a video foreground/background 
segmentation approach using spatially distributed 
model and edge-based shadow cancellation is 
proposed to deal with video sequences containing 
illumination variations, shadow effect, and dynamic 
scenes. Based on the experimental results obtained 
in this study, as compared with two comparison 
methods, the proposed approach provides the better 
video segmentation results. 
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Table 2: Jaccard coefficients and total errors of 12 test sequences by SOBS, SDM, and the proposed approach (Proposed). 

Sequence Jaccard coefficient Total errors (×103) 
SOBS SDM Proposed SOBS SDM Proposed 

Office 0.43 0.41 0.47 13.4 15.7 13.6 
Outdoor 0.41 0.46 0.43 18.6 15.0 15.2 
Browse1 0.47 0.43 0.54 17.3 18.6 14.3 
LightSwitch 0.28 0.23 0.41 21.6 25.5 13.5 
NightCar 0.34 0.39 0.41 15.4 13.2 11.2 
IntelligenRoom 0.68 0.71 0.78 10.3 8.6 5.5 
ParkingLot 0.56 0.47 0.54 15.4 18.6 16.7 
OneLeaveShopReenter 0.32 0.41 0.48 16.8 12.3 8.5 
WavingTree1 0.23 0.52 0.68 18.3 10.4 7.3 
WavingTree2 0.23 0.54 0.62 19.7 11.9 9.8 
Raining 0.34 0.42 0.47 18.6 15.4 11.9 
Boat 0.29 0.43 0.53 15.5 14.3 11.3 
Average 0.38 0.45 0.53 16.7 14.9 11.6 
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