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Abstract: We demonstrate an attack on basic voice authentication technologies. Specifically, we show how one member
of a voice database can manipulate his voice in order to gain access to resources by impersonating another
member in the same database. The attack targets a voice authentication system build around parallel and
independent speech recognition and speaker verification modules and assumes that adapted Gaussian Mixture
Model (GMM) is used to model basic Mel-frequency cepstral coefficients (MFCC) features of speakers. We
experimentally verify our attack using the YOHO database. The experiments conclude that in a database of
138 users an attacker can impersonate anyone in the database with a 98% success probability after at most nine
authorization attempts. The attack still succeeds, albeit at lower success rates, if fewer attempts are permitted.
The attack is quite practical and highlights the limited amount of entropy that can be extracted from the human
voice when using MFCC features.

1 INTRODUCTION

In the last decade, we have witnessed large scale
adoption of biometric technologies, e.g. fingerprint
scanners on laptops, cameras with built-in face recog-
nition capabilities at airport terminals and stadiums,
and voice based authentication technologies for ac-
count access on smartphones. Among biometric au-
thentication technologies, voice based authentication
is playing a pivotal role due to the exponential growth
in the smartphone user base (Miller and Top, 2010)
and due to the unparalleled convenience it offers. In-
deed, human voice can be easily captured over large
distances simply over a standard phone line without
requiring any special reader device. Furthermore,
compared to other biometric schemes voice authen-
tication offers the user a greater degree of freedom
during signal acquisition.

Voice verification comes in two flavors: text de-
pendent and text independent. Text independent voice
verification, i.e. speaker verification, is not concerned
with the text that is spoken. In contrast, in text de-
pendent systems, the verification requires a match
on the spoken text as well as a match on the user.
With rapid developments in mobile computing and
voice recognition technologies, it is convenient to use
voice verification in the service of biometric authenti-
cation. Typically, in commercial speaker verification
systems, speech recognition is applied before speaker

verification to prevent playback attacks. The user is
asked to recite a randomly generated pass-phrase, and
only if what the user says matches the pass-phrase, the
system proceeds to the text-independent voice verifi-
cation step.

Given the usability and ease of deployment, a
number of companies are now offering voice based
authentication services: PerSay’s VocalPassword and
FreeSpeech, Agnitio’s Kivox and VoiceVault’s Voic-
eSign, VoiceAuth products, etc. Unfortunately, the
precise details of the extraction techniques used are
not made public. We can only speculate connections
to academic work developed in the last decade. In
2001, (Monrose et al., 2001a; Monrose et al., 2001b)
were the first group to extract cryptographic keys
from human voice. In (Krause and Gazit, 2006),
the authors propose a new classifier by combining
a supported vector machine with a Gaussian Mix-
ture Model (GMM) verifier. Other GMM based
schemes may be found in (Heck and Mirghafori,
2000; Mirghafori and Heck, 2002; Teunen et al.,
2000) use cepstrum based features as the front-end
processing feature. Agnitio’s Kivox hosts a speaker
verification system based on MFCC-GMM model-
ing technique (Brummer and Strasheim, 2009). Fur-
ther detailes can be found in (Kenny et al., 2005;
Kenny et al., 2007; Kenny et al., 2008). Note that,
MFCC and GMM are the most popular extraction
and modeling techniques for text-independent speech
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recognition and are used as building blocks in numer-
ous speaker verification sytems, e.g., see (Heck and
Mirghafori, 2000; Mirghafori and Heck, 2002; Te-
unen et al., 2000; Brummer and Strasheim, 2009).
With all this deployment of voice authentication tech-
nologies, it becomes crucial to evaluate voice authen-
tication technologies from a security point of view. In
this work we take a step in this direction.

Our Contribution. In this paper we demonstrate an
effective attack on basic voice authentication tech-
nologies. In particular, we show how one member
of a voice database can manipulate his voice in or-
der to attack a voice authentication system which
uses speech recognition in parallel with speaker ver-
ification. We assume that the speaker verification
uses adapted GMM to model basic MFCC features of
speakers. We demonstrate our attack using the YOHO
database which contains 138 different people, and we
show how an attacker can impersonate anyone in the
database with a 98% success probability after at most
nine authorization attempts. The attack is very sim-
ple to carryout and opens the door for many varients
which can prove quite effective in targeting voice au-
thentication technologies. The attack also highlights
the limited amount of entropy that can be extracted
from the human voice when using MFCC features.

The remainder of this paper is organized as fol-
lows. In the next section we introduce the basic back-
ground and relevant terminology. In Section 3 we ex-
plain our attack and highlight why the attack works.
This is followed by Section 4 where we show detailed
results of the application of our attack to the YOHO
database. Finally we present the conclusions in Sec-
tion 5.

2 BACKGROUND

Speaker verification systems work in two phases:
enrollment and verification (Bimbot et al., 2004).
During enrollment, a speaker is asked to contribute
speech samples whose features are then extracted as
shown in Figure 1. The speech features are then used
to develop the users’ speech models. The speech
model is stored for future comparison. At a later time,
when verification is required, see Figure 2, fresh sam-
ples are collected from the user. After similar ex-
traction phases, the resulting extracted features are
compared against the model stored during enrollment.
The most popular feature extraction technique used in
voice verification systems is based onshort term cep-
stral analysiswhich includes mel-frequency cepstral
coefficients (MFCC), linear predictive cepstral coeffi-
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Figure 1: Speaker enrollment.
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Figure 2: Speaker verification.

cients (LPCC), etc. We now briefly review two basic
techniques that will be essential to our attack.

2.1 Extracting Mel Frequency
Cepstrum Coefficients

Mel-frequency cepstral coefficients (MFCC) is the
short term cepstral representation of speech signal
in the mel scale. Short term cepstral features cap-
ture the information of vocal tract in order to reflect
the uniquness of a speaker’s voice. The mel scale is
used to appoximate the response of the human audi-
tory system. MFCC was first introduced to speech
recognition in (Davis and Mermelstein, 1980) and
later on was used in speaker verification. MFCC have
been shown to outperform any other Short Term Cep-
strum feature extraction technique in speech recog-
nition (Davis and Mermelstein, 1980). MFCC also
provides the most robust features for text-independent
speaker recognition (Reynolds et al., 2000; Reynolds
and Rose, 1995). In the following discussion, we will
focus on MFCC alone. Introduction to other features
such as Linear Prediction Cepstral Coefficients can be
found in (Bimbot et al., 2004). Similar to other cep-
stral features, MFCC is obtained from a speech signal
through a combination of transforms (Bimbot et al.,
2004; Vergin et al., 1996; Ganchev et al., 2005). Par-
ticularly, MFCC can be carried out with the following
steps.

1. Break the input into a number of time frames to be
processed independently. Each frame is typically
20−30 ms.

2. Using a Fast Fourier transform (FFT) compute the
frequency components of each of the time frames
and take the amplitude.

3. Use a number of triangular band-pass filters in or-
der to project the frequency components of each
frame into the Mel-scale.

4. Compute the logarithm.

5. Apply a discrete cosine transform (DCT) on the
output of the filters in order to compute the MFCC
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for each frame.

The output of the above steps will be a matrixC
where the entryci j represents theith Mel-frequency
cepstral coefficient for thejth time frame of the input
sound as shown in Figure 3. To remove the channel
filter bias and intra-speaker variability, compensation
methods can be applied (Bimbot et al., 2004).

According to (Reynolds and Rose, 1995), cepstral
mean subtraction which is called spectral shape com-
pensation gives the best identification performance.
Note that MFCC processing is invertible by invert-
ing each step in the MFCC computation steps. How-
ever, because some of the MFCC processing steps are
non-linear, the inversion will be a lossy process. The
inversion details can be found at (Ellis, 2005).

2.2 The Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is one of the
most widely used voice models in text-independent
speaker recognition (Reynolds and Rose, 1995). The
GMM is based on the fact that any probability distri-
bution can be expressed as a collection of weighted
Gaussian distributions with different means and vari-
ances (Marco F et al., 2008). Each Gaussian may re-
flect one aspect of features of the human voice. What
is interesting about the GMM is that the model is
trained using unsupervised computer clustering which
means that the individual Gaussian distributions are
unlabeled. Therefore, we may not know which Gaus-
sian distribution captures which features of the human
voice.

The GMM is a collection of weighted Gaussian
distributionsλ which reflects the real distribution of
mass1. A GMM is denoted byλ = {pi,µi ,Σi} i =
1,2, ...N wherepi gives the weight ofith component.
Therefore,∑ pi = 1. The mean and variance of the
ith component are represented byµi andΣi , respec-
tively. N represents the number of Gaussian compo-
nents. The Gaussian Mixture Density is defined as

p(X|λ) =
M

∑
i=1

pibi(X) (1)

whereX is a random vector,bi(X) is probability den-
sity function ofith component explicitly given as

bi(X) =
1

√

2π|Σi |
e−

1
2 (X−µi)

′Σ−1
i (X−µi) . (2)

Given K observations of the random vectorX, the
probability of X following the GMM λ can be ex-

1In the voice verification case this corresponds to the
cepstral features.

pressed as

p(X|λ) =
K

∏
k=1

p(Xk|λ) (3)

whereXk is the kth observation ofX. For a known
speakerj, the GMM modelλ j is computed such as to
maximize the overall probabilityp(Xj |λ j). Therefore,
the GMM λ j provides a voice template. In GMM
based biometric verification system, a two phase sce-
nario is applied. In the enrollment phase, a featureXj
extracted from a personj, is used to generate a tem-
plate GMM λ j . In the verification phase, a decision
function

D j(X
′) = p(X′|λ j) (4)

is computed whereX′ is a fresh feature extracted from
an unknown person who claims to bej. Given a pre-
defined constant thresholdT, a decision will be made
based on the conditionD j(X′)> T holding. If it does,
the unknown person passes the verification asj other-
wise the authorization fails.

Finally we note that a more popular version of the
GMM, namely the Adapted Gaussian Mixture Model,
is in use today (Reynolds et al., 2000). In the Adapted
GMM, a universal background modelλb is generated
by training with samples collected from all speakers.
Afterwards, each speaker is modeled by adapting the
background model. In the verification phase, instead
of having Equation 4 adapted GMM uses a decision
function

D j(X
′) =

p(X′|λ j)

p(X′|λb)
. (5)

The details of the adapted GMM modeling algorithm
can be found in (Reynolds et al., 2000). The main ad-
vantage of the adapted GMM is that the training phase
for a speaker is much faster while at the same time
it gives a more accurate verification performance. In
this paper we will base our analysis on the more pop-
ular adapted GMM.

3 OUR CONTRIBUTION

In this section we explain the proposed attack. We
will start by describing the type of system that we are
attacking and explain the rationale behind the attack.
Finally, we describe the attack in detail and outline its
limitations.

3.1 Voice Authentication Assumptions

In the following we list the assumptions we make on
the targeted voice authentication system.
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Figure 3: Transformation from signal to MFCC.

Assumption 1: Parallel Processing.In the previous
sections we explained that typical voice authen-
tication systems will randomly chose a number
or words and prompt the user to utter the chosen
words in order to prevent replay attacks. Once the
system captures the voice, it will proceed by run-
ning two parallel tasks:

1. A speechrecognition process to insure that the
speech signal corresponds to the randomly cho-
sen text confirming freshness.

2. A speakerverification process to ensure the
identity of the speaker.

In our attack we will assume that these two pro-
cesses, speech and speaker verification, are ap-
plied in parallel. That is to say that the system will
process the speech signal through a speech recog-
nition module and a speaker verification module
independently and simultaneously and will only
authorize the speaker if both modules return a pos-
itive result.

Assumption 2: Basic MFCC and GMM. As dis-
cussed in Section 2, the basic idea of speaker
verification relies on extracting MFCC features
and modeling them using a GMM. Many variants
of the standard MFCC and GMM model are
utilized today. For a general result we assume
that the attacked system will have a speaker
verification module which utilizes a standard
MFCC feature extraction step followed by a
standard GMM modeling step.

3.2 Attack Rationale

The strategy we follow in our attack is to synthesize a
rogue speech signal that will satisfy the speaker ver-
ification module without degrading the performance
of the speech recognition process too much. Since it
is the center piece of our attack, we briefly review (in
informal terms) the speaker verification process. In
the enrollment step, a person’s voice is modeled as a
probability distribution over the MFCC features. The
features are extracted from captured voice samples.
In the speaker verification step newly captured voice
samples are processed, and the resulting features are
placed into the model yielding an aggregate metric
that captures the likelihood of the features extracted
from the new sample coming from the same person.
With more voice samples, the model becomes more

accurate, in turn improving the accuracy of the likeli-
hood predictions.

In order to capture this probability distribution a
GMM model is built. Before elaborating on the attack
rationale we make two observations:

1. As explained earlier a GMM model contains
a number of Gaussian distributions which are
trained by varying its mean, variance and weight.
According to (Reynolds et al., 2000) the best re-
sults are achieved when GMMs are assigned fixed
variances and weights and are trained by only
moving around the means of the Gaussian. Es-
sentially, the means of the Gaussians in a GMM
model will capture the peaks of the modeled fea-
ture distribution.

2. In general, GMMs behave in a manner similar to
any other basis system where adding more GMM
components will result in a more accurate model
of the distribution. This suggests that maximiz-
ing the number of components in the GMM will
yield significantly better results. This hypothesis
was investigated in (Reynolds et al., 2000) where
the authors found that the equal false positive and
false negative rates saw very little improvement
beyond 256 components. Another important re-
sults of (Reynolds et al., 2000) is that increas-
ing the number of components from 16 to 2048
improved the equal false positive and false nega-
tive rate from 20% to 10%. This means that 80%
of the speakers were properly identified using a
mere 16 component GMM. In essence, the gen-
eral shape of the probability distribution of MFCC
features will be captured with a small number of
GMM components.

These observation lead us to the following hypothesis:
Given a probability distribution of an MFCC fea-

ture modeled through a GMM with a small number of
components, the means of the GMM reflect the most
likely values of the MFCC feature.

With a lower number of components in the GMM
model the training algorithm has little room to work
in. Therefore, it becomes likely that the means of
the Gaussians will capture the likely values of the
MFCC features. Figures 4 and 5 show the distribu-
tion for 12 MFCC components of 138 different peo-
ple. Figure 4 uses 256 component GMM and Figure
5 uses 4 component GMM. It should be clear that the
general shape and peaks of the distributions are pre-
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Figure 4: 12 MFCC features each modeled using 256 GMM components with each color representing one of 138 people.

Figure 5: 12 MFCC features each modeled using 4 GMM components with each color representing one of 138 people.

served even when using as little as 4 components in
the GMM. Simply using the means of the 4 compo-
nent GMM gives a pretty accurate reflection of the
peaks in the more accurate 256 component GMM.

Another observation concerning Figures 4 and 5 is
the range of the features. The MFCC features do not
span a large range of values which means that there
will be many overlaps between the people’s voice fea-
tures even in a group of 138 people. Different people
will have different feature distributions but with a sig-
nificant overlap with other people. This is indicative
of the limited amount of entropy that can be extracted
from the MFCC features. This should make it clear
that the means in one person’s GMM will with a good
probability fall into another person’s MFCC distribu-
tion. This is exactly the point of weakness that our
attack targets.

In general the goal of a MFCC based speaker ver-
ification system is to to test whether a given set of
MFCC features belong to a specific person or not.

When considering full distributions of a MFCC com-
ponents belonging to two different people an overlap
will occur but that will not be sufficient to create a
misidentification. The nature of the Gaussian’s in the
GMM spread the probability on the range so that al-
though an overlap exists it will preserve the unique-
ness of every person. However, due to the observa-
tions we made earlier the means in a GMM capturing
one person’s features will with good probability be
close to the means of a different GMM capturing the
features of another person. This is where the system
can be manipulated.

If a person’s feature distribution is replaced with
an impulse function representing one of the means in
their feature GMM, then we can expect the system to
pass that person as someone else with a good proba-
bility. Since the means of the GMM are close to other
people’s feature distribution peaks, and since we are
using an impulse function to place all the concentra-
tion of the distribution on these means we will likely
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be a able to stimulate a misidentification. In the next
section we explain this attack in more detail.

3.3 The Attack

A successful attack signal needs to pass the speaker
verificationand the speech recognition processes. To
produce such a signal we create two attack signals
each of which targets one of these two modules.
These two attack signals will be merged later on in
order to produce the final attack signal which we will
refer to as thehybrid signal.

The first attack signal will target the speech recog-
nition module. Creating this signal will amount to
speech synthesis and therefore will be straightfor-
ward. The attacker may simply use his/her own voice
to speak the challenge words provided for verifica-
tion. As we discussed earlier, these signals are used
to ensure the freshness of the audio signal that is fed
to the system. We refer to this signal asS1.

The second attack signal requires the creation of
the MFCC impulse functions that we discussed in the
previous section. More specifically, the attacker an-
alyzes a large amount of his voice signals and then
transforms them into a number of MFCC features.
The attacker can then model his features using a few
component GMM (in our attack we use 9-component
GMM). The attacker’s GMM will contain a number
of means (in our case 9). Now the attacker will cre-
ate a sound signal which corresponds to an impulse
function centered at one of the GMM means by invert-
ing the GMM model for MFCC features (Ellis, 2005).
The impulse function will correspond to a voice sig-
nal where every time frame gives rise to the same ex-
act MFCC value (the value of the chosen mean). This
means that the attacker will have several candidates
for the second attack signal one corresponding to ev-
ery mean in the GMM. We refer to these signals assi

2
wherei ∈ [1, . . . ,n] wheren represents the number of
components in the GMM model.

In the last step of the attack we merge the two at-
tack signals to create the final hybrid signal. There
are a number of ways to merge these two signals. Our
results show that the most successful method is a sim-
ple concatenation. This means that the hybrid signal
will consist of the first attack signal followed imme-
diately with the second attack signal. There is a de-
gree of freedom here, i.e. the duration of the two sig-
nals relative to each other. In the next section we will
show that the best results where achieved when the
second attack signal was several times the size of the
first attack signal. We refer to the hybrid signal as
Hi = [S1|Si

2].
Note that the first attack signal needs to be com-

puted in real time due to the challenge. However, the
second attack signal can be precomputed. So when at-
tacking a live system the attacker proceeds as outlined
in Table 1.

Table 1: Steps of the proposed voice password imperson-
ation attack.

Impersonation Attack:
1. The system will ask the attacker to say a

certain word.
2. The attacker creates theS1 signal that

corresponds to him saying the given word.
3. Let i = 1:
4. The attacker feeds the authorization system the

signalHi . If the system accepts the
voice signal then the attack has succeeded.
If i = n then the attack has failed.

5. Otherwise,i = i +1.
6. Go back to Step 4.

4 EXPERIMENTAL RESULTS

Our experiments utilize the YOHO database which
contains voice samples collected from 138 different
speakers with a sampling frequency of 8 kHz (Hig-
gins et al., 1989). Each speaker’s voice is recorded
reciting a random combination of three two digit num-
bers. For each speaker, YOHO has 4 enrollment ses-
sions and 10 test sessions. Each enrollment session
contains 24 phrases (which are roughly equivalent to
3 of minute speech) while each test session contains
4 phases (which are roughly equivalent to 20 second
speech).

We start by explaining our setup for the voice au-
thentication system that we will be attacking.

4.1 Voice Authentication Setup

As explained in the previous section, our voice au-
thentication system is composed of two parallel sub-
modules, i.e. speech recognition and speaker verifica-
tion. Speech recognition will be concerned with the
actual speech spoken by the user. For this module we
decided to use a standard library for speech recogni-
tion. This is why we used the Windows .NET Frame-
work (Microsoft Corporation, 2011). We treated the
speech recognition module as a black box that takes
in a voice signal and returns the written form of the
speech input.

In the speaker verification, the voice signal is first
broken into a number of overlapped 10 ms frames.
Each frame goes through a hamming window length
32 ms. Then for each frame a 26 dimensional MFCC
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is calculated. The first 13 feature except Zero’th di-
mension are kept as the MFCC features. Note that
first and second derivatives of MFCC are sometimes
concatenated to the last dimension of MFCC feature
in order to increase entropy. However, experiments in
(Kinnunen, 2003) have shown that dynamic (deriva-
tive) features contribute far less to the speaker verifi-
cation performance than normal features do. Further-
more, research in (Soong and Rosenberg, 1988) have
shown that adding derivatives of MFCC contributes
very little to the overall identification performance.
Therefore, our speaker verification module includes
only standard MFCC features. Next, based on the
13 dimensional MFCC features, a 256 components
adapted GMM is trained following (Reynolds et al.,
2000):

1. A 256 component universal background modelλb
is trained

2. Each person’s GMMλi is trained by adapting only
the mean vector ofλb wherei refers to theith per-
son.

The verification process proceeds as follows. Given a
sound signal from a personx, the MFCC components
are extracted and passed through a decision function
D, where

D j(MFCCx) = log

(

p(MFCCx|λ j)

p(MFCCx|λb)

)

. (6)

Given a thresholdT, if D j(MFCCx) > T the voice
originating fromx is passed as the personj, otherwise
the authorization fails. We set the thresholdT = 0.1
such that it yields a false positive rate of 0.48% and
false negative rate of 3.1% 2

Note that the voice signal will pass the voice au-
thentication if and only if it passes both the speech
and the speaker verification modules.

4.2 Hybrid Signal Setup

Now we introduce our setup for the hybrid signal
setup. Remember that the hybrid signal refers to the
signal that is used to mimic the voice of any target
person. In our setup we randomly chose one ID out
of the 138 speakers that are in our data set, and denote
this person asx. Clearly, an attacker has access to his
own voice. Therefore he will always have the abil-
ity to build MFCCx(W) representing any pass-phrase
W. Since the attacker does not know the background
model3, his own GMM is simply trained by the K-

2For the equal error rate (where the false positive equals
the false negative) our data happens to be at 1.21%.

3The attacker can build a background model from a sep-
arate dataset that he constructs. Here we just assume that he
does not know the background.

mean method without background adaptation. Let us
denote the mean vector of his own GMM asmx(i)
where i = 1. . .n is the index of the mean vector of
the GMM.

To build up hybrid signal the attacker takes the fol-
lowing three steps:

1. Pick up one ofmx(i),

2. Append a block of repetition ofmx(i) to the last
frame of MFCCx,

3. Invert the MFCC signal to synthesize the corre-
sponding voice signalHi .

The hybrid signal will compose of a noisy pass-phrase
recited by the attacker followed by a block of mock
signal built up frommx(i). Note that the mock signal
will appear as noise to the naked eye. The first part
is used to pass the speech verification process while
the second part is used to pass the speaker verification
step.

4.3 Empirical Results

Two parameter values are decided in building the hy-
brid signals: the block length of the repetition ofmx(i)
denoted asq and the number of components in the at-
tacker’s GMM denoted asn. Theq parameter repre-
sents the ratio of the mock signalSi

2 to the speech sig-
nal S1. The larger theq parameter is, the more dom-
inate the mock signal part is. From a authentication
protocol perspective, the parametern determines the
max number of trials the attacker is allowed to make
before triggering an authentication failure.

In our experiments, we applied different ratios of
the mock signals. We variedq from 1 to 8. Mean-
while we varied then parameter from 1 to 10. There
were a total of 137 victims that the attacker can try an
impersonate. For this, given a fixedq, for each victim
the attacker triesn times, each time with a different
hybrid signalHi . Table 2 summarizes the results of
the attack. For selectq values these results are also
plotted in Figure 6.

The results clearly demonstrate that the attacker
can certainly impersonate other people in the database
with a high success rate if the attack parameters are
chosen carefully. At first glance it is clear that with
9 GMMs an attacker can almost certainly imperson-
ate anyone in the database (98.5% success rate). The
problem of course is that a real system might not al-
low as many asn = 9 trials. Even under such a re-
striction the 4 GMM scenario can produce pretty im-
pressive results at 62% success rate. These results
strongly demonstrate a sever limitation in the intrinsic
security of voice password authentication systems.
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Table 2: Success rate of Attacking with different parameters. Assume speech signalS1 is with a ratio of 1.

% of passing people
# of GMM (n)

1 2 3 4 5 6 7 8 9 10

m
o

ck
si

g
n

al
ra

tio
(q) 1 0.00 0.00 0.00 0.00 4.41 6.62 6.62 6.62 5.88 5.88

2 0.00 0.74 0.74 9.56 25.74 29.41 32.35 39.71 52.94 55.15
3 0.00 1.47 11.76 26.47 40.44 45.59 52.21 59.56 55.15 55.15
4 0.00 4.41 19.12 41.18 47.79 60.29 63.97 72.79 74.26 77.94
5 0.00 8.09 29.41 55.15 56.62 70.59 72.06 80.88 88.24 90.44
6 0.00 5.88 34.56 58.82 64.71 75.74 77.94 90.44 93.38 94.12
7 2.21 11.03 45.59 62.50 71.32 77.94 82.35 91.91 94.12 95.59
8 1.47 12.50 43.38 62.50 70.59 80.15 86.76 92.65 98.53 97.79
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Figure 6: Attack success rate for selectq values.

4.4 Limitations and Possible
Improvements

In the previous sections we have outlined an attack
targeting a sanitized voice password authentication
system, and shared some experimental results show-
ing the efficacy of the proposed attack. Before we
draw the conclusions we would like to point out a
number of limitations of the attack and briefly discuss
possible improvements:

1. Our system carries out the speech recognition and
speaker verification steps in parallel (Assumption
1). If the speech recognition module is applied
first to the signal it might impose certain filters on
speech signal thus eliminating the second part of
the speech signal. Such a procedure would pre-
vent our attack. This is in part due to the straight-
forward concatenation between the speech sig-
nal and the added MFCC signals. More involved
steps of signal mixing can be explored in order to
strengthen our attack.

2. These results apply to a particular voice authen-
tication system that uses standard MFCC fea-
tures followed by GMM modeling (Assumption
2). While this particular setting is commonly used

in practice, the specifics vary from one imple-
mentation to another. Specifically, we do not in-
clude derivative features into our assumed system.
Hence the success rate when applied to an actual
product will vary as well. Further work is required
to assess the vulnerability, and the precise success
rate for actual products in the market.

5 CONCLUSIONS

In this paper we demonstrated an attack on basic voice
authentication systems. We demonstrated how one
member of a voice database can manipulate his voice
in order to attack the other voice password accounts
in the system. We demonstrated our attack using the
YOHO database which contains 138 people, and we
showed how an attacker can impersonate anyone in
the database with a 62% success probability after at
most four authorization attempts. The attack reaches
a 98% success probability if up to nine authorization
attempts are permitted. Our approach presents the
first steps towards attacking real-world voice authen-
tication systems.
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