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Abstract: In this paper, we study the effect of non deterministic CNOT gates on the success probability of Quantum
CNOT-based circuits. Based on physical implementation, we define an abstract probabilistic model of the
CNOT gate that takes into consideration error sources and realizability constraints. Using the proposed model,
we simulate a three-qubit quantum adder and show the evolution of the probability of realizing correctly the
SUM operation depending on the success probability and errors of the CNOT gates.

1 INTRODUCTION nents. Third, based on physical implementation of
the TC.RalpfCNOT model, we define a set GNOT

Controlled-NOT gates associated with single qubits gates having the form of an abstr&mOTgate that
operation are universal for building quantum circuits are physically realizable and extend our results to the
(Nakahara and Ohmi, 2008). Quant@NOT gates  probabilistic algorithms.
based on linear optics still presents some conceptual ~ This paper is organized around five sections. Sec-
and realization problems. It has been shown that thetion 2 introduces the universality GNOT gates and
use of linear components doesn’t permit to reach de- illustrates briefly several steps used to G&tOT de-
terministic gates. Several works proposed non deter-composition of2XNOT gate. In section 3, we present
ministic CNOT gate functioning at least with a suc- first a model of an abstract probabilisGNOT gate
cess probability of 1/4. Some of these gates were and based on the TC.Ralph model, a subspace of re-
physically realized and the expected result is quite alizable probabilistic gate is presented, second, we
consistent with theoretical modeling, this is due es- study the errors caused by linear components and
sentially to unexpected errors caused by the imper- model their effect at the implementation level. Sec-
fection of linear components. We believe that stud- tion 4 presents in a first hand, a scheme for model-
ies concerning errors affecting the functioning of the ing probabilistic CNOT-based quantum circuits and
CNOT gate is missing modeling. in a second hand, tHeNOT based three qubit Min-

Quantum circuits based @NOT gates were sim-  imized Quantum Ripple Carry Adder is treated as a
ply treated in the ideal case where the gate works per-case study. Finally some numerical experimentation
fectly. Allwhat has been said about the use of non de- are illustrated.
terministic gates is that the success probability of re-
alizing a function will exponentially decrease depend-
ing on the number of gates used. To our knowledge, 2  QUANTUM CNOT-BASED
no detailed study were achieved to show the behavior CIRCUITS
of quantum circuit against non deterministic gates.

Our contribution in this work is three fold: first, K
we propose an error control model of an abstract 2.1 QuantumC*NOT Gate
probabilisticCNOT gate, while taking into consider-
ation physical implementation constraints. Second, In the general form, a single qubit quantum gate has a
we identify errors affecting the success probability of unitary 2x 2 matrix representation denoted bynd
the gate at the implementation level and we model having the following expression:
errors related to the basic quantum linear compo-
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Success Probability Evaluation of Quantum Circuits based on Probabilistic CNOT-Gates
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whereugo, Up1, U1p andup 1€ C and describing the
amplitude probability of being in a specific quantum (a) (h)
state (Figure 1a). Figure 2: First decomposition of tt@ZNOT gate.
1
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ToF E Step 2: Apply a control qubit tov (cv) and
= vf(cvt). Equation 5 becomes:
Figure 1: General form of a quantum gate.
1 0 O 0
.V\(e considertW(_) mgjorsingle gubit operations for oV— 8 é 1_9' 1_2 (6)
building quantum circuits: 2 12
00 LI 4
1 0 2 2
o = [0)(0]+]1)(1= (2 ov is the transpose conjugate of.
0 1 . . .
Determine equivalent decomposition of and
) (01 cv' to a set of single qubit an@NOT gates as de-
Unor = " 11){0]+|0) (1] = < 10 > (3) picted by Figure 3(a) and Figure 3(b), respectively.

A Cku gate, wherek € N¥., is a gate acting on
(k+ 1) qubits. It inverts the state of the last qubit if I EF [ET
¢}

all of thek qubits are set t¢l), thek qubits left un-
changed are the control qubits.

The matrix representation @ u (Figure 1b) is
denoted by, and obtained as follows:

(a) Decomposition ofv. (b) Decomposition otvT.

Ugey — ( Izkg,z (3 ) @ Figure 3: Decomposition afv andcv’.
h kil " q WhereA, B, C andD are given as follows:
Wherel isa(2“+t-2 27+ —2) iden- .
tity matrix 2198 )x( ) _ w2 ( cos(g)(A-i) sin(g) (L
y ' —sin(g) (1+i) cos(g) ( 1+|

T
For u = NOT, CKNOT gates are universal for 8
building quantum circuits. Fok = 1, the CINOT B_ ( cos( %[)n sin(—g) )
is calledcontrolled— NOT gate and denoted simply —sin(—g) COS %
CNOT. c_ vz ( (1+0)
2\ o (1-.)
2.2 CNOT based Implementation of 1 0
CKNOT Gate E= ( 0 Z(1+i) )

A*, B*, C*andE*are the conjugate matrix &, B,
C andE, respectively.

Step3: Reassemble the equivalent parts of the cir-
cuit to obtain a final equivalent implementation as de-
picted by Figure 4.

In this paragraph, we focus our study on a detailed
decomposition of th€?NOT gates, sinc& = 2 is the
highestk value among all gates constituting the adder
circuit to be studied later.

Decomposition of2?NOT is obtained across the
following steps:

Step 1: We determine a first decomposition of 1 . ili =
theC2NOT gate (Figure 2a) to a circuit composed of P
CNOT, v andv' gates as depicted by Figure 2b. eEe{a b —
Wherev andv' are determined such that = Figure 4: Final decomposition of tf@2NOT.
Oy = 01 andv is the transpose conjugate of ) _
10 According to (Nakahara and Ohmi, 2008; Barenco
v. Transfer matrix of andv™ are given as follows: etal., 1995), fok > 3, the decomposition @KNOT
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follows the same steps and all what differs from the 3 QUANTUM PROBABILISTIC
C2NOT decomposition is that and v’ transforms GATE
changes.

Gate Transform

During the last decade, large set of works have beenLe€t [¢) and[t), be vectors from a two dimensional

addressed modeling and implementi@OT gate. ~ real vector space spanned by the bafs),[1)},

We consider in the following those based on linear representing control and target qubits ofCNOT

optical components. gate. The system’s quantum state is a vector in
Early model have been proposed since 2001 b the four dimensional real vector space spanned by

T.B.Pittman et al (Pittman et al., 2001), the construc- the basif[00),|01),]10),[11)}, representing the col-

tion for a probabilistic€NOT gate, using linear optics  umn vectors(1 0 0 0)', (0 1 0 0),

and auxiliary photon pair, was achieved by the com- ( 0 0 1 o)t and ( 0 0O 1)t, respec-

bining of quantum encoder and a destruc@MOT. tively.

The desiredCNOT gate was defined to work with A probabilistic CNOT gate realizes the function

a success probability of 1/16. This model has been f-\ o : lc,t) — |c,t@c) in a non deterministic way.

optimized and the success probability raised to 1/4. |n the sens that, far j, k € N*:

T.B.Pittman presented an improvement of this model

in 2003 (Pittman et al., 2003) and instead of using

auxiliar i i ili 3p = (Picas[-1.1*

y entangled photon pair, a single auxiliary <

photon was used. The success probability remained Je = (&)1, 1t

equal to 1/4 and a physical realization including un- B 4

expected errors was presented. X = Keca€ -1 ™

A third model developed during 2002 is related to Satisfying:
T.C.Ralph et al (Ralph et al., 2002), the model showed
that theCNOT gate operates in the coincidence ba-

sis and the success probability is 1/9. This model Pl +leal* + g2l + Jesl+ IxaF = 1
presented some weaknesses related to path interfer- P22+ eal® + |es 2+ 6 + X2 = 1
ence, to avoid this problem, a fourth model comes 2 2 2 2 2 _
with the use of three Partially Polarizing Beam Split- ‘23| - ‘827| +|€82‘ - ‘89‘2+ ‘X3|2 !
ter (PPBS). This model, known under the name “com- |Pal” + [€20] + |€22]" + |€22|" + [xa]” = 1 (8)
pactCNOT gate”, was proposed by Ryo Okamoto et Such that:
al (Okamoto et al., 2005) and kept same success prob-
ability value (1/9).
Another experimentation related to the third cited 100) — P |Oloi+sl 101) +£2|10)
model was proposed by J.L.O.Brien et al in 2003 01) %tis‘(‘)())fp)él‘éffﬁ%‘l@
(Brien et al., 2003). The success probability obtained _ +€6/11) + X2 |Wo1)
presented some errors comparing to the model. fenor: |10) — £7]00) +£g|01) +£9/10) ©
Based on the TC.Ralph model theoretically pro- +p3|11) + X3 |W10)
posed in (Ralph et al., 2002) and implemented in |11) — €10/00) +€11(01) + p4[10)
(Brien et al., 2003), we aim in this paper to model +€12[11) +Xa[W11)
errors affecting the success probability of the gate at  \ynen the input of theCNOT is the basis state
the experimentation level. |00), p; represents the amplitude probability of re-

alizing correctly the functiorfcyor, Yielding to the
correct outpuf00). €1, €2 andeg are the amplitude
probabilities of ending in the erroneous output basis
state|01), |10) and|11), respectivelyxs is an ampli-
tude probability that appears, when auxiliary qubits
are used by th€ENOT gate, and assigned to all states
|Woo) that takes the system out of the basis states.
Following the same considerations for the rest of
CNOT input stateq§01), |10) and |11), |Wo1), |W10)
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and|11) denotes the states out of the system basis,3.2 Realizable Abstract Probabilistic
respectively. i , CNOT Transform based on the

We call probabilisticCNOT transform the matrix Ralph Model
associated to theNOT function given by equation 9 alp ode
and denoted bWcnor- L .

We definePenor to be the probability matrix de- A generalization 01_‘ the Ralp@NOT model is the
scribing theoretical probability of ending in a ba- pentral colmponentlllus_trated by stage 3 of Figure 5. It
sis state after measurePenor components are ob-  includes five Beam Splitters (BS), deno&, BS
tained directly from the module dficnor compo- BS BS, andBS;, characterized by five reflectivity co-
nents squared. efficientsni, N2, N3, N4 andns, respectively. We de-

Implementation of the quantum probabilistic NOte the generalizedNOT Ralph mode5| bYCR(H),
CNOT gate gives a circuit that should be able to WhereH = (n1, N2, N3, N4, Ns) € |-1,1[. The asso-
produce after measurBcnor or something close. — ciatedCNOT transfer matrix obtained from the circuit
However, implementation and measuring errors will is denoted bYJcgri). _ .
only allow the determination of an estimated matrix ~ The encoding and decoding modules contains four
denoted b)plmp _ Polarizing Beam Splitter (PBS) and four Half Wave

eNoT Plate (HWP).

Definition.

An abstract probabilistic transform is denoted by
AP# satisfying properties of equations 7 and 8, and I
has the following form: '

P1 & €& &
, € P2 €& E€n
APE = 10
€& & & P4 (10)
€3 €& P3 €12

Souce || Encoding | CR@H) L Decotingl{Detection

Wherep = (pi)1<j<4 ande = (€j) ;g fori, je
N*, Figure 5: Generalization of tf@NOT gate of TC.Ralph.

It's worth to notice that a probabilisiENOT
transform is an abstract probabilistic transform, but ~ CR(H)operates on the dual rail coding to realize
reciprocal way is not necessary checked. Therefore,theCNOT function.
there must be a technique capable of implementing ~ Recall that in their work, TC.Ralph et al (Ralph
the abstract probabilistic transform. We assign to the et al., 2002) used reflectivity coefficient=n; =
feasibility of implementation the concept of realiz- N2 =n3=1/3andn’ =n4 =ns =1/2and showed that
ability. theCNOT gate operates with a success probability of

APZ s a realizable matrix if there exist a quan- Y/o.
tum CNOT circuit whose physical parametrization In the reality, BS imperfection of realization can’t
permits to compute theoretically it's transfer matrix produce the valueg = 1/3, n’ = /2 but only values
Ucnot and verifying the equalitWenor = APE. that are closed to them. Sin¢¥s,1/2) are supposed

APE is a-realizable, form € R, a > 1, if APE is to be the ideal value§R(H) is proposed.
realizable and the following condition is satisfied:

Proposition.
Ipi| = o g (11) AP# is realizable bYCR(H), for H = (n1, N2, N3,

Under condition of equation 11, we don’tknowat N4 Ns) €]0,1[%, if the following equalities are satis-
which level it's possible to determingande to get  fied:

Ucnort having the form ofAP£. For this purpose, we p1 = VATA2AaNE + /N3 (L—Na) (1—1
study in the following the Ralp@NOT model (Ralph ! mzNaNs + Mans (1-n4) (1-ns)
et al., 2002). P2 = /N1N3N4Ns+/N1N2(1—Na) (1-Ns)

ps = (1-2n2)/(1—Nn4)Ns++/N2n3n4 (1 —ns)

pa=(1-2n2)y/Na(1-ns)++/N2n3(1—na)ns
€1=1/N1N2(1—Na)Ns — /N1N3na(1-ns)
€4=1+/N1N2n4(1—ns) —/nin3(1—n4)ns
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€9 = (1—2n2) y/MaNs — /N2n3(1—n4) (1—ns)
€12 =(1-2n2)y/(1—n4) (1 —ns) — \/M2N3MN4Ns
p1 = /N1N2NaN5 +1/N1N3(1—1N4) (1—ns)

(Si)lgjglz i#{14912) =0 (12)

Moreover,AP# is a-realizableva > 1 by CR(H),
whereH = (n,n,n,n, n') €]0,1], if n =1/3and
r]/ = 1/2_

Proof.

We considengs< |0, 1] the reflectivity coefficient
of a BS. LetaBS, bBS be the two incoming photons
of the BS andaBS, bES the outgoing photons. The
Heisenberg equation relating outputs-inputs are illus-
trated by Figure 6 (reflection upon dashed lines intro-
duces atphase shift).

B Tes b1 B 1 B
Gy TN [ a, :%: [
B ;é By By oA 5
b n bouf b n bouf
BS BY M. pB B _ [ Bf B
Ao = T']Bs a,; + 1 UBS bm Aoy = ATl Ay +yl- e b:‘n

bES _

ouf

RS BY RS
iy ar + n b b5 =\i-n_ al —n_ b

Figure 6: Heisenberg equation of the BS.

The input staté00) is represented by a presence
of a photonincy ) and|ty ), the amplitude probability
of having the correct outpy®0), meaning a simulta-
neous detection (coincidence basis)dq,) and|ty,),
is given by the product of amplitude probabilities of
having a photon ifcy,) and [tn,), when|cy) = |1)
and |ty) = |1). Therefore, the resulting probability
amplitudeus ; is expressed as:

VN1N2NaNs +v/N1nz(1—na) (1—ns)

The amplitude probability of having the erroneous
output|01), |10) and|11), meaning a simultaneous
detection orjc,) and|ty,), [oy,) and|ty,) , |oy,) and
[tv,), areuy 1, ug 1 andua 1, respectively, expressed as:

Ui

v/N1N2(1—na)ns—/N1n3na(1—ns)
07 Ug1 = 0

Uz1
Uz 1

Following the same manner, the input stéié)
givesupp = P2, Uy o = &4, U3 = &5, Ug2 = &, the
input state|10) givesuaz = Pz, U13 = €7, U3 = €s,
Uz 3 = €9 and the input statefl1) givesuz 4 = pa,
U14 = €10, U2.4 = €11, Us4 = E12, Where(p;); ;4 and
(g )1gjg12 are expressed by equation 12.

We consider p = (p1,p2,P3,pa) and € =
(€1,0,0,€4,0,0,£9,0,0,€12) a set of amplitude prob-

We consider the Heisenberg equations relating the abilities depending onz, n2, N3, N4 andns. UcrH)

control (cy, ov) and targe(ty, ty) inputs photons to
their corresponding outputs, dependingqnnz, ns,

N4 andns (Figure 5). After excluding auxiliary inputs
V¢, V¢ and outputsig,, Vi, these equations are given
by the following:

CHo = v/N1CH ++/(1—N1)Ve

—v/MN20v ++/(1—-N2) N4ty
+v/(1—-n2) (1—na)ty

v

thy, = [x/er\/ﬂs(l—m)(l—ﬂs)]tH
+ [\/l’]z(l—m)ﬂs —/Nana(1- l’]s)} ty
+v/(L=n2)nsov +v/(1-na) (1 -ns)v
to = [VNzna(l-ns)— Vs (1-na)ns|

+ [VAtaNams + V2 (1-na) (1 ns) | v

+v/(1-n2) (1-ns)ov — v/ (1—n3)nsve
(13)

ForH = (n1, n2, N3, Na, Ns) ands, te N*, these
equations permits to determine the transfer matrix
UcrH) = (Ust)sy4 as follows:
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defines a set of abstract probabilisB&NOT matrix
having the following form:

P1 €& 0 0
pE _ g p2 O 0
APE = 0 0 £ pa (14)
0 0 p3s €2

WhereAP¢ = UCR(H)'

We suppose thahP* is a-realizableva > 1 and
as requested by Ralph=n1=n2=n3, n’=n4=ns. En-
coding and decoding parts are supposed to operate
perfectly. According to these consideratiobgg )
becomes:

Ucrn) =
n o 0 0
0 n 0 0 (15)
0o o -n+n'(1-n) (1-n)v@-n)n
0 0 (1A-nmy/@A-n)n" -n+(1-n)(d-n’)

Moreover, by substituting these considerations
into equation 12, we deduce thaande becomes:

Po= P2=n
ps = pa=(1-n)/(1-n")n’
g9 = e12-N+n'(1-n)ie2=-n+(1-n)(1-n)

() 1<j<11j20 =0 (16)
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Ya > 1, AP of equation 16 isi-realizable ifeg =
0 andey2 = 0. Under these conditions, we deduce that
n =13andn’ =1/2.

4 ERRORS OF THE CNOT
RALPH MODEL

4.1 Internal Errors

We consider in the following errors affecting all BSs
composing stage 3 of figure 5.

BS reflectivity coefficient presents some uncer-
tainties with current BS technology. Work presented

(c) a=10. (d) a=50.

in (Ralph et al., 2002) predicted an error of about Figure 7:a-realizability of AP£ depending on BSs errors.
0.007 on BS reflectivity coefficient and it concluded
that errors below @1 are realistic. In the sequel, we Table 1:¢ andZ’ ranges definingi-realizableAPE,

assume this error lower than0®.

!
We study in the following the influence of the [ | £ | £ |
BSs errors on tha-realizability of AP£. 15| [-005009 | [-0.05005
2 [-0.05,0.05 | [-0.05,0.05]
First Case: 10 | [~0.021,0.023 | [-0.05,0.05]
For the ideal Ralph model, meaning=n1 =n2 = 50 | [-0.0050.005 | [—0.01,0.01]

N3 =1/3andn’ =n4=ns = 1/2, we suppose thatcom-
mon error, € [—0.05,0.05 affects BS1, BS2 and B_SB errors occurs independently ga, n2, Nz, N4 andns,
andg’ € [-0.05,0.05 affects BS4 and BS5, meaning  respectively.

thz_:\tr] = 1/34(—12 afndn/ :.1/2+E/.hUnder thes]cellsuppo- We consider(£1,85,83,84,85) € ]—0.05, 0.05[5
sitions, p ande of equation 16 changes as follows: the errors affecting optimal valuéy’s, /2) as:
pL=1/3+¢
Ps=(%3-8)/(Y2— &) (Y2+¥) (i =Y3+8&)1cicai (N = Y24&j) 1oy, (18)
gg=—38+38 8 e10=—3E— 58/ + & By substituting equations 18 into equations 12, we
obtain a set oAP£ that area-realizable and has the
(81)1<j<11 o =0 (17) form of equation 14.

Similarly to the process applied to common errors
(¢ and&’), one can use numerical simulation to build
Table 2 that illustrates the ranges&af &2, &3, &4 and
&s, yielding to the smallest area permitting to get a set
of a-realizableAPE.

It's worth to notice from this study that if we want
thatAPE€ bea-realizable for high values, then errors
should be minimal.

According to equations 17, a set afrealizable
AP# transforms is defined fofpi| > aegl, |p1| =
o[€12], |p2| = o|ge| and|pz| > orfe12].

We vary & in [-0.050.05 and o in
{1.5,2,10,50}. The delimited area illustrated
by Figure 7(a), 7(b), 7(c) and 7(d), gives a represen-
tation of the parameterp ande, for which AP# is
a-realizable byCR).

4.2 Input-output Errors
According to Figure 7 a-realizability of AP is
defined by the ranges gfandé&’ inside the intersec- Encoding module in Figure 5 is composed of two
tion. Table 1 shows the range of the smallest rect- PBSs and two HWPs, this permits to move from po-
angle containing the surfaces of interest that allows larization to dual rail encoding where the presence of
a-realizability. the single photon on the upper or the lower arms de-
Second Case: fines the|0) and|1) states, respectively. The transfer
matrix of the encoding part is denoted Uy,q.
Even in the case where same technology is used Decoding module of Figure 5 realizes the inverted
to construct BS1, BS2, BS3, BS4 and BS5, different process and has a transfer matrix denotetfy
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Table 2:84, &5, &3, €4 and&s ranges definingi-realizableAP¢ transform.

| a ] &1 | &2 | &3 | &4 | &s |
15| [-0.05005 | [-0.05005 | [-0.050.05 | [~0.050.05 | [~0.05,0.05
2 | [-0.05005 | [-0.05005 | [-0.050.05 | [~0.050.05 | [—0.05,0.05
10 | [~0.050.05 | [-0.030.03 | [~0.050.05 | [~0.050.05 | [—0.05,0.05
50 | [~0.05,0.05 | [-0.001,0.00] | [-0.02,0.02 | [~0.01,0.01] | [~0.01,0.01]
The encoding and decoding parts associated with
CR(H) previously studied, constitutes a polarization Upgs = (V 1-¢[0) +\/E|1>> (0
encodingCNOT gate that is used to construct proba- i
bilistic CNOT-based circuits. + <ﬁ|0> V1 c|l>> (L
The total transform of th€NOT gate, including _ ( VI=¢ & ) 22)
encoding and decoding part, is denoteduﬁ;ﬁﬂfc VS 1-¢
and obtained as follows: We considery, ¢, ¢z andcy, the error introduced
encdec by PBS1, PBS2, PBS3 and PBS4, respectively. By
crH) = YdecUcrH)-Uenc considering parallel combining o an ,
Ucrh) = YdecUcrH)-U (19) ideri llel combining of PBS1 and PBS2

parallel combining of PBS3 and PBS4gnc andUgec

C of Figure 5 uses encoding-decoding mod-
R<H) 9 9 9 are obtained as:

ules, these latter may introduce errors due to imper-
fect PBS (Tyan et al., 1996). In our study, we neglect
errors that may be introduced by HWP since it does  Uenc = UShg ®Ugho; Ugec=Upng ®Usag
not affect the logic function of the gate but rather it's

second one, which is entangled photons state genera- Using the expression dfenc andUgeo One can

deduc ef’”cdeC by simple computation.

tion. CR(H)
We denoteafBS the incoming photon of the PBS Let us show know that the transfer matrix pro-
(F|gure 8) an(hOPUBIS' bg&isthe 0utgo|ng photons_ vided experimenta"y by J.L.O.Brein (Brien et al.,
2003) can be computed Wiﬂugg?dec using specific
s s P values for the errors. Since the values are hardly com-
% ou plicated to obtain, we only show that we can approx-

imate closely the matri}l?'cn,l,poT by selecting a series
of values. For example, if we takg = 1/3— 0.005,
b N2 = 13+ 0.015,n3 = /3— 0.02, N4 = 1/2+ 0.04,
Ns = l/2+0.05, Q= 1@3'2, Q= 1072, QG = 102
and¢s = 1072, then a direct computation Mgg(cﬂfc
The error introduced by the PBS is modeled by is obtained and the associated probability matrix, de-
¢ € [0,1], the PBS acts on the incident Horizontal (H) noted bypencdec|s given as:
and vertical (V) photons as follows:

Figure 8: Polarizing Beam Splitter with error.

0.1091 00051 00003 00011

PBS PBS PBS

& —  V1-cagyn ++/3b (20) encdec_ [ 0.0061 01080 00011 00001
Pas I el FeRiH) 00012 00002 00060 00970
any  —  VCoutv TV 1—Choury 0.002 Q0011 00969 00005

In the two dimensional real vector space spanned
by the basis{|0),|1)} with components|0) =
(10 )t and|l)= (0 1 )t, the function of the
PBS is given as:

Knowing the expression dPenor (Brien et al.,
2003) which is equal to:

0.1056 00034 00006 00012
¢ Imp 0.0026 01044 00012 00001
fpas: { I% : \/% |0>cloz/¥gﬁi (21) Penot=| 00027 00002 00256 Q08
_ Ve _ 0.0001 00024 00833 00289
The matrix transform describing the PBS function ) o
with error ¢ € [0,1], for (0] and (1| representing the One can2 dedgcg that the approximation is in the
bras vectors and having matrix expressid®) and order of 10<. A similar computation for other errors

ant il : d
(01), respectively, is denoted ySzsand givenas:  values could show tha®gni“ is close toPENor N

lower order.
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It's worth to mention that in their implementation, €c—yp— ¢ ==
J.L.O.Brein et al (Brien et al., 2003)used as a Sin-
gle Photon Source (SPS) a pairs of energy degen- :
erate photons generated through beam-like sponta- . ;=
neous parametric down-conversion and collected into () )
single-mode optical fibers (stage 1 of Figure 5), at the Figure 9:CNOT gate used witlm-+ 2 qubits.
output level (stage 5 of Figure SJoyt andtyy; are an-
alyzed by a system ending with a single photon count-
ing module (SPCM).

Let us finally notice that SPS and SPCM, accord-
ing to (Brida et al., 2006; Eiseman et al., 2011), do
introduce some extra errors that are not under investi-
gation in this work.

m

Using equation 24 and methods presented in
(Chakrabarti and Kolay, 2008; Shende et al., 2003),
we can use serial and parallel combining to determine
Ualg by using identicaCR(H) in all the circuit.

Uaig is a function of nine errors, they atg, &,

&3, &4, &5 affecting BSs and;, ¢, ¢, ¢4 affecting
PBSs. A control of the errors may provide a better
approximation of the algorithm function. We consider

5 TOWARDS QUANTUM this in more details in the next paragraph.

ALGORITHM SIMULATION
5.2 Case Study

5.1 Computation Scheme .
Several proposal of Quantum adder circuits were pro-

A quantum algorithm whose circuit is acting on a Posed in (Nakahara and Ohmi, 2008; Bannerjee and
set of n qubits is a collection of binary functions Pathak, 2009; Kaye, 2004; Florio and Picca, 2004;
f;:{0,1}" - {0,1}", j = [1..X] wherex € N* . The _Vedral et al., 1996)._The_system used fo_r our study
quantum circuit realizing the algorithm which we de- S the three qubits Minimized Quantum Ripple Carry
note byQcaiq, is composed by serial and parallel com- Adder (MQRCA) (Chakrabartiand Kolay, 2008). The
bining of circuits realizingf;, denoted byQcy;. We 3-qubits MQRCA circuit is presented by Figure 10,
assume thadc;, is based oCXNOT gates it computes the SUM of two numbers A and B,
Using the telchniques developed in section 2.2, an represented by three qubits each|aga;,a1) and

equivalent single qubit an@NOT gate based circuit |03, b2, by ), respectively.
denoted byQCcnotr may be obtained. QCyg and

QCcnot compute the same transfer matidyg. We |ey =0} [ =0)
describe briefly in the following, several techniques ) )i )
. ‘ly) & ‘“1 +b1>
used to determindyg. o) )
An abstract probabilistiCNOT gate, acting on ) ;)
two qubits is represented by Figure 9a. Study of 1B,) L |tz +b;)
probabilisticCNOT-based quantum circuits requires [} &)
description of the abstract probabilis@iNOT trans- |a) T |a)
form in multiple qubits system (Figure 9b) composed |by} e |a + b;}
of m+ 2 qubits, wheran € N. To this end AP will |0) )
have the equivalent block matrix representation: Figure 10: 3-qubit€NOT based MQRCA.
APE = ( ﬁgii ﬁgg ) (23) The total number o€ENOT gates composing the

MQRCA is 9x 8+ 3= 75. The result of MQRCA is
Ags — ((P1oga ) A & 10 ) givenby|cs, az+ bz, a2+ by, a1 + ba).
(1,1) & P (1,2) g8 11 . . -
We present simulation results describing the errors
Azl = ( Z zz ) andA ;) = f)z SF;"'Z . effect on the success probability when realizing the
For m qubits between the control and the target, S°M of |A) =|4) and|B) =[7). o
the effect on the final transform, dependingronis DeterministicCNOT gate realizes the addition
denoted byAP£ (m) and obtained ,as: with certainty as illustrated by Figure 11(a).
When usingCR(H), in one hand, we vary only
BSs errors for fixe = (0,0,0,0) as il-
EMe AL 1EME AL, dG1,62,G3,G) = (0,0,0,0)
APE(m)=( 2 =D 2 L) (24) lustrated by Table 3, in the other hand, we vary
127 ®A21 127 ®AR2 PBSs errors for fixed value$tq,&,€3,84,85) =

385
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Table 3: Varying BSs errors.

Lo [n]n] & ] & | & & | & |ale|le]a] Pr1 |
655 |13 ] 12| 005]-005] 004] 001 | -001L] 0| 0] O] O]445x10%
2094 /3] 12 003 | -0.01 | -0.02] 0.015] 001 [ 0O [ O [ O] O | 451x10 %2
40.65| /3| 1/2 | -0.01| 0.001] -0.02| -0.001| 0.007] 0 | 0 | O | O | 476x10°>?
o [13]12] 0O 0 0 0 0 0Ol 0] 0] o0][296x10°
Table 4: Varying PBSs errors.
lann]&a ] & [&]&] & ] a | @ G G P11

6.01

;/3

1/2

0.05

-0.05

0.04

0.01| -0.01

1041 ] 104 [10%° ] 1038 | 5.15x10° %

5.8

;/3

1/2

0.05

-0.05

0.04

0.01 | -0.01

10° | 1032 | 1034 | 1035 | 841x 10 %

4.66

1/3

1/2

0.05

-0.05

0.04

0.01] -0.01

102 | 1022|1024 | 102° | 18x10%

]

(a) IdealCNQT.

(b) a = oo

|
1

(c) a =6.55.

(d) a = 20.94.

(e) a = 40.65.

(f) a =6.01.

(g) a =5.8.

(h) a = 4.66.

Figure 11: Success probability ¢4+ 7).

(0.05,-0.05,0.04,0.01, —0.01) as illustrated by Ta-

ble

For differenta values, the resulting success probabil-

4.

Ucr) associated t@€s, &2, &3, &4, &5)=(0.05,
—0.05,004, 001, —0.01) and(c1,, Gz, C3, €4)=(0, O,
0, 0) is given as follows:

0.3539

—0.0314

0
0

UcrH) =

—0.0173
03539

0
0

encdec
Ucri)
0 0
0 0
0054 q3gos | 29
03782 0054

According to equation 25 = 0.35390.054 =6.55.

ity of realizing correctly the SUM 4+7, denoted by
P11, is illustrated by Figure 11.
The correct output is obtained for probabilRy;

around 10°2, which is significant comparing to the
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other outputg10~>%), but non interesting for realiz-
ing arithmetic operations.

We notice that this probability is very low since
the success probability of the used model is around
1/9, the success probability decreases exponentially
depending on the number of probabilis@NOT
gates used (=75).

Figures 11(b), 11(c), 11(d) and 11(e) shows the re-
sult of the SUM fora = [, 6.55,20.94,40,65]. This
figure shows that the higher tioevalue, the higher is
the GAP betweef;1 and non significant results, but
the lower isP1;.

Figure 11(f), 11(g) and 11(h) illustrate the impact
of the encoding and decoding partg, C2, ¢z and¢,
contribute to decrease value and push non signifi-
cant results to be closer 1. An upper bound to
keep detection possible in our case is approximated
to a PBS error aroundl= 10 3.

6 CONCLUSIONS

In this work, we have defined an abstract probabilis-
tic CNOT model, we identified and modeled errors
occurring in the success probability in the case of
T.C.RalphCNOT based implementation. We also
studied the effect of the errors occurring in the imple-
mentation of quantum algorithm when it uses identi-
calCNOQT called generalized Ralg@NOT model and
abbreviatedCR(H). The work we have performed
here, forCR(H) based technology can be used with
other technologies. We omitted in this paper to dis-
cuss the other technologies because of the lack of
space and the redundancy of results. We believe that
the study of implementations based on linear compo-
nents will highlight a large range af-realizable ab-
stract probabilisti€NOT. Our future work address
this issue.
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