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Abstract: Direct Numerical Simulation coupled with Immersed Boundary Method (IBM) has attracted wide atten-

tion recent years, making this technique a significant role in many practical engineering areas. This paper 

described a direct numerical study of flow past a sphere above a plane, which can obtain detail infor-

mation of flow field and vortex structure. A combined multiple-direct forcing and immersed boundary 

method (MDF/IBM) was used to deal with the coupling between fluid and solid. The Reynolds number 

based on sphere diameter was 4171. Behaviours of the vortices were observed through the simulation. The 

velocity distribution switched from laminar boundary to turbulent boundary. A recirculation region was 

observed behind the sphere. The influence of the sphere on the boundary layer, the center peak defect, the 

turbulence intensity and the Reynolds stresses are explored. 

1 INTRODUCTION 

A number of studies have been carried out on a flow 

pasting a three-dimensional obstacle placed on the 

plane boundary, especially the flow past a sphere. 

Obtaining enough data and understanding the struc-

ture of flow field and vortex are extremely necessary. 

Because from an engineering viewpoint, the spheri-

cal structure application can be seen everywhere in 

practice, such as some structures exposed in the 

wind, vehicles moving in fluid and so on. After 

Schlichting studied a blunt obstacle placed on the 

plane boundary with the effect of surface roughness 

(Schlichting, 1939), the drag of a sphere placed on a 

ground plate (Klemin et al., 1939) was investigated. 

An experimental study of the turbulent shear layer 

behind a sphere placed on a plane boundary was 

performed (Okamoto, 1980). The surface pressure 

distribution on a sphere, the velocity and pressure 

distribution in the shear layer behind a sphere were 

measured. It was found that the wall wake behind a 

sphere became low and spreads transversely with the 

downstream distance increasing. Takayuki (Taka-

yuki, 2008) investigated the flow around a sphere 

placed at various heights above a plane boundary. In 

Takayuki’s experimental study, the surface pressure 

distribution on the sphere and the plane were meas-

ured, meanwhile empirical equations of the drag and 

lift coefficients were defined. 

In recent years, with the development of the 

computer technology, it becomes possible to do 

research on two-phase flow in turbulent boundary 

layer using direct numerical simulation method. 

Fully resolved direct numerical simulations were 

considered to investigate a turbulent channel flow 

over an isolated particle of finite size (Zeng et al., 

2008) with the spectral element methodology (SEM). 

To validate a joint application of direct numerical 

simulation and a combined multiple-direct forcing 

and immersed boundary method (MDF/IBM), a flow 

past an isolated three-dimensional hemispherical 

roughness element mounted on a flat plate was 

simulated (Zhou et al., 2010). Nevertheless, 

numerical simulation studies on the interaction 

between sphere and plane boundary layer are 

lacking, which could be significant to engineering 

application. 

This paper describes a direct numerical study on 

the flow field and the vortex structure on a sphere 

above a plane. The influence of the sphere on the 

boundary layer is explored, such as velocity 

distribution, turbulence intensity, Reynolds stresses 

and vortex structure. 
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2 NUMERICAL METHOD 

2.1 Governing Equations 

In the computational domain Ω, the dimensionless 

governing equations for incompressible viscous 

flows are: 

∇ ∙ 𝒖 = 0, (1) 

∂𝒖

∂t
+ 𝒖 ∙ ∇𝒖 = −∇𝑃 +

1

𝑅𝑒
∇2𝒖 + 𝒇. (2) 

Here, u is the dimensionless velocity of fluid, P is 

the dimensionless pressure, Re is the Reynolds 

number defined as 𝑅𝑒 =
   

 
, where  is the 

characteristic density of fluid, U is the characteristic 

velocity, L is the characteristic length of flow field 

and   is the viscosity of fluid. 

2.2 Multi-direct Forcing Immersed 
Boundary Method 

Function f in the momentum equation (2) is the 

mutual interaction force between fluid and 

immersed boundary, this dimensionless external 

force is expressed as: 

𝒇( , t) = ∫   (  ) ∙  ( −   )   
 

, (3) 

where  ( −   ) is the Dirac-delta function.    is 

the position of the kth Lagrangian point on the 

immersed boundary. x is the position of the Eulerain 

grid nodes.   (  ) is the force that exerts on the 

fluid by the kth Lagrangian point of the immersed 

boundary. 

  (  ) =
𝒖 
   − 𝒖 

 

  

− (𝒖 ∙ ∇𝒖 + ∇𝑃

−
1

𝑅𝑒
∇2𝒖)

=
𝒖 
   − 𝒖̂ 
  

−
𝒖̂ − 𝒖 

 

  
−    , 

(4) 

where    = −(𝒖 ∙ ∇𝒖 + ∇𝑃 −
 

  
∇2𝒖), and n, n+1 

represent two different time. 

Here, 𝒖̂  is an intermediate variable which 

satisfies the governing equations of the pure flow 

field, then we can get 
𝒖̂  𝒖 

 

  
−    = 0. 

In order to ensure that the no-slip boundary con-

dition of the velocity at the immersed boundary 

could be satisfied, Direct forcing (Mohd-Yusof, 

1997) is introduced to make the velocity on the La-

grangian points approaching the velocity of the 

no-slip boundary. Therefore the force exerted on the 

kth Lagrangian point at the immersed boundary is: 

  (  ) =
𝒖 
   − 𝒖̂ 
  

=
𝒖  𝒖̂ 
  

. (5) 

If this direct forcing is exerted by l+1 times, the 

intermediate velocity 𝒖̂  could be much closer to 

the desired velocity 𝒖 .Then   (  )  could be 

expressed as: 

  
   (  ) =

𝒖 − 𝒖̂ 
 

  
. (6) 

At the same time, to spread the force from the 

Lagrangian points to the Eulerian grids, the two way 

coupling between Lagrangian points and Eulerian 

grids could be achieved through the Dirac delta 

function. Then we can get the functions of the force 

spread into the Eulerian grids, flow field and 

velocity of the points on the immersed boundary. 

When the Direct forcing is exerted by NF times 

in a time step, the velocity at the immersed 

boundary can get close enough to the desired 

velocity under the no-slip condition. The interaction 

force between fluid and Lagrangian points could be 

described as : 

  (  ) =∑  
 (  ).

  

   

 (7) 

The method mentioned above is called Multi-direct 

Forcing (Luo et al., 2007); (Wang et al., 2008). 

A closed-form expression for the velocity 

distribution over a smooth wall is valid continuously 

from the wall up to the freestream (Musker, 1979). 

In this paper, it is applied to calculate the 

streamwise velocity of the entrance velocity. And 

the open boundary condition (Orlanski, 1976) is 

applied as the convective velocity boundary 

condition. 

2.3 Computational Domain 

The geometrical parameters of the domain are 

X×Y×Z=74.55mm×14.1mm×10.5mm, which can be 

seen in figure1, and the sphere center is placed at 

O(16.35mm, 7.05mm, 1.8mm). The precision of 

uniform grid is 50μm, thus the grid amount of the 

whole flow field is 92,897,280. The domain is di-

vided into 48 subdomains, and the resolution along 

the streamwise, spanwise and wall-normal directions 

are 16×3×1. Parameters of the sphere and fluid are 
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set out in Table 1. 

The size of the gap between the bottom of the 

sphere and the plane is 0.1D, which is 0.3mm. 

According to the expression    
 

 
(1 

  
 

  
+ 1) , 

the amount of Lagrangian points (Uhlmann, 2005) is 

9520, distances between any two points are equal in 

length. 

 

Figure 1: Schematic view of the computational domain. 

Table 1: Summary of prediction conditions. 

Parameter value 

Sphere diameter, D (mm) 3 

Position of the sphere center, 

O(xomm,yomm,zomm) 
(16.35 , 7.05 , 1.8) 

Air density, ρ(kg/m3) 1.205 

Air viscosity, μ (kg/m/s) 1.82×10-5 

Free stream velocity, U (m/s) 21 

3 RESULTS AND DISCUSSION 

According to the simulation results, we analyse the 

structure of the vortex, the distribution of velocity 

and pressure, the turbulence intensity, and so on. 

The structure of the vortex is observed in figure 

2, from which no horseshoe vortices and arch 

vortices could be find, but hairpin vortex formed and 

shed form the sphere, thus the forest vortices are 

formed. It is consistent with the experimental results 

of Takayuki (Takayuki, 2008). 

 

Figure 2: Vortex structure of the entire domain. 

The average velocity field in the center section 

Y=yo at four different time steps are presented in 

figure 3. The streamwise velocity distribution of the 

boundary layer is visualized clearly. It can be seen 

from the illustration that there is a typical laminar 

flow velocity distribution in front of the sphere. 

Then the flow is splited: the under part flows 

through the gap between the sphere and the plane. 

Because of the across area reducing suddenly, a high 

velocity area is formed, extending to the 

recirculation region behind the sphere. And the 

upper part climbs upward along the sphere. 

Boundary layer separation take place on the 

separation point at the top of the sphere. The 

separated boundary layer sharply thickens along the 

flow, and under the separated boundary layer, a 

recirculation region is formed behind the sphere. 

The sharply thickening of the boundary layer 

indicates the transition of the boundary layer. And 

behind the transition zone, the profile of the 

boundary layer velocity converts from the fully 

developed laminar boundary layer to fully 

developed turbulent boundary layer. According to 

figure 3, the turbulent boundary layer develops 

continuously with time, and the wake rises along the 

normal direction. At the same time, the length of the 

transition zone reduces. Laminar sublayer could be 

distinguished from figure 3(c). 

 

Figure 3: The streamwise velocity distribution of the 

boundary layer, (a) t=0.00962s， (b) t=0.01429s， (c) 

t=0.01905s，(d) t=0.02476s. 

Figure 4(a) shows the profiles of the mean 

velocity defect at X/D=10(X=x-xo). With the 

vertical distance increasing, the peak velocity defect 

decreases and almost vanishes at Z/D=0.8. And as 

the upward distance increasing, its position closed to 

the center when Z/D <0.6, yet moved away from the 

center when Z/D >0.6. On the spanwise direction, 

the velocity defect decreases faster when 

Y/D>0.5(Y=y-yo) than the center behind the sphere. 

Figure 4(b) indicates the mean velocity defect at 

Z/D=0.6. In the range of Y/D<0.7, the peak defect is 
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mainly affected by the recirculation region behind 

the sphere. When the downstream distance increas-

ing, the center peak defect decreases, and another 

peak velocity defect appears at X/D=7. The 

spanwise peak defect shifts in the Y-direction, 

which takes place at Y/D=1.1 for X/D=7 and at 

Y/D=1.4 for X/D=14. Figure 5(a)-(f) shows the 

profile of mean velocity at plane Y=yo. 

  
(a) (b) 

Figure 4: (a) Profiles of mean velocity defect in the verti-

cal section X/D=10; (b) Profiles of mean velocity defects 

in the horizontal centre section Z/D=0.6. 

 

Figure 5: Profiles of mean velocity in the centre section 

Y=yo. (a) x=6.65mm, (b) x=14.95mm, (c)x=16.35mm, 

(d)x=17.95, (e) x=43.85mm, (f) x=73.75mm. 

The dimensionless position of the sphere center 

at Z-axis is 0.075. At x=6.65mm, a typical laminar 

boundary layer velocity profile is presented as the 

entrance velocity profile.In figure 5(b) fluctuations 

in the range of 0.3<z<0.6, is the result of the IBM 

method, not the velocity of fluid. According to the 

IBM method, it is solid inside the sphere, which has 

been computed as fluid. Thus the velocity is 0 in fact. 

And the profile indicates that the existence of the 

sphere “breaks” the laminar boundary layer velocity 

profile. The mean velocity profile at the position of 

the sphere center is observed in figure 5(c). Actually, 

the fluctuation in the range of 0.075<z<0.825 is not 

the velocity of fluid as well. Due to the influence of 

the sphere, a high velocity area forms in the gap 

between the sphere and the plane. In the range of 

0.825<z<1.000 at the top of the sphere, a thin 

boundary layer exists, where the dimensionless 

velocity sharply increases from 0 to 1.2. Figure 5(d) 

shows the mean velocity profile at 0.1mm behind 

the sphere. Because of separation of the boundary 

layer and the formation of the recirculation region, 

mean velocity presents negative values. Figure 5(e) 

and (f) respectively describes the profile at 

x=43.84mm and x=73.75mm. The influence of the 

sphere on the boundary layer is much weaker when 

x equals to 73.75mm, and the velocity profile 

indicates a typical turbulent layer velocity profile. 

The pressure distribution on the plane can be 

observed in figure 6. There are two areas of high 

pressure respectively in front of the sphere and 

behind the recirculation area. Behind the sphere, the 

low pressure area which coincides with the 

recirculation area is reduced rapidly because of a 

strong downwash behind the sphere. Hence the 

length of the recirculation region is considered to be 

twice as much as the diameter of the sphere between 

the two high pressure areas. 

 

Figure 6: The pressure distribution on the plane. 

In figure 7 the time-mean velocity profiles at 

X/D=5~14 are presented. The thickness of boundary 

layer is nearly equal to 1.8D at X/D=5, and thikens 

with downstream distance increasing. The 

turbulence intensity on X-component, Y-component 

and Z-component are compared in figures 8-10. 

Because of the existance of the sphere, the 
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turbulence intensity values in the virtical direction is 

divided into three zones natually. In the range of 

0<z<0.075, turbulence intensity in X-direction and 

Y-direction decreases rapidly with the virtical 

distance increasing, but in Z-direction, it increases. 

In the range of 0.075<z<0.825, turbulence 

intensityis about 0.1 in all directons and decreases 

with streamwise distance increasing. The value of 

turbulence intensity gradually tends to the value of 

freestream in the range of z>0.825, which 

approaches zero. And the change is gentler as the 

streamwise distance increasing. Thus it can be seen 

that turbulence intensity is increase in the shear 

layer. 

 

Figure 7: Profiles of mean velocity in the centre section 

Y=yo. 

 

Figure 8: Profiles of turbulence intensity in X-direction in 

centre section Y=yo. 

Figure 11 shows the Reynolds stresses profile in the 

plane Y=yo. At the position x=20.60mm, two peaks 

which have different direction are presented 

respectively at z=1mm and z=3.6mm. Similarly, at 

other positions in the X-directon, two peaks in the 

opposite direction exist. And with the increase of x, 

peak values reduce, which is closed to zero near the 

outlet of the computational domain where x equals 

to 73.75mm. 

 

Figure 9: Profiles of turbulence intensity in Y-direction in 

centre section Y=yo. 

 

Figure 10: Profiles of turbulence intensity in Z-direction in 

centre section Y=yo. 

The X-component, Y-component and 

Z-component of the turbulence intensity in the 

horizontal center section (Z/D=0.6) and the vertical 

section where X/D=10 are shown in figures 12-13. 

The position of peak of turbulence intensity moves 

in a manner similar to peak velocity defect. While 

Z/D<0.8, the turbulence intensity at the streamwise 

is larger than the lateral and vertical turbulence 

intensities. And at Z/D=1.2, the turbulence becomes 

almost isotropic. 
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Figure 11: Profiles of Reynolds stress in the centre section 

Y=yo. 

   
(a) (b) (c) 

Figure 12: Profiles of turbulence intensity in the horizontal 

centre section (Z/D=0.6). (a) in X-direction; (b) in 

Y-direction; (c) in Z-direction. 

4 CONCLUSIONS 

In this paper, we have studied the flow field around 

a sphere placed above a ground plane. The gap be-

tween the sphere and the plane is 0.1D. The Reyn-

olds number based on D is 4171.The MDF/IBM 

method has been used to deal with the coupling be-

tween fluid and solid. The main findings of this 

study are summarized in the following. 

(1) Hairpin vortex is formed and sheds behind the 

sphere, and the forest vortices are formed. 

(2) In front of the sphere there is a typical  

laminar flow velocity distribution. And near the 

outlet of the domain, the velocity distribution has 

turned to a typical turbulent layer velocity profile. 

(3) The flow is splited when flowing around the 

sphere: the under part forms a high velocity area and 

the upper part climbs upward, extending to the 

recirculation region behind the sphere. Boundary 

layer separation takes place on the separation point 

at the top of the sphere.  

(4) A recirculation region is formed because of the 

strong downwash behind the sphere. The length of 

the recirculation region is twice as much as the 

sphere diameter. 

(5) With streamwise distance increasing, the 

influence of the sphere on the boundary layer 

decreases. The thickness of boundary layer 

increases, the center peak defect and the turbulence 

intensity decreases. In addition the Reynolds stresses 

reduce, which is close to zero near the outlet of the 

computational domain. 

With the vertical distance increasing, the peak 

velocity defect decreases and its position is close to 

the center when Z/D <0.6, yet moves away from the 

center when Z/D >0.6 The position of peak 

turbulence intensity peak moves in a manner similar 

to peak velocity defect. 
 

   
(a) (b) (c) 

Figure 13: Profiles of turbulence intensity at X/D=10. (a) 

in X-direction; (b) in Y-direction; (c) in Z-direction. 
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