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Abstract: Different clustering algorithms are widely used for image segmentation. In recent years, spectral clustering
has risen among the most popular methods in the field of clustering and has also been included in many image
segmentation algorithms. However, the classical spectral clustering algorithms have their own weaknesses,
which affect directly to the accuracy of the data partitioning. In this paper, a novel clustering method, that
overcomes some of these problems, is proposed. The method is based on tracking the time evolution of the
connections between data points inside each cluster separately. This enables the algorithm proposed to perform
well also in the case when the clusters have different inner geometries. In addition to that, this method suits
especially well for image segmentation using the color and texture information extracted from small regions
called patches around each pixel. The nature of the algorithm allows to join the segmentation results reliably
from different sources. The color image segmentation algorithm proposed in this paper takes advantage from
this property by segmenting the same image several times with different pixel alignments and joining the
results. The performance of our algorithm can be seen from the results provided at the end of this paper.

1 INTRODUCTION

Clustering is one of the most widely used techniques
for data mining in many diverse fields such as statis-
tics, computer science and biology. One of the most
used applications for clustering algorithms is image
segmentation which plays a very important role in
the area of computer vision. The best known and
still commonly used methods for clustering are k-
means and fuzzy c-means (FCM) which are also
used in some quite new image segmentation algo-
rithms (Chen et al., 2008), (Yang et al., 2009). In
recent years, the spectral clustering based image seg-
mentation algorithms have risen among the most pop-
ular clustering based segmentation methods. There is
a large variety of spectral based clustering algorithms
available some of which are described in (Luxburg,
2007) and (Filippone et al., 2008). Basically, it is
possible to use any of them as a part of image segmen-
tation algorithms, but quite a little attention has paid
to the shortcomings of these spectral clustering based
segmentation algorithms, even if some of the limi-
tations are quite easy to reveal as shown in (Nadler
and Galun, 2007). These limitations affect straight-
forward also to the performance and accuracy of the
image segmentation process.

In this paper, we introduce a novel clustering ba-

based image segmentation algorithm that is closely
related to but have some significant advantages com-
pared to the classical spectral clustering based meth-
ods. The algorithm is based on tracking diffusion pro-
cesses individually inside each cluster, or we can say
inside each image segment, through consecutive mul-
tiresolution scales of the diffusion matrix. The nature
of the algorithm supports combining segmentation re-
sults from different sources reliably. This enables the
statistical point of view to the segmentation process
and allows precise results also when using quite large
regions, patches, around each pixel when collecting
the local color and texture information. The paper
is organized as follows. First, in Section 2, we fa-
miliarize ourselves with some existing clustering al-
gorithms, and we will take a closer look at a couple
of spectral clustering algorithms that are commonly
used as a part of image segmentation algorithms. In
Section 3, we then introduce a new algorithm for clus-
tering and a new image segmentation algorithm will
be represented in Section 4. In Section 5, the clus-
tering and image segmentation results are reviewed.
Finally, some conclusions and suggestions for future
work will be provided in Section 6.
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2 SOME CLUSTERING
ALGORITHMS

There is a large variety of clustering algorithms avail-
able nowadays, and it is not possible to introduce
them extensively. The most common algorithms, k-
means, introduced in 1967 (Macqueen, 1967), and
FCM, introduced in 1973 (Dunn, 1973), are both
over 35 years old, and a lot of work to enhance
them has done also in recent years (Chitta and Murty,
2010), (Liu et al., 2010b), (Yu et al., 2010) and (Vintr
et al., 2011). Of course, many algorithms that are not
based on these two have been introduced during these
years. One of the newest algorithms is the linear dis-
criminant analysis (LDA) based algorithm presented
in (Li et al., 2011). The other interesting one, espe-
cially from our point of view, is the localized diffusion
folders (LDF) based algorithm presented in (David
and Averbuch, 2011). The LDF based algorithm can
be counted in to the category of spectral clustering
algorithms, and the hierarchical construction of the
algorithm has some similarities compared to the algo-
rithm presented in this paper.

As mentioned earlier, the spectral clustering algo-
rithms are commonly used as a part of image segmen-
tation algorithms nowadays, and this is due to their
excellent performance when dealing with data sets
with complex or unknown shape. The clustering al-
gorithm presented in this paper can also be thought as
a spectral clustering algorithm, although the spectral
properties of the diffusion matrix do not have to be
directly examined. Because of this relationship, we
introduce next a couple of classical spectral cluster-
ing algorithms that are also used as a baseline when
testing the performance of our algorithm later in this
paper.

2.1 The NJW and the ZP Algorithm

The main tools in the spectral clustering algorithms
are the variants of graph Laplacian matrices or some
relatives to them. One popular choice is the diffusion
matrix which is also known as the normalized affinity
matrix. This matrix is also the core of the classical
Ng-Jordan-Weiss (NJW) algorithm (Ng et al., 2001)
and the Zelnik-Manor-Perona (ZP) algorithm (Zelnik-
manor and Perona, 2004). Next we will take a closer
look at these algorithms. Further information about
spectral clustering may be found in (Luxburg, 2007).

We use the notationA(x,y) for the entry of a ma-
trix A in a rowx and in a columny through this paper.

Let X = {xi}
N
i=1, xi ∈Rd, be a set ofN data points.

The clustering process using the NJW algorithm is
done as follows assuming that the number of clusters

M is available:

1. Form the weight matrixK ∈ RN×N of the simi-
larity graphG(V,E) where the the vertex setV =
{vi}

N
i=1 represents the data setX = {xi}

N
i=1. Use

Gaussian weights:K(i, j) = e
−

‖xi−xj ‖
2

σ2 whereσ2

is a fixed scaling parameter.

2. Construct the diffusion matrix (i.e. the normal-
ized affinity matrix)T = D− 1

2 KD
1
2 whereD is a

diagonal matrix so thatD(i, i) =
N

∑
i=1

K(i, j).

3. Find the M largest eigenvalues and the corre-
sponding eigenvectorsu1 . . .uM of the matrixT.
Form the matrixU ∈ RN×M with column vectors
ui .

4. Re-normalize the rows ofU to have unit length in
the‖ · ‖2-norm yielding matrixY.

5. Treat each row ofY as a point in RM and cluster
via the k-means algorithm.

6. Assign the original pointxi to clusterJ if and only
if the corresponding rowi of the matrixY is as-
signed to clusterJ.

The ZP algorithm has a same kind of structure and is
based on the same basic principles as the NJW algo-
rithm. However, there are a couple of major advan-
tages in the ZP algorithm:

• The fixed scaling parameter is replaced with lo-

cal scaling parameter so thatK(i, j) = e
−

‖xi−xj ‖
2

σi σ j

whereσi = ‖xi − xn‖, andxn is then:th neighbor
of xi . This modification allows the algorithm to
work well also in situations where the data resides
in multiple scales.

• The k-means step (5) can be ignored.

• The number of clusters can be estimated during
the process, so there is no need to know it before-
hand.

Both of these algorithms are based on same basic
ideas and if the fixed scaling parameter is replaced
with local one, their accuracies on clustering are quite
the same, and both suffers from same shortcomings.
In next sections, we will represent a new algorithm
that overcomes some of these shortcomings.

3 NEW ALGORITHM FOR
CLUSTERING

The diffusion matrixT tells us how the data points are
connected with each other in a small neighborhood.
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The powersTt , t > 1, describe then the behavior of
the diffusion at different time levelst, and how the
connections between data points evolve through the
time. This process we call as the diffusion process.

We can make a couple of general assumptions
concerning the behavior of the diffusion process and
clustering. First of all, the spectral clustering algo-
rithms, including the algorithm presented here, are
generally based on the assumption that the diffusion
moves on faster inside the clusters than between the
clusters. Second, if we assume that the diffusion
leakage between clusters is relatively small, the diffu-
sion inside the clusters can reach almost the stationary
state, i.e. the state when the diffusion process has sta-
bilized inside the cluster.

The classical spectral clustering algorithms (in-
cluding the ZP algorithm) are based on comput-
ing the eigenvectors of the diffusion matrix (normal-
ized affinity matrix) and assigning the data points
with help of these eigenvectors. However, these
kinds of methods suffer from limitations as presented
in (Nadler and Galun, 2007) where it was shown that
if there exist large clusters with high density and small
clusters with low density the clustering process may
fail totally. This is because the first assumption does
not hold. Even if the situation would not be that bad,
the accuracy of the clustering process suffers from
this shortcoming when handling clusters with differ-
ent inner geometries. This problem may be partially
overcome by tracking diffusion processes through the
consecutive scales (time steps) inside each cluster in-
dividually, as will be shown.

The clustering algorithm presented here can be
separated in following phases:

1. Compute the distances between data points and
construct the diffusion matrixT using local scal-
ing or some other suitable scaling method.

2. Construct the multiresolution based onT up to the
level needed for the efficient computation of the
powers ofT.

3. Track the diffusion processes inside clusters using
the points and levels provided by the multiresolu-
tion construction process.

4. Do the final cluster assignments and repeat the
tracking process if needed.

It is remarkable that all these phases are possible
to implement by using just basic programming rou-
tines without computing, for example, eigenvalues or
eigenvectors and without using any specific libraries
or functions such as k-means. However, if there is a
lot of noise present, the k-means step can be included
in the phases 3 and 4.

The phases 2-4 will be explained in more detail
in following sections, whereas the phase 1 will not
need any further explanations or details, as it is im-
plemented directly in the same manner as explained
in Section 2.

3.1 Phase 2: The Multiresolution
Construction

The multiresolution construction is needed for the ef-
ficient computation of high powers of the diffusion
matrix T so that the time evolution of the matrix can
be analyzed. The multiresolution construction used in
here was first introduced in (Coifman and Maggioni,
2006) and allows a fast, efficient and highly com-
pressed way to describe the dyadic powersT2p

, p> 0,
of the matrix within a precision needed. The parame-
ter p indicates the multiresolution level and this time
resolution seems to be adequate and suitable for our
purpose.

We made previously an assumption that the dif-
fusion process is much faster inside the clusters than
between them. This means that the decay of the spec-
trum of the diffusion matrix constructed from the data
inside the cluster is far faster than that of the ma-
trix constructed from all the data. This causes the
euclidean distance between the columns ofT2p

that
belong to a same cluster to approach towards zero,
and in some point, the numerical range ofT2p

has
decreased so that only one column is needed for rep-
resenting each cluster. We can trace the columns that
survived last during the multiresolution construction
and use these points as an input to the next phase as
starting points for the tracking process.

3.2 Phase 3: Tracking the Diffusion
Process

The second assumption gives us a good starting point
for choosing the right multiresolution level, or we can
say the right moment of time, to stop the diffusion
process. The speed of the diffusion process inside
each cluster depends on the decay of the spectrum of
the diffusion matrix concerning that part of the data
set. This means that time needed by the diffusion pro-
cess to settle down inside each cluster varies, and it
would be necessary to have a possibility to choose the
stop level of the diffusion process for every cluster in-
dividually as mentioned earlier. This can be done in a
following way:

Let Nk be an approximate number of data points
belonging to a clusterk, {sk}

M
k=1 a set of indices of the

columns tracked, or one can say the starting points,
during the diffusion process and{c(i,k)}

nk
i=1 a small
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set, nk ≪ Nk, of column indices of the data points
at the neighborhood ofsk (inside clusterk). The set
{c(i,k)} may be get from the support of columnssk of
the matrixT.

The process is started at levelp= 1 by calculating
the approximationT̃2 from the multiscale represen-
tation constructed in the previous phase, normalizing
the columns tracked and storing them to the matrix
C(1):

C(1)(l ,k) =
T̃2(l ,sk)

1
nk

nk

∑
i=1

T̃2(sk,c(i,k))

(1)

wherel = 1,2, . . . ,N andk = 1, . . . ,M. Next the data
points are assigned to clusters at this level by the func-
tion

g(p=1)(l) = argmax
k=1,2,...,M

C(1)(l ,k) (2)

where l = 1,2, . . . ,N. The decision whether to con-
tinue or to stop the diffusion process inside each clus-
ter is made as follows: If

R(p=1,k) =

1
nk

nk

∑
i=1

T̃2(sk,c(i,k))
N

∑
l=1

1g(p=1)(l)=k

N

∑
j=1

T̃2( j,sk)

, (3)

k = 1, . . . ,M, is smaller than the chosen thresholdq,
stop the process inside the clusterk, else continue. In
an ideal case, there will not be any leakage between
clusters andR(p,k) approaches to 1 when the diffu-
sion moves towards the stationary state. This is ob-
vious because the mean of the points included in the
small neighborhoodc(i,k) tends towards the mean of
all the points inside the support1g(1)(l)=k. However,
the values above 1 as a threshold for making the de-
cision would be too high if there is a significant leak-
age present, and, therefore, it would be reasonable to
choose 0.8≤ q≤ 1.

If all the processes were allowed to continue, we
can let the diffusion processes move forward and step
to the next levelp= 2 by computing the approxima-
tion T̃4, updating the neighborhoods and computing
the matrixC(2) using the tracked columns ofT̃4. The
cluster assignments and the decision making process
will also be made in the same manner as at the previ-
ous level but using̃T4 instead ofT̃2. The tracking pro-
cess continues in this way through consecutive levels
until the level where some of the diffusion processes
will not be allowed to continue will be reached.

When the caseR(p,k) < q appears, the correspond-
ing column ofC(p) is transferred to the next level by
storing it toC(p+1) to the same place and will not be
updated by the normalized columns of the diffusion

matrix at that or other following levels. The process
is continued through the levels until all the individual
processes have stopped, and the cluster assignments
may then be found ing(pF ) where pF indicates the
final level.

3.3 Phase 4: The Final Cluster
Assignments

In some cases, the diffusion tracking process started
from the points provided by the multiresilution con-
struction gives results accurate enough for final clus-
ter assignments. However, one can ask, “Why not
to run in a loop the tracking algorithm and benefit
from the information provided the previous tracking
phase?” This is a justifiable question because if we
can choose the tracked columns so that the diffusion
processes inside the clusters settles down as fast as
possible, we could also decrease the amount of leak-
age between clusters.

Let Xk be the data set of sizeNk assigned to the
clusterk andTk the diffusion matrix constructed from
this data set. The rate of the connectivity between
pointsxi and x j inside a clusterk at level p can be
measured with diffusion distance

D2
(2p,k)(i, j) = T2p

k (i, i)+T2p

k ( j, j)−2T2p

k (i, j) (4)

as proposed in (Coifman and Lafon, 2006). Let the
diffusion centroid of the clusterk be the point with the
minimum mean diffusion distance inside the cluster:

s(ct)
k = argmin

i=1,2,...,Nk

1
Nk

Nk

∑
j=1

D2
(2pk ,k)(i, j) (5)

wherepk is the level where the diffusion was stopped.
The diffusion distance measures the connectivity be-
tween points of the data set so it is small if there are
a lot of connections, and vice versa. The pointsct

k is,
therefore, the one where from the diffusion process
can spread most effectively through the clusterk.

New cluster assignments may then be got after a
new tracking process started from the centroidssct

k . In
most of the cases, there is not significant change in the
cluster assignments after a couple of iterations.

4 IMAGE SEGMENTATION
ALGORITHM

Image segmentation is one of the most used applica-
tion for clustering algorithms. The development of
these clustering algorithms leads also to better image
segmentation algorithms some of which, quite recent
ones, are presented in (Tziakos et al., 2009),(Tung
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et al., 2010) and (Liu et al., 2010a). The segmenta-
tion algorithm presented here can be applied to any
kind of color or grayscale images. The size of the
image can be anything up to several megapixels, al-
though the used accuracy have to be adapted to the
image size. The segmentation process is based on di-
viding the image naturally to different areas by the
properties of the texture on these areas. Therefore, the
image has to be divided into patches, which are then
described to feature vectors. The algorithm consists
of following sequential phases:

1. Choose the patch size and the way to collect dif-
ferent layers from the image and form a stack
from the layers with correct alignment.

2. Extract the non-overlapping patches from the
layer stack and form the feature vectors from the
patches.

3. Choose the number of segments to be revealed
and find out the patches to be tracked using the
diffusion tracking algorithm if not provided with
some other way.

4. Apply the diffusion tracking clustering algorithm
to all the layers individually using the patches pro-
vided by the previous phase as starting points.

5. Segment all the layers using the results of the pre-
vious phase and align the layers to a stack in the
same way they were collected.

6. Compute the mode value of each pixel from the
stack and form the segmentation given by these
values.

7. Find out the areas, where the segmentation was
not clear enough and pass them to next phase if
more accurate segmentation is needed. If not, skip
the next phase.

8. Go back to phase 1.

9. Perform mode filtering on the image plane to the
result image.

A simplified flowchart representing the segmentation
process is shown in Figure 1. This algorithm is quite
simple to implement, and there are some interesting
parts in it. One of these, and maybe the most interest-
ing one, is the possibility to track the same patches in
different images or layers. In other words, the cluster
centroids are the same in all cases. This gives us the
possibility to join the segmentation results from dif-
ferent layers if we know the alignment of the layers.
The other interesting thing is that we can measure the
uncertainty of the segmentation process on the image
plane and run the segmentation procedure on these ar-
eas again with a finer scale using a smaller patch size.
Next we will take a closer look at all the phases pre-
sented.

P
a
tc

h
e

s
 tra

c
k
e

d

Original image Extracted layers

. 

Final result

Segmented layers

Figure 1: Image segmentation algorithm, flow chart.

4.1 Phase 1: Collecting the Layers

We call the different pixel alignment choices as layers
in this context. Let us consider a case we have an
image of sizeN×M. The different layers from the
image can be collected by selecting all or a restricted
number of the sub images of sizeN−n×M−mfrom
the original image. For example, if we choosen =
1 andm= 1, it is possible to collect four different
sub images from the original one; the top, most left
pixel (1,1) in the sub image can be chosen from a
pixel set(1,1), (1,2), (2,1) and(2,2) in the original
image. One crucial issue, which affects strongly on
the way to choose the layers, is the size of the patch
used for the texture description. The larger the patch
size, the more possible layers we have so that the non-
overlapping patches inside the layers are all different.
In case of the patch size 3× 3 pixels, for example,
we have 9 possible different layers so that there are
not any similar patches inside the different layers. Of
course, it is not necessary, or even possible, to collect
all the layers when the patch size grows. One possible
way to choose layers from all possible choices in case
of patch size 3×3 and image size 12×12 is presented
in Figure 2. The layers are then stacked so that the
correct alignment remains.
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Layer 1 Layer 3Layer 2

12 x 12 image

Patch

Figure 2: Layer selection with patch size 3×3 and original
image size 12×12.

4.2 Phase 2: Forming the Feature
Vectors

All the non-overlapping square patches are then ex-
tracted from each layer separately and a description of
every patch is stored in a feature vector. The descrip-
tion is constructed in a following simple way. First
all pixels are sorted according to the value of each
pixel in a single color component and stored to a vec-
tor. This sorting process is done for every component
separately. Next all of these vectors are concatenated
so that the resulting vector is of size 3n2 in case of a
RGB-image and a patch sizen×n.

4.3 Phase 3: Choosing the Patches to be
Tracked

One very important thing on ensuring the proper
working of the diffusion tracking algorithm used for
clustering is the choice of the starting points for the
diffusion processes inside each cluster, or we can say
inside each image segment in this case. When seg-
menting an image, a natural way to choose these start-
ing points or patches is to manually select patches
from the areas to be treated as different segments.
This is possible because the tracking algorithm allows
the patches tracked to be fixed. Of course, it is possi-
ble to search these patches automatically as explained
previously in Section 3. In that case, only the num-
ber of different segments and the set of layers, where
from to search the patches, have to be given to the
algorithm.

4.4 Phase 4: Clustering

The clustering phase is done for each layer separately
using the diffusion tracking algorithm. This is possi-

ble because the tracked patches can be added to each
of the sets of patches formed from different layers so
that all the tracking processes can be considered com-
parable. This property allows also the use of efficient
parallel computing in the clustering phase because all
the different tracking processes can be ran indepen-
dently without any exchange of data between them.
This is quite an important issue because the clustering
phase is the most demanding one computationally and
thus the most time-consuming one. After the cluster-
ing process, every single patch is connected and la-
beled to one of the clusters which represents different
types of image textures in this case.

4.5 Phase 5: Layer Segmentation

The labeled patches are then mapped back to an image
of same size as the original one so that we have a set
of different segmentation results, one per every layer,
from that image. These different segmented layers
are stacked so that the alignment of the layers corre-
sponds the original alignment.

4.6 Phase 6: Joining the Results

The segmented layer stack gives us a lot of possibili-
ties to choose the final label of each pixel in the result
image. A straightforward and reasonable way to ap-
proach this problem is to use the statistical point of
view. There are a lot of propositions for the label of
each pixel, so why not to choose the one which has
the most of votes. This idea is very easy to implement
just by choosing the mode value from the set of labels
of each pixel. This solution has proven to be very re-
liable and stable also in experimental tests. Because
of the different alignment of the layers, there will be a
narrow border area around the image where the num-
ber of labels is smaller than elsewhere and, therefore,
the reliability suffers a bit on that area.

4.7 Phase 7: Measuring the Reliability
of the Segmentation

As presented earlier, a set of different labels is at-
tached to every single pixel. The reliability of the
segmentation result of each pixel is then revealed sim-
ply by examining the distribution of the labels, pixel
by pixel. If the number of votes for the mode value
at each pixel clearly outnumbers the other values, the
chosen label can be considered reliable and the seg-
mentation of that pixel final. In other case, the pixel
examined is tagged as uncertain one and may need
further processing and re-segmentation. Choosing the
threshold between uncertain and certain labeling is
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Figure 3: Original aerial images.

a tradeoff between more accurate results and more
computing time. The experimental tests have shown
that a good choice as a threshold could be as high as
75% of all votes for the won label.

4.8 Phase 8: Loop

If more accurate results were needed, the areas to be
re-segmented are then passed to the phase 1 where
the patch size is scaled downwards compared to the
previous round. The patches tracked are also scaled
down and kept as a starting points for the next round
clustering process.

4.9 Phase 9: Smoothing

After the accuracy wanted is achieved, the remaining
phase is to smooth the image. This may be necessary
due to the single separate pixels or small pixel groups
on the re-segmented areas. The filtering method pro-
posed here is related to the median filtering on the
image plane, but instead of using the median value of
the pixel neighborhood, the mode value is used.

5 EXPERIMENTAL RESULTS

The performance of the clustering algorithm pre-
sented in this paper was tested together with the ZP al-
gorithm based segmentation algorithm using an aerial
image as a data source. The ZP algorithm outper-
forms usually the classical NJW algorithm and there-
fore the results achieved with classical NJW are omit-
ted. However, when clustering some of the data sets
extracted from the image, the ZP algorithm provided
by authors of (Zelnik-manor and Perona, 2004) failed
totally. Therefore, the performance of our algorithm

is compared also with the NJW algorithm enhanced
with local scaling. Neither ZP nor NJW algorithm
supports directly the image segmentation procedure
presented here, so the final segmentation results using
these clustering methods could not be provided this
time.

5.1 Aerial Image Segmentation

The image segmentation algorithm presented in this
paper is based on clustering patches collected from
an image. In this experiment, two color aerial images
are used as a source of data to be clustered and as an
example cases for the segmentation algorithm. Fig-
ure 3 represents the aerial images to be segmented.
The images are RGB images of size 750×900 pixels
(height×width) and are acquired from the National
Land Survey of Finland (2010). Only a slight con-
trast enhancement has been done for both of the im-
ages before the segmentation process. The main goal
of the segmentation process is to reveal the areas of
different terrain types such as lakes, forests of differ-
ent densities and bogs using the information provided
by rectangular patches extracted from the image. The
number of different terrain types is chosen to be five
in both of the cases. This choice is reasonable when
looking at the images: There is a clearly visible wa-
ter area, woodless bog areas and the forest areas can
be divided quite clearly to three types with different
densities in the image on the left side, whereas there
are four different types of forest areas and a woodless
bog area in the image on the right side.

To provide some proof of the good performance
in the clustering accuracy of the proposed method,
our algorithm is compared with the ZP algorithm and
also with the NJW algorithm with local scaling be-
cause the ZP algorithm failed totally in some tests
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Figure 4: Rows 1,3,5: Segmentation results with patch sizes44× 44, 40× 40 and 33×33. From left: NJW, ZP, and our
algorithm. Rows 2,4,6: The same results embedded via the first three eigenvectors of the diffusion matrix.
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as can be noticed in following results. The compar-
ison was done by segmenting a single layer extracted
from the aerial image on the left side in Figure 3.
Figure 4 shows the results using three different patch
sizes. The patch sizes are chosen so that visible dif-
ferences can be noticed. In addition to the segmenta-
tion results, there are also the embeddings via the first
three eigenvectors of the diffusion matrix presented,
and these embeddings show even more clearly the dif-
ferences between algorithms. The dark red color rep-
resents water areas, light blue woodless areas, green
sparse forest areas, orange forest areas with medium
density and dark blue dense forests.

All the algorithms perform quite well when us-
ing the patch size 44×44 and the reason for that is
clearly seen on embeddings via the eigenvectors. The
five different clusters are all well separated, and this
guarantees the good performance also for the spectral
clustering algorithms like NJW and ZP.

Changing the patch size a little bit smaller to size
40×40 makes the clustering problem much more dif-
ficult. Both the NJW and ZP algorithm fail to reveal
the edges of the green and orange areas and this can
also be seen on embeddings where the border between
these areas go through the densest part of the data
cloud. The performance of our algorithm suffers also
a little bit, but the result is still quite close to the one
achieved with larger patch size.

The most interesting results are found when us-
ing patch size 33×33. The ZP algorithm fails totally
while mixing the green and orange areas with each
other. The reason for that is unclear, and it is quite
surprising because the NJW algorithm works as sup-
posed. However, the NJW algorithm is not capable
of revealing the edges between the orange and green
areas. The clusters it founds for these areas look like
dipoles when looking at the embedding figure. Our
algorithm succeeds quite similarly as in other cases
presented and does the segmentation in a very natural
way when compared to the original image.

It is quite surprising to see from Figure 4 that our
algorithm can find quite well the natural patches to be
tracked using just a single layer. This is a very ben-
eficial property because the segmentation of a single
layer provides quite a good hunch about the final re-
sult if the same patches are tracked through all the lay-
ers, as it can be seen later. However, there are some
possibilities to improve the way to find the patches
tracked. One simple way is just to combine all the
patches from several layers together and try to search
the starting points from that set.

In the case of the left side image in Figure 3, the
final segmentation result presented is achieved using
the patch size 40×40 in the first loop and 20×20 in

the second, and the patches tracked are the same as
found and used in the single layer case in Figure 4. In
the case of the right side image, patch size 35×35 was
used in the first loop and 21× 21 during the second
one. The effect of the second loop is quite clear, and
the improvement in the accuracy compared with the
result after the first loop is obvious, as can be seen
when comparing the results in Figure 5.

The final results are quite impressive, and when
compared with the original images or the manually
segmented images showh in Figure 5, only a slight
errors may be noticed. The left side image was obvi-
ously more difficult to segment, thus there is one ob-
vious error on surroundings of the small lake, where
there can be seen a clear open area around the lake
in the original image, but the segmentation algorithm
fails to reveal it. The second one can be found in the
bottom center part of the image where the wet bog is
segmented as a dense forest. However, it is quite diffi-
cult to decide the ground truth of the right class for the
wet bog areas. Therefore, these areas are marked with
yellow color in the manually segmented image. The
natural edges of the different terrain types are found
as they are in real and, for example, the borders of the
lake are nearly as accurate as they can be. The seg-
mentation results in the case of the right side image
contain some small mistakes in surroundings of the
dense forest nose, as can be noticed when compar-
ing the final result with the manually segmented and
the original image. The orange border stripes around
the forest areas may also be thought as mistakes, but
that is not so obvious. The percentage of similarly
segmented pixels between the manual and automatic
segmentation in the more difficult case was 80.1 %
and in the easier case, 89.5 %. The accurate manual
segmentation in these kind of cases is an impossible
task, so the importance of these values can be ques-
tioned.

6 DISCUSSION AND
CONCLUSIONS

The results of our algorithm are really promising, al-
though there are a lot of possibilities to develop it
still. One main target to develop is the construction of
the multiresolution which is not optimized for clus-
tering at all and may produce, in some cases, bad
starting points for the tracking algorithm. The use
of biorthogonal diffusion wavelets (Maggioni et al.,
2005) instead of orthonormal diffusion wavelets will
also be studied carefully; there are some stability is-
sues which prevented the use of them in our algorithm
in this time. The use of more dense time resolution
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Figure 5: First row: Segmentation results after the first loop. Second row: The final segmentation results. Third row:
Segmentation results with manual segmentation.

and the coherence measure presented in (Nadler and
Galun, 2007) as a part of our algorithm will also be
studied like the use of different similarity measures
also. The aim of using the coherence measure is to try
find out the optimal number of clusters and, in other
hand, to prevent the appearing of unwanted clusters.

The algorithm for image segmentation presented

in this study has many interesting advantages and
properties compared to the traditional spectral or
other clustering based algorithms. The more com-
prehensive test results about the accuracy of the clus-
tering algorithm will be presented in upcoming ar-
ticles. However, a lot of improvements are possi-
ble to make to the existing algorithm some of which
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are already under implementation phase. The crucial
points, which are quite easily improved, are the search
of the patches to be tracked and the actual cluster-
ing algorithm, as mentioned earlier. Even if there are
some easily improved things in our algorithm, it is
quite stable and accurate and works well on segment-
ing color images.
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