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Abstract: This paper presents a model predictive controller developed in order to minimize the cost of grid energy 

consumption and maximize the amount of energy consumed from a local photovoltaic (PV) installation. The 

usage of as much locally produced renewable energy sources (RES) as possible, diminishes the effects of 

their large penetration in the distribution grid and reduces overloading the grid capacity, which is an 

increasing problem for the power system. The controller uses 24 hour prediction data for the ambient 

temperature, the solar irradiance, and for the PV output power. Simulation results of a thermostatic 

controller, a MPC with grid price optimization, and the proposed MPC are presented and discussed. 

1 INTRODUCTION 

The main issue (Vandoorn, 2011) is that the 

electrical distribution grid was not designed for bi-

directional power flow, i.e. that power would not 

only flow to the lower voltage levels where most 

consumer are connected, but that it could also flow 

“up” to the higher voltage levels.  

The increased amount of PV plants in the 

distribution grid introduces some complications, 

such as the fluctuating nature of PV production 

which has limited predictability (Madureira, 2009). 

There are fast fluctuations, due to cloud transients, 

which cause problems with voltage regulation. There 

are also slower fluctuations due to the movement of 

the sun and changes in cloud cover, so if the PV 

plant generation is not coordinated with the local 

consumption it might be necessary to invest in more 

grid capacity as presented in (Ueda, 2007). 

In the distribution grid there is also a foreseeable 

increase in new types of loads, such as heat pumps 

and electric vehicles, both loads that can to some 

degree act as flexible loads as shown in 

(Madureira,2009). 

If loads that are flexible can be intelligently 

managed, it could be possible to help the distribution 

grids to cope with both increased renewable 

production and increased loads. Furthermore, this 

intelligent control could also reduce the need for 

expensive  grid  extensions  if  loads  and production 

are coordinated locally. 

This control is seeking to incorporate predictions 

of weather, occupancy behaviour, renewable energy 

availability, and price signals from the grid. The 

model predictive control (MPC) presents a 

methodology that can use all these predicted values 

in order to improve the energy efficiency 

consumption by load shifting and peak shaving, 

minimize the cost of operation by using low price 

energy, as shown in (Nagai, 2002) and in (Ma 2011),  

and maximizing the use of renewable energy. 

This paper proposes a MPC that minimizes the 

overall electrical energy cost of heating a building 

which also has a local PV installation. By using the 

buildings ten 1 kW heaters, a price signal for 

electrical energy, a prediction of solar irradiation, of 

PV output power, and of ambient temperature it is 

possible to coordinate the heaters consumption so 

that as much energy as possible is consumed from 

the locally produced PV. 

2 MODEL OF THE SYSTEM  

Model predictive control uses a model of the system 

in order to predict the process output over a future 

horizon of N time steps and solves a quadratic 

optimization problem with the control signal as the 

decision variable. In addition, constraints can be 

formulated both for manipulated and controlled 
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variables as formulated in (Huusom, 2010) and 

(Oldewurtel, 2010). 

The model used in this paper is extensively 

presented in (Bacher, 2010) and represents a house 

of approximately 125 m
2
 divided between eight 

rooms. Every room is equipped with heaters: two 

rooms have two heaters and the others have one 

heater each. The heaters are considered to have the 

output power of 1kW. 

The model approximates the interior of the 

building to be one room with a uniform inside 

temperature. The state variable is the inside 

temperature (Ti), the input is the power to the heaters 

(PH) and the disturbances are the solar irradiance (G) 

and the ambient temperature (Ta).  

The temperature dynamics of a given space can 

be modelled using a resistance-capacitance (RC) 

circuit analogy, see figure 1, and formulated as a 

linear state space model.  

 
                          (a)                                                (b) 

Figure 1: Thermal dynamic model of the house. 

  

   

  
 

 

   

(     )         (1) 

Where Ci is the heat capacity of the house. This 

includes the indoor air and the interior objects 

(=3.42 [kW/°C]) 

Ria is the thermal resistance from the indoor to 

the ambient environment (=4.87 [°C/kW]) 

Aw is the effective window area of the house 

with heating influence (=5.53 [m
2
]) 

3 OFFSET FREE MPC  

The predicted disturbances values that are available 

to the model usually present an error compared to 

the real measured values. In order to eliminate the 

offset caused by these differences, filters have to be 

implemented for each of the predicted values fed 

into the controller. In this way, the controller will 

not track the predicted values, but their variations. 

This gives, compared to Equation 1, an extended 

state space model with an additional state for each 

filtered variable: 

[
    

    
]  [

  
   

] [
  

  
]  [

 
 
]     [

 
 
]    (2a) 

   [   ] [
  

  
] (2b) 

For simplification, we introduce the new state 

model on the basis of equation 3: 

                         (3a) 

          (3b) 

The usage of a Kalman filter in the algorithm 

consists of two stages that run cyclically:  

- Time update – responsible for projecting the 

state ahead 

                        (4) 

- Measurement update – which has the role to 

‘correct’ the estimated values by considering the 

measurements taken from the system 

            (        ) (5) 

The covariance P is a symmetric positive 

semidefinite solution of the discrete Ricatti equation: 

             (      )       (6) 

The covariance of the innovations Re and the 

predictive Kalman gain Kf are computed using 

equations 7 and 8: 

          (7) 

        
   (8) 

The simulation uses the quadprog solver from 

Matlab for which the optimization problem has to be 

rewritten in the form of Equation 9: 

   
 

  
 

 
         (9) 

Subject to  

       (10) 

The model output for the predicted horizon of N 

time steps is: 
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Equation 4 has the following coefficients: 

       (12) 
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Where 
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In this case, the result of the MPC optimization 

problem is the difference ∆uk and the command to 

the system is uk = uk-1 + ∆uk. 

4 SIMULATION SCENARIOS 

In all the simulations the MPC controller uses the 

model described in Equation 2. 

These two additional state variables are used for 

implementing the filter in order to achieve offset 

free control in the presence of deviations from the 

predicted values of the two disturbances. 

The MPC controller has hard limitations on the 

controlled variable – the inside temperature, that has 

to be inside [20...22]°C interval and on the 

manipulated variable – power supplied to the 

heaters, that has to be in the [0...10] kW interval, and 

can have only integer as power steps. 

The MPC controller starts with offline predicted 

values for solar irradiance, temperature, and grid 

price and for the third simulation case, the predicted 

PV power output. 

The time step of the simulations is 10 minutes, 

and the prediction horizon is 80 time steps. 

During each simulation, two different cases can 

be studied:  

- The first, when the house does not have any PV 

installation – the heaters are consuming power 

entirely from the grid  

- The second, when the house has a PV 

installation – the heaters are consuming power both 

from the PV plant and from the grid. The higher 

priority is to consume from the local PV plant and 

the remaining required power is taken from the grid. 

The amount of unused PV energy is sold to the grid. 

4.1 Simulation Scenario 1 

A thermostatic controller is implemented to maintain 

the temperature inside given limits: [19.2...21]. For 

comparison reasons, the limits in this simulation 

scenario differ from the other two scenarios in order 

that the average temperature in the house, for the 

simulation time, to be the same. This has the purpose 

to accurately reflect the MPC controller’s effect in 

similar operation conditions.  

4.2 Simulation Scenario 2 

The MPC tracks the inside temperature with 

minimal overall energy cost. The controller is 

considering all the energy to be taken from the grid, 

at a market imposed price (CG). 

The optimization function is represented by 

Equation 15: 
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4.3 Simulation Scenario 3 

The MPC controller tracks the inside temperature 

with minimal overall energy cost, also considering 

the power production of the installed PV panels. The 

controller calculates a virtual price on which the 

available PV power, that has a lower cost for the 

user (CPV) of 0.02 Euros, is considered to alter, with 

a weight factor, the market imposed price. 

            (16) 

The cost minimization function would be  

   
     

          (17) 

Considering U as the optimization variable and 

replacing 16 in 17 the equation 18 is obtained: 

   
 

     (  
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(18) 

Where CG – is the predicted price of the grid 

energy 

U – represents the vector with the next N 

command values for the time horizon 

PPV – represents the predicted output power from 

the PV installation 

      (   
   

  

)  
(19) 

Where additional assumptions were made: 

-   
   

  
 - a weight factor 

- at each optimization step, us is taken as the 

last command value, uk-1. 

The optimization function is written as: 
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5 RESULTS 

Results from the three simulation scenarios are 

presented in Figures 2 to 4 and compared in Table 1, 

where the following notations have been used: 
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Figure 2: Thermostatic control. 

 

Figure 3: MPC with grid price optimization. 

 

Figure 4: MPC with virtual price optimization considering PV power output prediction. 

 

Figure 5: Data used by controllers: price values, predicted and measured ambient data. 
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Table 1: Energy consumption and cost results from simulations. 

Sim. 

ID 

Config. 

Type 

EH 

(kWh) 

EPV2H 

(kWh) 

EG2H 

(kWh) 

EPV 

(kWh) 

EPV2G 

(kWh) 

CG2H 

(Euros) 

CPV2H 

(Euros) 

Avg Ti 

(°C) 

Simulation 1, with thermostatic controller around 20.14°C 

S11 No  PV 496.66 - 496.66 - - 16.75 - 20.14 

S12 PV 496.66 21.68 474.98 110.58 88.90 15.98 0.43 20.14 

Simulation 2, with grid price optimization 

S21 No PV 496.66 - 496.66 - - 16.61 - 20.14 

S22 PV 496.66 71.01 425.65 110.58 39.57 14.12 1.42 20.14 

Simulation 3, with grid price and PV availability 

S3 PV 500.8 94.37 406.4 110.08 16.21 13.57 1.88 20.34 

 

Sim. ID – simulation identifier  

Config. Type – type of house configuration: with 

or without PV installation 

EH – the total energy consumed by the heaters 

during simulation interval 

EPV2H – the amount of energy consumed by the 

heaters from the local produced PV energy 

EG2H – the amount of energy consumed by the 

heaters from the grid 

EPV – the amount of energy produced by the PV 

installation  

EPV2G – the amount of energy produced by the 

PV to be sold to the grid 

CG2H – cost of EG2H in Euros 

CPV2H – cost of EPV2H in Euros 

Avg. Ti – average inside temperature over the 

simulated time horizon 

The grid energy prices are shown in the first plot 

from Figure 5. It is assumed that the predicted grid 

energy prices coincide with the actual ones. In the 

same figure, the virtual price used during Simulation 

3 is also plotted. 

During simulations S1x and S2x the controller 

does not present information regarding the presence 

of an PV installation and acts according only to 

signals available for each case, as stated in section 3. 

Achieving the same average inside temperature 

implies the same amount of energy is used. As the 

ambient temperature and the solar irradiance are the 

same for each simulation, the amount of electric 

energy used to keep the inside temperature is the 

same. The difference is represented by the heaters 

consumption shifting according to the used 

controller. 

In S1x a thermostatic controller is used, as 

presented in section 3. It can be seen that during 

clear days, with large solar irradiance values, the 

heaters are turned off most part of the day, the 

thermal energy being largely taken from the ambient 

factors. In S12 only 21.68 kWh, representing around 

20% of the available PV local produced energy, is 

consumed from the PV. 

In S2x the MPC with grid price optimization is 

used. The same amount of electric energy is used as 

in S1x, for achieving the same inside temperature. 

However, the MPC shifts the heaters’ consumption 

to low price moments, and stores thermal energy 

before price peaks as it can be seen in Figure 3, 

before the energy price peaks at time 200 and 780, 

shown in Figure 5. 

The MPC controller from S2x achieves a cost 

reduction from 16.75 to 16.61 Euros in the case of 

S21 and from 15.98 to 14.12 in the case of using a 

PV installation of S22. In S22, 71.01 kWh of local PV 

energy is consumed, representing 64% of the PV 

production. 

However, the local PV energy usage for S12 and 

S22 are unpredictable since the controller does not 

consider the PV production. 

In S3 the MPC’s objective is to consume as much 

locally produced energy as possible. This is realized 

by implementing the virtual price, presented in 

section 3, in the optimization function. Figure 4 

depicts the operation of the MPC which uses the 

house’s thermal capacity to store the local PV 

energy during large solar irradiance values.  

In this case, the cost of the energy consumed 

from the grid is 13.57 Euros and 85% of the local 

PV produced energy is consumed. 

6 CONCLUSIONS 

The paper emphasises the benefits of using model 

predictive control for houses as dynamic thermal 

energy storage.  

By formulating the correct optimization 

problems and feeding the controller with predictions 

on the system’s variables, the MPC is able to 

achieve cost reduction on the electrical energy 

consumption from the grid. 

As demonstrated through simulations in this 

paper, the MPC can consider the presence of an 
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installed PV plant maximizing the usage of locally 

produced renewable energy. The consumption of 

locally produced energy has a major benefit both for 

the user, by lowering the overall cost of energy and 

also for the operation of distribution grids with a 

high penetration of renewable energy generation. 

This paper presented an algorithm that deals with 

the two problems: minimizing the operating cost of 

the house heating system and maximizing the use of 

local produced energy and lowering the burden on 

the distribution grid. 

From the source of power consumption 

perspective, the algorithm can be extended to use the 

energy from other types of local renewable energy 

sources. It can be extended also from the perspective 

of the types of loads that are shifted, not focusing 

only on the heat system but also on different 

household appliances. 

The proposed algorithm can be used to manage 

energy produced by other types of renewable energy 

generation, such as wind turbines and combined heat 

and power plants. The algorithm can also be 

modified for other types of consumption that has the 

ability to be shifted in time, such as water heaters, 

air conditioning units and refrigeration systems. 
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