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Abstract: Hash functions are exploited by many cryptographic primitives that are incorporated in crucial 
cryptographic schemes and commercial security protocols. Nowadays, there is an active international 
competition, launched by the National Institute of Standards and Technology (NIST), for establishing the 
new hash standard, SHA-3. One of the semi-finalists is the JH algorithm. In this paper, two high throughput 
hardware architectures of the complete JH algorithm are presented. The difference between them is the 
existence of 3 pipeline stages at the second one. They both are designed to support all the possible versions 
of the algorithm and are implemented in Xilinx Virtex-4, Virtex-5, and Virtex-6 FPGAs. Based on the 
experimental results, the proposed architectures outperform the existing ones in terms of Throughput/Area 
factor, regarding all FPGA platforms and JH algorithm’s versions. 

1 INTRODUCTION 

Authentication is an indispensable feature of almost 
all existing cryptographic systems used for securing 
e-transactions. The authentication procedure is 
accomplished via cryptographic hash functions by 
using them as sole authentication modules or 
incorporated in hash-based authentication 
mechanisms, like the Hashed Message 
Authentication Code (HMAC), which is used to  
produce Message Authentication Codes (MACs) 
(NIST, 2002). 

Apart from MAC mechanisms, hashes are used 
in many widely-used security applications, such as 
IPSec (NIST, 2005b), Public Key Infrastructure 
(PKI) (NIST, 2001b), Secure Electronic 
Transactions (SET) (Loeb, 1998), etc. Moreover, 
digital signature algorithms like DSA that are used 
for authenticating services like electronic mail, 
electronic funds transfer, electronic data interchange, 
data storage etc are based on a critical cryptographic 
primitive like hash functions. Furthermore, hashing 
cores are also essential for security in networks and 
mobile services, as in SSL (Thomas, 2000), which is 

a Web protocol for establishing authenticated and 
encrypted sessions between servers and clients. 

Nowadays, one of the most widely used hash 
algorithms, employed in several security 
applications and protocols, is SHA-1 (NIST, 2008). 
However, in 2005, security issues discovered by 
Wang et al. (2005). This attack called into question 
the practical security of SHA-1 when used in digital 
signatures and other applications requiring collision 
resistance. Hence, the adoption of new hash 
algorithms, such as SHA-2 family, can be 
considered as a secure solution for the future. 

Beyond that, to counter the above issues, the 
U.S. National Institute of Standards and Technology 
(NIST), launched an international competition to 
create an entirely new hash algorithm, which will be 
called SHA-3 (NIST, 2005a). The competition’s first 
round included 51 submissions from which 14 
advanced to round two on 2009, where a year was 
allocated for a public review. Based on the review’s 
feedback, NIST selected the five finalists, which are 
promoted to the on-going third (final) round that is 
to be finalized at the end of 2012. The third-round 
candidates are: BLAKE, Grøstl, JH, Keccak, and 
Skein (NIST, 2005a). 
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In this paper, two high-throughput hardware 
architectures of the JH algorithm are proposed and 
analytically described. The first one incorporates no 
pipeline stages while the second one corresponds to 
a design with three pipeline stages. Beyond that, 
certain design choices were made targeting high 
throughput with reasonable area consumption. Both 
of them are able to perform as any of the four 
versions of JH (JH-224/256/384/512) and were 
successfully implemented in Xilinx Virtex-4, Virtex-
5 and Virtex-6 FPGAs. The performance metrics 
that are gathered, including Frequency, Area, and 
Throughput, show that the proposed architectures 
outperform the existing ones in terms of 
Throughput/Area cost factor.  

The rest of the paper is organized as follows. 
Section 2 states the previously published works and 
Section 3 presents the JH algorithm, as submitted to 
NIST. In Section 4 the proposed architectures are 
described in details. The implementation results and 
the corresponding comparisons are shown in Section 
5, while Section 6 concludes the paper. 

2 RELATED WORK 

Regarding hardware implementations of the JH 
algorithm, to the best of authors’ knowledge, there 
are no previously published works dealing with the 
JH algorithm itself. However, there are several ones 
performing comparative analyses among either the 
round-two candidates (Baldwin et al., 2010); 
(Henzen et al., 2010); (Tillich et al., 2009); (Matsuo 
et al., 2010); (Homsirikamol et al., 2010); (Gaj et al., 
2010); (Guo et al., 2010a); (Guo et al., 2010b); 
(Kobayashi et al., 2010), or the round-3 candidates 
(Jungk et al., 2011); (Kerckhof et al., 2011); (Guo et 
al., 2011); (Guo et al., 2012); (Jungk, 2011); 
(Homsirikamol et al., 2011); (Tillich et al., 2010); 
(Provelengios et al., 2011). The above studies 
include both FPGA and ASIC CMOS 
implementations. Specifically, FPGA 
implementations and results are reported in 10 
papers (Baldwin et al., 2010); (Matsuo et al., 2010); 
(Homsirikamol et al., 2010); (Gaj et al., 2010); (Guo 
et al., 2010a); (Kobayashi et al., 2010); (Jungk et al., 
2011); (Jungk, 2011); Homsirikamol et al., 2011; 
Provelengios et al., 2011). 

Apart from (Homsirikamol et al., 2011) and 
(Provelengios et al., 2011), all the other works deal 
with simple implementations without any form of 
optimization. On the other hand, in (Homsirikamol 
et al., 2011) pipeline and unrolling investigation 
takes place. However it is shown that there are quite 

few benefits from both the above techniques. 
Regarding (Provelengios et al., 2011), the pipeline 
technique is applied, targeting low power desings. 
Thus, the reported performance results are low. 

Finally, it has to be stressed that, in the 
competition’s third round, the JH algorithm is 
tweaked (denoted as JH42). The difference between 
those two is that the iterations of the first are 36 
(plus the potential needed for initialization or 
finalization) while the second one’s are 42. This 
work deals with JH42 of round-three, which is 
considered more efficient for hardware 
implementation and offers more security margins 
compared to the previous one (Wu, 2008). 

3 THE JH ALGORITHM 

The hash function family JH, proposed by Hongjun 
Wu (2008), includes two main special features: a 
new compression structure and a generalized AES 
(NIST, 2001a) design methodology. The latter 
methodology offers the possibility of easily 
constructing large block ciphers from smaller 
components. Obviously, the compression structure is 
a bijective function implemented as a block cipher 
with constant key. The family itself consists of four 
versions, namely the JH-224, JH-256, JH-384, and 
Jh-512, which are based on the same compression 
function but produce a hash value of different width 
(via truncation of the output’s bits). 

A general diagram of the compression function, 
Fd, is shown in Figure 1. It uses an internal state, 
H(i), the size of which is 2d+2 bits, where the i factor 
denotes the i-th iteration and d the dimension of a 
block of bits. A d-dimensional block consists of 2d 
4-bit elements. The starting state, H(0), is version-
dependent. In other words, there is a vector, IV, 
which is appropriately loaded into the state and 
represents the message digest size. 

The input message is portioned to n m-bit blocks, 
M, through a padding procedure. The compression 
operates on a message block, M(n). Initially, the 
block is XORed with the lower half of the 2d+2-bit 
state value. Then, the result is fed in the Ed function. 
The output of Ed is then XORed once more with the 
message block and loaded into the state. If it is the 
last block of the message or the message is one-
block then the procedure is over and the hash value 
is in the final state. Otherwise, the procedure is 
repeated for the next message block. 

The Ed function is based on the d-dimensional 
generalized AES methodology and applies 
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Figure 1: Illustration of the JH compression function Fd. 

Substitution-Permutation Network (SPN) and 
Maximum Distance Separable (MDS) codes to a d-
dimensional array. In general, it is mainly 
constructed from 6×(d-1) rounds of a round 
function, Rd. Let A and B be the 2d+2-bit input and 
output of Ed, respectively. The computation of B = 
Ed (A) is as follows: 
1. Grouping the bits of A into 2d 4-bit elements to 
obtain a new quantity, Q0. 
2. For 6×(d-1) rounds, r,  perform Qr+1 = Rd(Qr, 
C(d)

r) 
3. De-Grouping the 2d 4-bit elements of Q6(d-1) to 
obtain B. 
 

Each Qr denotes a 2d+2-bit word and is equal to (qr,0 || 
qr,1 || ... || qr,2

d
-1), where each qr,i denotes a 4-bit word. 

The Grouping procedure is shown in Figure 2 
and the De-Grouping procedure in Figure 3, 
respectively. 

 
Figure 2: Grouping in Ed. 

 
Figure 3: De-Grouping in Ed. 

The C(d)
r  is the 2d-bit round constant. These 

values are produced by a round function, Rd-2, 
similar to Rd where all constants being set as zeros. 

Each C(d)
r is a 2b-bit word and is generated as shown 

in the following equation: 
 

C(d)
0 = int[(sqrt(2)-1) × 2^2d] 

C(d)
r = Rd-2 (C(d)

r-1) for r = 1 to 6×(d-1) (1)
 

The Rd function consists of three consecutive layers: 
the SBox layer (S), the Linear Transformation layer 
(L) and the Permutation Layer (Pd). 

The SBox layer incorporates two types of 4 × 4-
bit S-boxes, namely the S0 and S1. Instead of being 
simply XORed to the input, every round constant bit 
selects which S-boxes to be used so as to increase 
the overall algebraic complexity and thus security. 
The S0 and S1 S-boxes are shown below: 

Table 1: S0 and S1 S-boxes. 

x 0 1 2 3 4 5 6 7 
S0 (x) 9 0 4 11 13 12 3 15 
S1 (x) 3 12 6 13 5 7 1 9 
x 8 9 10 11 12 13 14 15 
S0 (x) 1 10 2 6 7 5 8 14 
S1 (x) 15 2 0 4 11 10 14 8 

 
The Linear Transformation, L, implements a (4, 

2, 3) MDS code over GF(24). The multiplication in 
GF(24) is defined as the multiplication of binary 
polynomials modulo the irreducible polynomial 
x4+x+1. Hence, letting U, W, Y, and Z four 4-bit 
words, the computation of L is showed in Eq. 2. 

 

(Y, Z) = L(U, W) = (5×U + 2×W, 2×U + W) (2)
 

Finally, the Permutation layer, Pd, is similar to the 
row rotations of AES and is constructed from three 
individual permutation functions, πd, P’d, and φd. All 
these functions operate on 2d quantities. Letting C, D 
are the 2d-bit input and output respectively, so as C = 
(c0, c1, ..., c2d-1) and D = (d0, d1, ..., d2d-1), the πd, P’d, 
and φd are described by equations 3, 4 and 5 
respectively. 

 

d4i+0 = c4i+0, for i = 0 to 2d-2 – 1 
d4i+1 = c4i+1, for i = 0 to 2d-2 – 1 
d4i+2 = c4i+2, for i = 0 to 2d-2 – 1 
d4i+3 = c4i+3, for i = 0 to 2d-2 – 1 

(3)

 

di = c2i, for i = 0 to 2d-1 – 1 
di+2d-1 = c2i+1, for i = 0 to 2d-1 – 1  (4)

 

di = ci, for i = 0 to 2d-1 – 1 
d2i+0 = c2i+1, for i = 2d-2  to 2d-1 – 1 
d2i+1 = c2i+0, for i = 2d-2  to 2d-1 – 1  

(5)

 

The Pd is computed as: Pd = φd ○ P’d ○ πd and is 
shown in the following figure (Figure 4). 

For the considered JH algorithm, d=8. For more 
details about the JH algorithm, the reader is referred 
to the submission’s documentation (Wu, 2008). 
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Figure 4: The Pd  permutation. 

4 PROPOSED ARCHITECTURES 

In this section the two proposed architectures are 
presented and analytically described. In more 
details, the non-pipelined architecture is described in 
Sub-section 4.1, while the three-stage one in Sub-
section 4.2. For clarity reasons, the common parts 
between them will be presented once. 

4.1 Non-pipelined Architecture 

The first architecture that was designed was the non-
pipelined (Figure 5). It includes 7 inputs and two 
outputs (Table 2). The output hash value is 
dependent to the selected version of the JH. 

A block diagram of the above architecture is 
presented in Figure 6. It consists of the Data-path 
and the Control Unit. 

 
Figure 5: The I/O of the non-pipelined JH module. 

Table 2: Input and Output signals of JH architecture. 

 Name Bits Description 

Inputs 

clk 1 Clock 
rst 1 Reset 
en 1 Enable 

Start 1 Start computation 
M_block 512 Input Block 

sel_JH_type 2 JH version selection 
Multi 1 One/more blocks 

Outputs Hash_value Ver. Message Digest 
Hash_Ready 1 Hash value computed 

4.1.1 Data-path 

The Data-path includes 7 sub-blocks and a register 
that holds the input message block for feeding the 
second XOR. 

The Version sub-block has as input the 
sel_JH_type signal. Based on this, it produces the 
appropriate 16-bit signal to be expanded to 1024 
bits. This expansion is Expand sub-block’s 
responsibility and is accomplished through 
concatenation with zeros. The Version sub-block’s 
topology is shown in Figure 7. 

Right after Expand sub-block there is a 1024-bit 
multiplexer which feeds the main computation sub-
blocks with the appropriate data. Actually, this 
multiplexer is responsible for the feed-back of the 
hash value when it is needed (multiple blocks). 

The main computation sub-blocks are the two 
XORs and the Compression ones. The XORs are 
composed by simple XOR gates and are performing 
as indicated in Section 3. The Compression sub-
block is the computation’s core. It performs the JH 
compression and, in general, is designed as 
described in Section 3. It consists of 6 computation 
modules and a 1024-bit register for

 
Figure 6: Non-pipelined architecture of the JH algorithm. 
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Figure 7: The version sub-block. 

synchronization of the iterations (Figure 8). 
The main difference of the Compression’s design 

compared to the algorithmic description in the 
previous section is that the Grouping and De-
Grouping modules are included in the iteration. This 
design choice is made in order for the 
Compression’s design to be more robust and impose 
less routing delay when mapped on the FPGA. The 
internal topology of the above two modules are no 
complex and designed as described in algorithm’s 
section (Section 3). The 1024-bit 2to1 multiplexer is 
used for implementing the feed-back of the output, 
so as to achieve the iterative process.  

The S-BOX module incorporates both S0 and S1 
S-boxes and its implementation is described in the 
computation steps of equation 6. There, xi (i = 0 to 
3) denotes a 128-bit word, c denotes a 128-bit 
constant, t a 128-bit temporal word, while⊕  &, and 

denote XOR, AND, and NOT gates, respectively. 

( )
( )
( )
( )
( )
( )
( )
( )
( )

3 3

0 0 2

0 1

0 0 2 3

3 3 1 2

1 1 0 2

2 2 0 3

0 0 1 3

3 3 1 2

1 1 0

2 2

.  

.  &

. &

. &

.  &

. &

. &

. |

.  &

.  &
.  

i x x

ii x x c x

iii t c x x

iv x x x x

v x x x x

vi x x x x

vii x x x x

viii x x x x

ix x x x x

x x x t x
xi x x t

=

= ⊕

= ⊕

= ⊕

= ⊕

= ⊕

= ⊕

= ⊕

= ⊕

= ⊕

= ⊕

 

(6)

The LINEAR sub-block consists of simple XOR 
gates. Letting ai, bi (i = 0 to 7) denote 128-bit words, 
the topology is described by equation 7. 

 

0 0 5

1 1 6

2 2 7 4

3 3 4

4 4 1

5 5 2

6 6 3 0

7 7 0

b a b
b a b
b a b b
b a b
b a a
b a a
b a a a
b a a

= ⊕
= ⊕
= ⊕ ⊕
= ⊕
= ⊕
= ⊕
= ⊕ ⊕
= ⊕

 
(7)

 

The SBOX and LINEAR modules, due to the fact that 
consist of simple logic functions, were designed 
together (combined as one hardware module) using 
simple logic gates and targeting minimum delay 
with balanced area after the mapping on the FPGAs. 

Finally, the PERMUTATION module is designed 
as simple wire re-arrangement. Thus, it imposes zero 
delay. Each of the three individual permutation 
functions, πd, P’d, and φd, for d=4, is shown in 
Figures 9, 10, and 11, respectively, considering that 
the A, B are 2d-bit words, so as A = (a0, a1, ..., a2d-1) 
and b = (b0, b1, ..., b2d-1). 

Combining those three, the wire re-arrangement 
for Pd permutation (d = 4), is given by Figure 12. 

The data input CR_ROUND is coming from the 
Constant Computation Block. This block computes 
the appropriate constant values for each round. 

This computation is chosen to be done in parallel 
with the Compression computation (on-the-fly). This 
way, extra registers and control logic for storing and 
steering the constant values is avoided. Internally, 
the Constant Computation Block is similar to the 
Compression module. However, its data width is 256 
bits, as imposed by the algorithm. 

4.1.2 Control Unit 

The control of the architecture is accomplished by 
the Control Unit. This unit implements a non- 
complex Finite State Machine (FSM) with 5 states, 
namely the Idle, Initiate, Compress,

 
Figure 8: Compression sub-block. 
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Figure 9: The π4  permutation. 

 
Figure 10: The P’4  permutation. 

 
Figure 11: The φ4  permutation. 

 
Figure 12: The P4 permutation. 

Finilze’n’Decide, and, Output (Figure 13). Its design 
consists of a counter that counts up to 42, registers, 
and simple logic gates.  

Initially, the system is in the Idle state and if 
there is a message block for processing (Start=1) 
moves to Initiate state where the system remains for 
one clock cycle. There the selection of the type, the 
expansion, and the first XORing take place, along 
with the first iteration of the compression. Then, the 
system moves to state Compress, where 40 of the 

iterations are accomplished (40 cycles). At the 
fortieth iteration the systems moves to 
Finilize’n’Decide state where the last iteration (42nd) 
takes place along with the last XORing. There, if 
there is another block of the same message (Multi = 
1), then the computation starts again for the second 
block and the system flips to Initiate. If not (last or 
one-block message), then the final state of the 
system is the Output where the hash_value is popped 
out and the Hash_ready signal is set to 1. 

The system’s full operation is 42 + 1 (output’s 
steering) = 43 cycles for a 512-bit input message 
block. In Figure 13, inside the text boxes next to the 
states there are the values of some significant control 
signals. These values are active during the very next 
clock cycle, after their assignment. 

4.2 Three-stage Pipelined Architecture 

The second proposed architecture, which is 
concerned as one of the main contributions of this 
work, is the three-stage pipelined. To achieve the 
pipeline, two stages of internal (pipeline) registers 
are inserted in the architecture of Figure 6, 
portioning the compression procedure into three 
separate stages, named Compression 14. Each one of 
these blocks iterates 14 times (3 × 14 = 42 in total). 

To feed the above blocks with the appropriate 
constant values, two additional Constant 
Computation blocks were added, separated by 
registers (Pipe Regs). Beyond that, the 512-bit input 
block’s bus is fed into two additional, consecutive, 
registers in order to be correctly synchronized with 
the rest computation. 

The internal functionality of both the 
Compression 14 and the Constant Computation

 
Figure 13: State diagram of the control unit’s FSM of the non-pipelined architecture. 
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blocks are identical with the ones of the Non-
Pipelined architecture. The same goes for the 
Version and Expand blocks. The data width is the 
same as the non-pipelined architecture. 

Concerning the control of this architecture, the 
designed Control Unit consists of the same states as 
before (Figure 13). However, it is larger and 
produces more control signals. Specifically, it 
includes more combinational logic and three 
counters, one for every Compression 14 block, that 
count up to 14. Each one of them is activated and 
performs during the computation of the 
corresponding Compression 14 block. Additionally, 
they produce the sel_round, const_pipe_cntr and 
const_control control signals. Beyond the above 
counters, there is one more that is activated only 
when the current input block is followed by another 
block of the same message. This counter counts up 
to three and, in combination with the Multi input 
signal, produces the sel_feed control signal. 

5 IMPLEMENTATION RESULTS 
AND COMPARISONS 

The proposed architectures of JH hash algorithm 
were captured in VHDL hardware description 
language, synthesized, and implemented in FPGA 
technology using the XST synthesize tool of the 
Xilinx ISE Design Suite, v.13.1. The correct 
functionality of the proposed JH cores was, initially, 
verified through Post-Place and Route (Post-P&R) 

simulation via the Model Technology’s ModelSim 
simulator. A large set of test vectors, apart from the 
official known-answer tests (KATs), were used. 

Thereafter, downloading to actual FPGA boards 
was performed. Three widely known FPGA families 
were selected to implement the introduced design, 
namely the Xilinx Virtex-4 (xc4vlx160-FF1148, -
12), Virtex-5 (xc5vfx130t-FF1738, -3), and Virtex-6 
(xc6vlx365t-FF1759, -3). The implementations’ 
correct functionality was verified once again on the 
board via Xilinx ChipScope tool. 

The considered implementation metrics were: 
Frequency (MHz), Occupied Area (Slices) and 
Throughput (Mbps). The Throughput metric of our 
designs, similarly to the existing studies dealing with 
hardware implementations of the JH, is given by the 
following equation: 

 

( )# bits F
Throughput

C
×

=  (8)
 

where F and C refer to the frequency and clock 
cycles of the JH operation, while the #bits denotes 
the number of data bits that are processed by the 
algorithm during C cycles. In the following tables 
the above mentioned performance metrics for the 
proposed Non-Pipelined (Pro. NP) and Three-Stage 
Pipelined (Prop. 3P) architectures, along with the 
corresponding comparisons, are presented per FPGA 
family. The * and ** next to a reference denote that 
this metrics concern JH-256 and JH-512, 
respectively. The other works do not specify the 
version or the metrics are common for all of them. 

 
Figure 14: Three-stage pipelined architecture of the JH algorithm. 
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Figure 15: State diagram of the control unit’s FSM of the three-stage pipelined architecture. 

Table 3: Implementation results and comparisons for 
Xilinx Virtex-4 technology. 

Ref. C.R. Freq. Area Throughput 
(MHz) (Slices) (Mbps) 

Homsirikamol 
et al., 2010)* R2 276.93 3,737 3,942.2 

Homsirikamol 
et al., 2010)** R2 256.64 3,787 3,650 

Gaj et al., 2010 R2 194.18 4,122 2,761.6 
Prop. NP R3 328.3 3,143 3,909.1 
Prop. 3P R3 339.8 8,529 11,598.5 

The comparisons show that the proposed 
architectures are more efficient in terms of 
Throughput, compared to almost all existing works. 
Specifically, there is only one study (Homsirikamol 
et al., 2010) that presents better Throughput results, 
than those of the proposed Non-Pipelined (NP) 
architecture. However, this work (along with others 
indicated in the above tables) considers the JH 
algorithm’s version of the Second Round of the 
SHA-3 competition (Competition Round’s 
Specifications – C.R. = Round 2 – R2). Our work, on 
the other hand deals with the JH algorithm’s version 
of the Third Round (C.R. = R3). The latter version 
includes a few tweaks compared to the one of the 
Second Round the most crucial of which is the 
number of the algorithm’s iterations. In more details, 
Second Round’s version iterates 35.5 times contrary 
to the Third Round’s one that iterates 42. This 
number plays a key role to the computation of the 
Throughput metric because it is used as the 
denominator of the Throughput fraction of equation 
7. For example, this is the reason why the 
Throughput results of Homsirikamol et al. (2010) 
are better, compared to the ones of this work, even 
though our achieved Frequency is higher and the 

#bits value is equal to 512 for both studies. Overall, 
the direct comparison among works of different 
round specifications is not completely fair. 

Table 4: Implementation results and comparisons for 
Xilinx Virtex-5 technology. 

Ref. C.R. Freq. Area Throughput 
(MHz) (Slices) (Mbps) 

Baldwin et 
al., 2010 R2 220.13 1,291 1,941 

Matsuo et al., 
2010  R2 201 2,661 2,639 

Homsirikamol 
et al., 2010)* R2 380.8 1,018 5,416 

Homsirikamol 
et al., 2010** R2 394.48 1,104 5,610.4 

Gaj et al., 
2010 R2 213.77 1,569 3,040.2 

Guo et al., 
2010a R2 182.6 2,406 2,597 

Kobayashi et 
al., 2010 R2 201 2,661 2,639 

Jungk et al., 
2011 R3 283 193 23 

Jungk, 2011 R3 271 555 237 
Homsirikamol 
et al., 2011* R3 - 917 4,725 

Homsirikamol 
et al., 2011** R3 - 914 4,725 

Provelengios 
et al., 2011 R3 201.2 2,251 1,328 

Prop. NP R3 434.8 922 5,176.9 
Prop. 3P R3 439.2 2,496 14,991.4 

Beyond the above, a fairer comparison and 
evaluation factor, namely the Throughput/Area, is 
included. In the following three figures, the 
comparison in terms of the above factor, between the 
proposed architectures and the previously published 
ones, is illustrated. 
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As it can be seen, the proposed NP architecture is 
the most efficient in terms of Throughput/Area 
among the other existing works, even from the ones 
implementing the JH version of Competition’s 
Second Round. Regarding the Three-stage Pipelined 
(3P) the improvements are greater. 

Table 5: Implementation results and comparisons for 
Xilinx Virtex-6 technology. 

Ref. C.R. Freq. Area Throughput 
(MHz) (Slices) (Mbps) 

Homsirikamol 
et al., 2010)* R2 415.46 959 5,903.4 

Homsirikamol 
et al., 2010)** R2 412.54 1,076 5,867.2 

Kerckhof et 
al., 2010 R3 299 304 222 

Prop. NP R3 457.3 881 5,445.1 
Prop. 3P R3 461.7 2,483 15,759.4 
 

 
Figure 16: Throughput/area comparisons for Virtex-4 
FPGA technology. 

 
Figure 17: Throughput/area comparisons for Virtex-5 
FPGA technology. 

 
Figure 18: Throughput/area comparisons for Virtex-6 
FPGA technology. 

6 CONCLUSIONS 

In this paper, two high-throughput designs for JH 
SHA-3 candidate were presented. The difference 
between them is that the second one included three 
stages of pipeline, increasing its performance. 
Implementation and measurements were performed 
in FPGA boards that showed that the proposed 
designs outperform in terms of Througput/Area 
compared to other FPGA implementations of JH 
algorithm, previously published by academia. 

REFERENCES 

Baldwin, B., Byrne, A., Hamilton, M., Hanley, N., 
O’Neill, M., Marnane, W.P., 2010. FPGA 
Implementations of the Round Two SHA-3 
Candidates. In International Conference on Field 
Programmable Logic and Applications (FPL). 

Gaj, K., Homsirikamol, E., Rogawski, M., 2010. 
Comprehensive comparison of hardware performance 
of fourteen round 2 SHA-3 candidates with 512-bit 
outputs using field programmable gate arrays. In 
Second SHA-3 Conference. 

Guo, Xu, Huang, Sinan, Nazhandali, Leyla, Schaumont, 
Patrick, 2010a. On the Impact of Target Technology in 
SHA-3 Harware Benchmark Rankings. Cryptology 
ePrint, Archive, Report 2010/536. 

Guo, Xu, Sinan H., Nazhandali, L., Schaumont, P., 2010b. 
Fair and Comprehensive Performance Evaluation of 
14 Second Round SHA-3 ASIC Implementations. In 
The Second SHA-3 Candidate Conference. 

Guo, Xu,  Srivistav, Meeta, Huang, Sinan,  Ganta, Dinesh,  
Henry, B., Michel, Nazhandali, Leyla, Scaumont, 
Patrick, 2011. Silicon Implementation of SHA-3 
Finalists: BLAKE, Grostl, JH, Keccak and Skein. In 
Workshop on ECRYPT II Hash. 

Guo, Xu, Srivistav, Meeta, Huang,  Sinan, Ganta, Dinesh,  
Henry, B., Michael, Nazhandali, Leyla, Schaumont, 
Patrick,  2012. ASIC Implementations of Five SHA-3 
Finalists. In Europe Conference Exhibition on Design, 
Automation Test. 

Henzen, L., Gendotti, P., Guillet, P., Pargaetzi, E., Zoller, 
M., Gurkaynak, K., F., 2010. Developing a Hardware 
Evaluation Method for SHA-3 Candidates. 
Cryptographic Hardware and Embedded Systems, 
Springer Berlin / Heidelberg, pp. 248-263. 

Homsirikamol, E., Rogawski, M., Gaj, K., 2010. 
Comparing Hardware Performance of Fourteen Round 
Two SHA-3 Candidates Using FPGAs. Cryptographic 
Hardware and Embedded Systems, Springer Berlin / 
Heidelberg, pp. 264-278. 

Homsirikamol, E., Rogawski, M., Gaj, K., 2011. 
Comparing hardware performance of round 3 SHA-3 
candidates using multiple hardware architecture in 
Xilinx and Altera FPGAs. In Workshop on ECRYPT II 
Hash. 

SECRYPT�2012�-�International�Conference�on�Security�and�Cryptography

134



 

Jungk, B., 2011. Compact Implementations of Grostl, JH 
and Skein for FPGAs. In Workshop on ECRYPT II 
Hash. 

Jungk, B., Apfelbeck, J., 2011. Area-efficient FPGA 
Implementations of the SHA-3 Finalists. In 
International Conference on Reconfigurable 
Computing and FPGAs (ReConFig), pp.235-241, 
Hochschule RheinMain, Wiesbaden, Germany. 

Kerckhof, Stéphanie, Durvaux, François, Veyrat-
Charvillon, Nicolas, Regazzoni, Francesco, 2011. 
Compact FPGA implementations of the five SHA-3 
finalists. In Workshop on ECRYPT II Hash. 

Kobayashi, K., Ikegami, J., Knezevic, M., Guo, E., X., 
Matsuo, S., Huang, S., Nazhandali, L., Kocabas, U., 
Junfeng Fan Satoh, A., Verbauwhede, I., Sakiyama, 
K., Ohta, K., 2010. Prototyping platform for 
performance evaluation of SHA-3 candidates. In 
International Symposium on Hardware-Oriented 
Security and Trust (HOST), IEEE, pp.60-63. 

Loeb, L., 1998. Secure Electronic Transactions: 
Introduction and Technical Reference. Artech House 
Publishers. Norwood, USA. 

Matsuo, S., Knezevic, M., Schaumont, P., Verbauwhede, 
I., Satoh, A., Sakiyama, K., Ohta, K., 2010. How Can 
We Conduct ‘‘Fair and Consistent’’ Hardware 
Evaluation for SHA-3 Candidate? In 2nd SHA-3 
Conference. 

NIST, 2001a. Advnaced Encryption Standard. FIPS-197, 
NIST, Department of Commerce Publications, USA. 

NIST, 2001b. Introduction to Public Key Technology and 
the Federal PKI Infrastructure. SP 800-32., NIST, US 
Department of Commerce Publications, USA. 

NIST, 2002. The Keyed-Hash message authentication 
code (HMAC). NIST-FIPS 198, NIST, US Department 
of Commerce Publications, USA. 

NIST, 2005a. SHA-3 Cryptographic Hash Algorithm 
Competition. [online] Available at: http://csrc.nist.gov/ 
groups/ST/hash/sha-3/index.html [Accessed on: 
March, 9 2012] 

NIST, 2005b. Guide to IPSec VPN’s. NIST-SP800-77, 
NIST, Department of Commerce Publications, USA. 

NIST, 2008. Secure Hash Standard (SHS). NIST-FIPS 
180-3, Department of Commerce Publications, USA. 

Provelengios, G, Voros, S., N., Kitsos, P., 2011. Low 
Power FPGA Implementations of JH and Fugue Hash 
Functions. In 14th Euromicro Conference on Digital 
System Design (DSD), pp.417-421. 

Thomas, S., 2000. SSL & TLS Essentials: Securing the 
Web, John Wiley and sons Publications. New York, 
USA. 

Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., 
Schmidt, J.-M., Szekely, A., 2009. High-Speed 
Hardware Implementations of BLAKE, Blue Midnight 
Wish, CubeHash, ECHO, Fugue, Grostl, Hamsi, JH, 
Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein. 
Cryptology ePrint, Archive, Report 2009/510. 

Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., 
Schmidt, J.-M., Szekely, A., 2010. Uniform evaluation 
of hardware implementations of the round-two SHA-3 
candidates. In Second SHA-3 Conference. 

Wang, X., Yin, Y., L., Yu, H., 2005. Finding collisions in 
the full SHA1. In Proceedings of Crypto on Springer 
Lecture Notes in Computer Science (LNCS), vol.3621 
pp.17-36. 

Wu, Hongjun, 2008. The hash function JH. National 
Institute of Standards and Technology (NIST). 

High-throughput�Hardware�Architectures�of�the�JH�Round-three�SHA-3�Candidate�-�An�FPGA�Design�and�Implementation
Approach

135


