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Abstract: The Immersed Boundary method (IBM) has received wide attention from last decade, due to its promising 

application to solve the fluid-solid interaction problems in large quantities of practical engineering areas. 

This paper implemented IBM with Multi-Direct-Forcing (MDF), presenting the evaluation of momentum 

forces on the body surface - interaction forces between fluid-solid. Grounded on the Multi-Direct-Forcing 

method, we constructed a new system that could be efficiently and fast solved. Meanwhile, this proposed 

algorithm is easy to code and implement parallelization. Besides, it can be extended to three-dimensional 

simulation without much more extra efforts. Accuracy of the proposed MDF immersed boundary method 

has been investigated, as well as some applications such as flow past the cylinder at a set of low Reynolds 

numbers. 

1 INTRODUCTION 

The incompressible fluid flows involving complex 

boundaries, which may be stationary or in motion, 

are of practical and academic importance. These 

problems can be solved by the traditional body-fitted 

numerical methods, in which governing equations 

are discretized in a curvilinear coordinate system 

that conforms to the boundaries, with re-meshing at 

each time step. This procedure is not trivial and the 

re-mesh computation is heavily cost. To solve the 

complex geometrical fluid-interaction problem, 

Peskin (Peskin 1972) proposed the Immersed 

Boundary method in 1972, when he studied the flow 

in heart valves based on the Cartesian grid. With 

many structure grid properties retained, this method 

gave the complex geometrical fluid-interaction prob-

lems an effective solution direction.  

In the past two decades, we have seen the boom of 

the Immersed Boundary Method. Several variants of 

Immersed Boundary Method have appeared, like 

Immersed Interface Method (Peskin 1972; Leveque 

and Li 1994), Direct-Forcing Method (Uhlmann 

2005) et al.. But all these methods, as the original 

method proposed by Peskin, need an interpolation 

between the immersed boundary Lagrangian and 

Eulerian grid points. When this process is applied to 

simple geometries or multiphase flows with a small 

amount of particles, it is quantified. However, when 

it comes to large quantities of particles or practical 

geometries, it also costs a lot, though it is much 

easier to implement than body-fitted numerical 

method. These days, Ceniceros and Fisher 

(Ceniceros and Fisher 2011) have applied the 

treecode combined with FMM (Fast March Method) 

to simulate large systems, but this method is not 

trivial to implement. Wu and Shu et al.(Wu and Shu 

2010) directly performed the fluid-interaction force, 

deriving a linear system with the immersed bounda-

ry force density as variables. They deemed it was 

easy to implement, but they only test two-

dimensional problems, however when it comes 

across the three-dimensional systems or large quan-

tities of particles in multiphase flow simulation, that 

linear system would be very huge, and the above 

metioned FMM and treecode can be  a good candi-

date. 

Grounded on the work of Luo et al. (Luo, Wang 

et al. 2007), Wu and Shu (Wu and Shu 2010), we 

proposed another efficient fast immersed boundary 

method based on the multi-direct-forcing immersed 

boundary method. This paper is organized as fol-

lows. In section 2, firstly the governing equations for 

the incompressible Navier–Stokes equations are 

presented. Then immersed boundary method imple-

mented with multi-direct-forcing will be briefly 

described. At the end of this section, we will propose 
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a fast and efficient algorithm based on above de-

scription. Several benchmark cases are simulated for 

predicting the accuracy of the proposed MDF Im-

mersed Boundary method in Section 3. Finally, in 

section 4, some concluding remarks will be drawn.  

2 MATHEMATICS DESCRIPTION 

2.1 Governing Equations of Fluid 

The dimensionless governing equations for incom-

pressible flows in the computational domain are: 
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where u  is the velocity of fluid; P is the pressure 

and Re is Reynolds number; f  is the force density 

of fluid-structure interaction. According to Luo et 

al.(Luo, Wang et al. 2007) and Uhlmann (Uhlmann 

2005), in multi-direct forcing method of IBM, the 

force density f is calculated as 

( ) ( ) ( )F d ,


  f x X x X X  (2) 

where x is the Eulerian coordinate; e.g. for two di-

mensional problems, 1 2=( , ) ( 1 )i i ix x i , ,Nx , where

N  is the number of Eulerian points. And the index 

of coordinates are mapped into one-dimensional 

index space from two dimensional computational 

space for convenient as Wu & Shu (Wu and Shu 

2010). X , F are Lagrangian coordinate and forcing 

density on Lagrangian points, respectively. For two 

dimensional problems, they can be denoted as
1 2( )j j jX ,XX and

1 2

j j jF F（ , ）F ( 1 )j , M , 

where M is the total number of Lagrangian points.

( ) x X is Dirac delta function.  

2.2 Scheme of Multi-Direct-Forcing 

In order to satisfy no-slip condition near the bounda-

ry, Lagrangian points coinciding with the boundary, 

must be specified with a force
jF so as to the veloci-

ties at these points can be equal to velocities at 

boundary. In the MDF method, the force can be 

determined from Eq.(3) 
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For the Lagrangian and Eulerian points, one can get 

Eq.(4) and Eq.(5) respectively, according to Eq.(3), 
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where iû and
jÛ are provisional velocities making the 

second term zero. 
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The desired velocity is assumed that it can be 

specified by known values, namely, 
1( )=n d

j j jU
U X at 

the boundary. Therefore, Eq.(4) can be reduced to 

Eq.(6).  

According to Uhlmann(Uhlmann 2005) and Wang 

et al.(Wang, Fan et al. 2008), it is common to inter-

polate velocities from Eulerian points to Lagrangian 

points with Dirac delta Function. There, this process 

is directly written in the integral form; however, here, 

we try to construct a fast algorithm, hence denote the 

interpolation process as an operator A, namely, 

1 2

1 ( - )d dM N N
ˆ ˆ . 


 A u u x X x x  (7) 

According to Eq.(7), we can get ˆˆ Au U . Then 

force density on the immersed boundary ( )j jF X can 

be directly evaluated. Once this force is calculated, 

we can obtain the force density of Eulerian grid 

points from the spreading process of ( )j jF X , that is 

interpolating force on the immersed boundary back 

to Eulerian grid.  

As the same, we denote this spreading process as 

an operator N MH . So we have 

N M M 1 . f H F  (8) 

Finally, we can get the velocities at the new time 

step, namely 
n 1 ˆ t.   u u f  (9) 

However, after completing these two processes, 

we may find actually the latest fluid field is not 

completely satisfying the no-slip condition near the 

immersed boundary, therefore MDF with the latest 

fluid field redo the above two processes until the no-

slip boundary condition is achieved iteratively, 

which is expressed in mathematical form as follows:  
k 1 k k t.   u u f  (10) 
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2.3 Fast Algorithm 

In the work of Luo et al.(Luo, Wang et al. 2007), at 

least twenty iterations are needed to achieve the no-

slip boundary condition. When it comes to solve the 

large complex geometries or a number of particles in 

fully resolved direct numerical simulation, algo-

rithms with twenty iterations are too cost. Here, 

based on the previous work, we take a forward step 

to obtain the no-slip boundary condition with much 

less iterations. 

So, we write the expansion of Eq.(10), and then it 

gives 
k 1 k k

k d k

t

.

   

  

u u HF

u HU HAu
 (11) 

From the above equation, it is not difficult to ob-

serve that as the iteration continues until k 1 k u u , 

the solution of this system converges. That means  

0.d k HU HAu  (12) 

Since d
U is known, the problem can be converted 

into solving a linear system of u satisfying the 

Eq.(12). To solve the above system, we need to 

analyse the characteristics of the coefficient matrix 

HA (denoting as Q ), so we can write down the 

entries of this matrix 
k M

ij ik kj

k 1

q h a .




   (13) 

ikh denotes the kth Lagrangian point spreading to the 

ith Eulerian grid point; 
kja denotes the jth Eulerian 

point interpolating to kth Lagrangian point. Due to 

the summation over all the Lagrangian points, so we 

have
ij jiq q , this matrix is symmetrical, positive, 

sparse, with many zero entries due to the cut off 

effect of Dirac delta function. Here we apply the 

steepest descent method to solve this system. 

Here we define k
r as the residual of kth iteration of 

system (12) 
k k d . r HAu HU  (14) 

With we only need to evaluate the above defined 

residual and an extra multiplication of matrix Q with 

vector k
u as well 

k k

k 1 k k

,
t .

,


 

 

r r

r Qr
 (15) 

Finally, we can get the iteration formula as fol-

lows: 

( ).k 1 k k d

k 1t

   u u HAu HU  (16) 

3 NUMERICAL VALIDATION 

To validate the accuracy of the algorithm proposed 

above, we take the Taylor-Green vortices problem as 

validation, which has an analytical solution. Then 

uniform cross flows passed a single cylinder with 

different Reynolds number are simulated. Drag coef-

ficients, lift coefficients and the Strouhal number of 

vortex shedding are compared with previous results.  

3.1 Taylor-Green Vortices  

In order to validate the modified multi-direct-forcing 

of Immersed Boundary method, two-dimensional 

decaying vortices with analytical solution is studied. 

Computational domain [-1.5,1.5] [-1.5,1.5]    

with a radius unity circular embedded in it is simu-

lated. The flow parameter Re equals 100, the time 

step t as Uhlmann (Uhlmann 2005) is 0.001, grid 

size h is  1/64. The initial fluid fields and the bound-

ary conditions are both given according to the ana-

lytical solution. The numerical details of fluid solver 

can be referred to Wang et al.(Wang, Fan et al. 

2008). 

The 
2,uvL norm (Luo, Wang et al. 2007) is defined 

as Eq.(17), where ( du , dv )is the desired veloci-

ties,and ( ku , kv ) is evaluated velocities on the kth 

Lagrangian point, 

[( - ) +( - ) ]
Np k d 2 k d 2

k 1

2,uv

u u v v
L .

N




 (17) 

Figure 1 shows the fast convergence of present 

modified multi-direct-forcing compared with the 

previous Luo et al.(Luo, Wang et al. 2007), only 

several iterations are needed to achieve the high 

accuracy, which is much less than previous one. 

Based on this, we choose to iterate 5 times for the all 

latter simulation as default.  

3.2 Flow Past Over a Cylinder 

Flows past over a circular cylinder has been exten-

sively studied for verifying the algorithms of Im-

mersed Boundary Method. In this study, we place a 

cylinder with diameter 0.6D  at the location 

(10.5D, 12.1D) in the domain [0,35D] [0,24D]   . 

At the inflow, we give a uniform free-stream veloci-

ty u = (1, 0); at the x = 24D , we apply the convec-

tive out flow condition as Uhlmann (Uhlmann 

2005). The ratio of 
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cylinder diameter to grid size is 30, and the Reynolds 

number
u D

Re



 in our simulation equals to 20, 

40, 80, 100, and 200, respectively. And 0.001t 

time step is used. Here, in present study, drag and 

lift coefficients and Strouhal number will be calcu-

lated for making a comparison with other numerical 

and experimental results. 

 

Figure 1: Correlation between the 2,uvL norm and the times 

of multi-direct-forcing to show the fast convergence as 

compared with the previous non-modified algorithm. 

Table 1: Comparison of drag coefficient CD and recircula-

tion length wL  of Re=20. 

Authors 

Re=20 

CD 
wL

 

(Tritton 1959) 2.22  

(Lima et al. 2003) 2.04 1.04 

(Luo, Wang et al. 2007) 2.195 0.97 

Present 2.146 0.97 

Table 2: Comparison of drag coefficient CD and  

recirculation length wL  of Re=40. 

Authors 

Re=40 

CD 
wL  

(Tritton 1959) 1.48  

(Lima et al. 2003) 1.54 2.55 

(Luo, Wang et al. 2007) 1.62 2.35 

Present 1.567 2.227 

From the case 20Re  and 40Re  , it can be seen 

from the streamline vector Figure 2 and Figure 3,  the 

wake behind the cylinder seems to be symmetric and 

steady, which are in good agreement with the well-

established results. Table 1 shows that the drag co-

effcients and length of the recirculation zone wL  

agreeing quite well with published results by 

(Tritton 1959; Lima E Silva, Silveira-Neto et al. 

2003; Luo, Wang et al., 2007). 

 
Figure 2: The predicted results in the near wake of the 

investigated circular cylinder at T = 200, streamline con-

tours, Re = 20. 

 
Figure 3: The predicted results in the near wake of the 

investigated circular cylinder at T = 200, streamline con-

tours, Re = 40. 

 

Figure 4: The predicted results in the near wake of the 

investigated circular cylinder at T = 200, streamline con-

tours, Re = 100. 

 

Figure 5: The predicted results in the near wake of the 

investigated circular cylinder at T = 200, streamline con-

tours, Re = 200. 
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The cylinder wake becomes unstable observed as

47Re  . This is indeed what we predict from the 

simulation carried out at Re = 100 and 200. Figure 4 

and Figure 5 plots the streamline vector T = 200 for 

Re = 100 and 200, respectively. As predicted, the 

vortex shedding phenomenon is presented; hence the 

modified multi-direct-forcing method can predict the 

unsteady fluid flow in the complex geometries. 

Table 3: Comparison of the predicted drag coefficients, lift 

coefficients with other numerical results performed at Re = 

100 and 200. 

Authors 
Re=100 

CD CL 

(Clift 1978) 1.24  

(Stålberg, Bruger et al. 

2006) 
1.32 ± 0.009 ±0.33 

(Chiu, Sheu et al. 2008) 1.34 ± 0.011 ±0.32 

(Calhoun 2002) 1.35 ± 0.014 ±0.30 

(Chiu, Lin et al. 2010) 1.35 ± 0.012 ±0.3 

Present 1.3140.009 0.32 

Table 4: Comparison of the predicted drag coefficients, lift 

coefficients with other numerical results performed at Re = 

100 and 200. 

Authors 
Re=200 

CD CL 

(Clift 1978) 1.16  

(Stålberg, Bruger et al. 

2006) 
  

(Chiu, Sheu et al. 2008) 1.36 ± 0.048 ±0.64 

(Calhoun 2002) 1.17 ± 0.058 ±0.67 

(Chiu, Lin et al. 2010) 1.37 ± 0.051 ±0.71 

Present 1.2790.043 0.658 

Table 3 and Table 4 give the comparison of the 

predicted drag coefficients, lift coefficients of pre-

sent algorithm with other established results in 

(Calhoun 2002; Stålberg, Bruger et al. 2006) at Re = 

100 and Re = 200. We can find that in our simula-

tion results, the drag coefficient is lower than any 

others’, with exception of Stålberg et al.(Stålberg, 

Bruger et al. 2006), but it is more closer to the ex-

perimental data of Clift et al. (Clift 1978). The lift 

coefficients at these two cases, predict almost the 

same with others. Meanwhile, we give the relation 

of Strouhal number with Reynolds number, and 

comparisons are made with the experimental corre-

lation formula and experimental data (Williamson 

1996), as well as some other numerical results. 

Thereby, the accuracy of present scheme can be 

confirmed. 

 

Figure 6: Strouhal number vs. Reynolds number. 

4 CONCLUSIONS 

In this paper, we proposed a novel fast and efficient 

immersed boundary method implemented with mul-

ti-direct-forcing to evaluate the fluid-solid interac-

tions. The accuracy of the proposed multi-direct-

forcing immersed boundary method has been vali-

dated through the several benchmarks with only 

several iterations, which are much less than previous 

Multi-direct-forcing. However, we only test the two 

dimensional applications. When it is applied to 

complex three dimensional geometries, theoretically 

it would not induce much more extra work, but the 

problem whether the matrix calculation in three 

dimensional cases will cause the extra cost so that it 

induces inefficiency, should need much more care-

fully detailed numerical experiments in the future. 
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