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Abstract: The work of the spacecraft control system is modeled with Markov chains. Small and large models for the 

technological and command-programming control contours are developed. The way of the calculation of the 

control contour effectiveness indicators is described. Special self-configuring genetic algorithm that requires 

no settings determination and parameter tuning is proposed for choosing effective variants of spacecraft 

control system. The high performance of the suggested algorithm is demonstrated through experiments with 

test problems and then is validated by the solving hard optimization problems. 

1 INTRODUCTION 

Current efforts by the developers of spacecraft are 

concentrated upon increasing the usage effectiveness 

of existing spacecraft systems and improving the 

development and design process for new ones. One 

of the ways to achieve these aims is a rational choice 

of the effective variants of the developing systems. 

This requires the application of adequate models, 

effective algorithmic tools and powerful computers. 

This application will allow multivariant analysis of 

the developing systems that is currently not so easy 

due to their complexity.  

One of the most difficult and underdeveloped 

problems is that of the synthesis of a spacecraft's 

control systems. These are currently solved with 

more empirical methods rather than formalized 

mathematical tools. Usually, the spacecraft control 

system design is a sophisticated process involving 

the cooperation of numerous experts and 

departments each having their own objectives and 

constraints. Nevertheless, it is possible to 

mathematically model some subproblems and to 

obtain some qualitative results of computations and 

tendencies that could provide interesting information 

for experts. The usual position of system analyst in 

such a situation is as mediator for high level decision 

making, dealing with informal problems for which it 

is impossible to develop a mathematical model, and 

lower level computations for which strong 

mathematical models exist but the results of them do 

not always match. If, in this intermediate position 

when mathematical models are strong enough but 

very complicated for analysis, we intend to 

implement a decision support system for the choice 

of effective variants then we have to realize that the 

optimization problems arise here are intractable for 

the majority of known algorithms.  

We suggest modeling the functioning process of 

a spacecraft's control subsystems with Markov 

chains. We explain the modeling with small models 

and then give illustration of large models that are 

closer to real system. The problem of choosing an 

effective variant for a spacecraft's control system is 

formulated as a multi-scale optimization problem 

with algorithmically given functions. In this paper, 

we use self-configuring genetic algorithm to solve 

the optimization problem. 

The rest of the paper is organized in the following 

way. Section 2 briefly describes the modeled system. 

In Sections 3 and 4 we describe small size models for 

two control contours. Section 5 illustrates briefly the 

view of large models. In Section 6 we describe the 

proposed optimization algorithm and in Section 7 we 

evaluate its performance on the test problems. In 

Section 8, the results of the algorithm performance 

evaluation on spacecraft control system optimization 

problems is given, and in the Conclusion section the 

article content is summarized and future research 

directions are discussed.  
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2 PROBLEM DESCRIPTION 

The system for monitoring and control of an orbital 

group of telecommunication satellites is an 

automated, distributed, information-controlling 

system that includes in its composition on-board 

control complexes (BCC) of spacecrafts; telemetry, 

command and ranging (TSR) stations; data 

telecommunication subsystems; and a mission 

control center (MCC). The last three subsystems are 

united in the ground-based control complex (GCC). 

GCC interacts with BCC(s) through a distributed 

system of TCR stations and data telecommunication 

systems that include communication nodes in each 

TCR, channels and MCC's associated 

communication equipment. BCC is the controlling 

subsystem of the spacecraft that ensures real time 

checking and controlling of on-board systems 

including pay-load equipment (PLE) as well as 

fulfilling program-temporal control. Additionally, 

BCC ensures the interactivity with ground-based 

tools of control. The control functions fulfilled by 

subsystems of the automated control system are 

considered to form subsets called "control contours" 

that contain essentially different control tasks. 

Usually, one can consider the technological control 

contour, command-programming contour, purpose 

contour, etc.  

Each contour has its own indexes of control 

quality that cannot be expressed as a function of 

others. This results in many challenges when 

attempting to choose an effective control system 

variant to ensure high control quality with respect to 

all of the control contours. A multicriterial 

optimization problem statement is not the only 

problem. For most of the control contours, criterion 

cannot be given in the form of an analytical function 

of its variables but exists in an algorithmic form 

which requires a computation or simulation model to 

be run for criterion evaluation at any point.   

In order to have the possibility of choosing an 

effective variant of such a control system, we have 

to model the work of all control contours and then 

combine the results in one optimization problem 

with many models, criteria, constraints and 

algorithmically given functions of mixed variables. 

We suggest using evolutionary algorithms (EAs) to 

solve such optimization problems as these 

algorithms are known as good optimizers having no 

difficulties with the described problem properties 

such as mixed variables and algorithmically given 

functions. To deal successfully with many criteria 

and constraints we just have to incorporate 

techniques, well known in the EA community. 

However, there is one significant obstacle in the use 

of EAs for complicated real world problems. The 

performance of EAs is essentially determined by 

their settings and parameters which require time and 

computationally consuming efforts to find the most 

appropriate ones.  

To support the choice of effective variants of 

spacecrafts' control systems, we have to develop the 

necessary models and resolve the problem of EAs 

settings. 

3 TECHNOLOGICAL CONTROL 

CONTOUR MODELING 

The main task of the technological control contour is 

to provide workability of the spacecraft for the 

fulfillment of its purposes, i.e., the detecting and 

locating of possible failures and malfunctions of the 

control system and pay-load and restoring their lost 

workability by the activation of corresponding 

software and hardware tools. The basic index of the 

quality for this contour is the so called readiness 

coefficient, i.e., a probability to be ready for work 

(hasn’t malfunctioned) at each point in time.  

We consider simplified control system to 

describe our modeling approach. Let the system 

consist of three subsystems: on-board pay-load 

equipment, on-board control complex and ground-

based control complex. Let us assume that GCC 

subsystems are absolutely reliable but PLE and BCC 

can fail. If PLE failed, BCC can restore it using its 

own software tools with the probability p0 or, 

otherwise, re-directs restoring process (with the 

probability 1-p0) into GCC that finishes restoring 

with the probability equal to 1. In the case of a BCC 

malfunction, GCC restores it with the probability 

equal to one.  

We can use a Markov chain approach to model a 

spacecraft’s’ control system operation because of its 

internal features such as high reliability and work 

stability, e.g., two simultaneous failures are almost 

impossible, there is no aftereffect if malfunction 

restoring is finished, etc. That is why we will 

suppose that all stochastic flows in the system are 

Poisson ones with corresponding intensities: 1 is an 

intensity of PLE malfunctions, 2 is an intensity of 

BCC malfunctions, 1 is an intensity of PLE 

restoring with BCC, 2 is an intensity of PLE 

restoring with GCC, 3 is an intensity of BCC 

restoring with GCC.  

In the described situation, there are five possible 

states of the system: 
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1. All subsystems are workable. 

2. PLE malfunction, BCC is restoring PLE, GCC is 

free. 

3. BCC malfunction, GCC is restoring BCC, PLE is 

workable. 

4. PLE malfunction, BCC is workable and free, 

GCC is recovering PLE. 

5. PLE malfunction, BCC malfunction, GCC is 

recovering PLE, and BCC is waiting for 

recovering. 

States graph can be drawn as is shown in Figure 1.  

 

Figure 1: States graph of Markov chain for the simplified 

model of a technological control contour. 

Corresponding Kolmogorov's equation system is: 

P1·(1+2) - 1·p0·P2 - 3·P3 - 2·P4 = 0, 

P2·(1+2) - 1·P1 = 0, 

P3·(1+3) - 2·P1 - 2·P5 = 0, 

P4·(2+2) - (1-p0)·1·P2 = 0,   

P5·2 - 2·P2 - 1·P3 - 2·P4 = 0, 

P1 + P2 + P3 + P4 + P5 = 1. 

The last equation is needed for normalization and 

should replace any of previous ones. 

Given final probabilities that the system remains 

in the corresponding state, as the solution of this 

equation system, the control quality indicators, i.e., 

readiness coefficients, can be calculated in following 

way: 

1. Spacecraft readiness coefficient ks = P1. 

2. PLE readiness coefficient kPLE = P1 + P3. 

3. BCC readiness coefficient kBCC = P1 + P2 + P4. 

To have the effective variant of the spacecraft 

control system we have to maximize the readiness 

coefficients subject to constraints on the on-board 

computer memory and computational efforts needed 

for the technological contour functions realization. 

Optimization variables are stochastic flow intensities 

1, 2, 1, 2, 3, as well as p0, i.e., the distribution 

of contour functions between BCC and GCC. If they 

are characteristics of existing variants of software-

hardware equipment, we have the problem of 

effective variant choice, i.e., a discrete optimization 

problem. In case of a system preliminary design, 

some of the intensities can be real numbers and we 

will have to implement corresponding software and 

hardware to ensure an optimal solution. Recall that 

obtained optimization problem has algorithmically 

given objective functions so before the function 

value calculation we must solve the equations 

system. 

4 COMMAND-PROGRAMMING 

CONTROL CONTOUR 

MODELING 

The main task of this contour is the maintenance of 

the tasks of creating of the command-programming 

information (CPI), transmitting it to BCC and 

executing it and control action as well as the 

realization of the temporal program (TP) regime of 

control. 

We can use Markov chains for modeling this 

contour for the same reasons. If we suppose that 

BCC can fail and GCC is absolutely reliable, then 

we can introduce the following notations: 1 is the 

intensity of BCC failures, 1 is the intensity of 

temporal program computation, 2 is the intensity 

CPI loading into BCC, 3 is the intensity of temporal 

program execution, 4 is the intensity of BCC being 

restored after its failure. The graph of the states for 

command-programming contour can be drawn as in 

Figure 2.  

 

Figure 2: States graph of Markov chain for simplified 

model of command-programming control contour. 

There are also five possible states for this contour: 

1. BCC fulfills TP, GCC is free.  

2. BCC is free, GCC computes TP. 

3. BCC is free; GCC computes CPI and loads TP. 

4. BCC is restored with GCC which is waiting for 

continuation of TP computation. 
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5. BCC is restored with GCC which is waiting for 

continuation of CPI computation. 

BCC, restored after any failure in state 1, cannot 

continue its work and has to wait for a new TP 

computed with GCC. If BCC has failed in state 2 or 

state 3 then GCC can continue its computation only 

after BCC restoring completion.  

If we assume for simplicity that all flows in the 

system are Poisson ones, the system of 

Kolmogorov's equations can be written as follows. 

P1·(1+3) - 2·P3 = 0, 

P2·(1+1) - 3·P1 - 4·P4 = 0, 

P3·(1+2) - 1·P2 - 4·P5 = 0, 

P4·4 - 1·P1 - 1·P2 = 0,   

P5·4 - 1·P3 = 0, 

P1 + P2 + P3 + P4 + P5 = 1. 

After solving the Kolmogorov's system, we can 

calculate the necessary indexes of control quality for 

the command-programming contour. Basic indexes 

of this contour are the time interval when the 

temporal program control can be fulfilled without a 

change of TP, i.e., the duration of the independent 

operating of the spacecraft for this contour (has to be 

maximized) and the duration of BCC and GCC 

interactions when loading TP for the next interval of 

independent operation of the spacecraft (has to be 

minimized). Mathematically these can be described 

as follows: 

T = P1/(2P3) is an average time of TP 

fulfillment with BCC; 

t1 = (P3 + P5)/( 1P2) – an average time of BCC 

interaction with GCC when TP is loading; 

t2 = (P2 + P3 + P4 + P5)/P1(1 + 3) – an average 

time from the start of TP computation till the start of 

TP fulfillment by BCC.  

The last indicator also has to be minimized.  

All these indicators have to be optimized through 

the appropriate choice of the operations intensities 

that are the parameters of the software-hardware 

equipment included in the control system. 

Corresponding optimization problem has the same 

properties as described above. 

5 MODELS GENERALISATION  

We described above the simplified models of two 

control contours in order to demonstrate the 

modeling technique. The developed models are not 

adequate for the use in the spacecraft control system 

design process because of the unrealistic assumption 

of GCC reliability.  

If we suppose the GCC can fail then we have to 

add the states when GCC fails while the system is in 

any state. Let us consider the model of the 

technological control contour with an unreliable 

GCC which is assumed to be a single unit without 

any subsystems, i.e., we will model the whole GCC 

malfunctioning if any of its subsystems fails. Figure 

3 shows the corresponding states graph with 10 

nodes and 27 transitions that seems simple enough 

for analysis. However, five new nodes with 

numeration such as 6-12 or 13-19 represent states 

where at least one of GCC subsystems failed.  

 

Figure 3: States graph of Markov chain for the model of 

the technological control contour with an unreliable GCC. 

GCC in our problem description consists of three 

subsystems groups – TCR stations, data 

communication subsystem, and MCC equipment. 

Considering all three groups as one unit, we will 

have three GCC subsystems. If any of them can fail, 

the new nodes and possible transitions will have a 

view as it is shown in the Figure 4. 

We will not describe the meaning of all notion in 

details, recall that i indicate the intensities of 

subsystems failures and j indicate the intensities of 

subsystems being restoring by BCC (for PLE) or 

GCC (for all subsystems including itself).  

Not all transitions are depicted in this figure. The 

whole states graph for this case consists of 40 states 

and 146 transitions and is schematically depicted in 

Figure 5. Corresponding Kolmogorov's equation 

system contains 40 lines. 
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Under the same conditions, the states graph for 

the command-programming contour consists of 96 

states and more than 300 transitions and cannot be 

shown here.  

 

Figure 4: States graph of Markov chain for description of 

GCC failures while spacecraft remains reliable (state 1). 

 

Figure 5: States graph of Markov chain for modeling 

technological control contour with unreliable GCC 

subsystems. 

Going deeper into the details we must continue 

dividing the subsystems groups (TCR stations, 

telecommunication system, MCC) in parts. Then we 

must unify models of all contours of the spacecraft 

and models of identical contours of different 

spacecrafts of the orbital group. Additionally, in 

some cases we cannot use simple Markov chain 

models and need a more sophisticated simulation 

models. Certainly, this work cannot be done without 

an adequate computation tool.  

In the next stage of our research we have 

developed and implemented a decision support 

system for spacecraft control systems modeling with 

stochastic processes models. This DSS suggests 

questions to aerospace engineers designing 

spacecraft control systems in their terms relative to 

system structure, its subsystems, possible states and 

transitions, executed operations, etc. Giving the 

answers to these questions the DSS generates the 

necessary data structure, the lists of states and 

transitions with their descriptions in designer terms 

and definitions, Kolmogorov's equations system, etc. 

It can also depict the states graph in simple cases 

when there are not too many states and transitions. 

Working windows of this decision support system is 

shown in Figure 6. 

 

Figure 6: Working windows of DSS for control systems 

modeling. 

This DSS is able also to solve optimization 

problems with some adaptive search algorithms.  

As has been stressed above, optimization 

problems arising in the described situation are hard 

to solve. That is why we suggest here using our 

modified genetic algorithm.   

6 OPTIMIZATION 

ALGORITHMS DESCRIPTION  

Evolutionary algorithms (EA), the best known 

representatives of which are genetic algorithms 

(GA), are well known optimization techniques based 

on the principles of natural evolution (Eiben, Smith, 

2003). Although GAs are successful in solving many 

real world optimization problems (Haupt, Haupt, 

2004), their performance depends on the selection of 

the GA settings and tuning their parameters (Eiben, 

Hinterding and Michalewicz, 1999). GAs usually 

use a bit-string solution representation, but other 

decisions have to be made before the algorithm can 

run. The design of a GA consists of the choice of 

variation operators (e.g. recombination and 

mutation) that will be used to generate new solutions 

from the current population and the parent selection 

operator (to decide which members of the population 
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are to be used as inputs to the variation operators), as 

well as a survival scheme (to decide how the next 

generation is to be created from the current one and 

outputs of the variation operators). Additionally, real 

valued parameters of the chosen settings (the 

probability of recombination, the level of mutation, 

etc.) have to be tuned (Eiben et al., 1999). 

The process of settings determination and 

parameters tuning is known to be a time-consuming 

and complicated task. Much research has tried to 

deal with this problem. Some approaches tried to 

determine appropriate settings by experimenting 

over a set of well-defined functions or by theoretical 

analysis. Another set of approaches, usually 

applying terms like "self-adaptation" or "self-

tuning", are eliminating the setting process by 

adapting settings through the algorithm execution.  

There exist much research devoted to "self-

adapted" or "self-tuned" GA and authors of the 

corresponding papers determine similar ideas in very 

different ways, all of them aimed at reducing the 

role of human expert in algorithms designing.  

The main idea of the approach used in this paper 

relies to automated selecting and using existing 

algorithmic components. That is why our algorithms 

might be called as self-configuring ones.  

In order to specify our algorithms more 

precisely, one can say that, according to (Angeline, 

1995) classification, we use dynamic adaptation on 

the level of population (Meyer-Nieberg and Beyer, 

2007). The probabilities of applying the genetic 

operators are changed "on the fly" through the 

algorithm execution. According to the classification 

given in (Gomez, 2004) we use centralized control 

techniques (central learning rule) for parameter 

settings with some differences from the usual 

approaches. Operator rates (the probability to be 

chosen for generating off-spring) are adapted 

according to the relative success of the operator 

during the last generation independently of the 

previous results. This is why our algorithm avoids 

problem of high memory consumption typical for 

centralized control techniques (Gomez, 2004). 

Operator rates are not included in individual 

chromosome and they are not subject to the 

evolutionary process. All operators can be used 

during one generation for producing off-spring one 

by one.  

Having in mind the necessity to solve hard 

optimization problems and our intention to organize 

GA self-adaptation to these problems, we must first 

improve the GA flexibility before it can be adapted. 

For this reason we have tried to modify the most 

important GA operator, i.e., crossover.  

The uniform crossover operator is known as one 

of the most effective crossover operators in 

conventional genetic algorithm (Syswerda, 1989; De 

Jong, Spears, 1991). Moreover, nearly the 

beginning, it was suggested to use a parameterized 

uniform crossover operator and it was shown that 

tuning this parameter (the probability for a parental 

gene to be included in off-spring chromosome) one 

can essentially improve "The Virtues" of this 

operator (De Jong and Spears, 1991). Nevertheless, 

in the majority of cases using the uniform crossover 

operator the mentioned possibility is not adopted and 

the probability for a parental gene to be included in 

off-spring chromosome is given equal to 0.5 (Eiben 

and Smith, 2003; Haupt and Haupt, 2004).  

Thus it seems interesting to modify the uniform 

crossover operator with an intention to improve its 

performance. Desiring to avoid real number 

parameter tuning, we suggested introducing 

selective pressure on the stage of recombination 

(Semenkin and Semenkina, 2007) making the 

probability of a parental gene to be taken for off-

spring dependable on parent fitness values. Like the 

usual GA selection operators, fitness proportional, 

rank-based and tournament-based uniform crossover 

operators have been added to the conventional 

operator called here the equiprobable uniform 

crossover. 

Although the proposed new operators, hopefully, 

give higher performance than the conventional 

operators, at the same time the number of algorithm 

setting variants increases that complicates 

algorithms adjusting for the end user. That is why 

we need suggesting a way to avoid this extra effort 

for the adjustment. 

With this aim, we apply operators’ probabilistic 

rates dynamic adaptation on the level of population 

with centralized control techniques. To avoid real 

parameters precise tuning, we use setting variants, 

namely types of selection, crossover, population 

control and a level of mutation (medium, low, high). 

Each of these has its own probability distribution. 

E.g., there are 5 settings of selection – fitness 

proportional, rank-based, and tournament-based with 

three tournament sizes. During the initialization all 

probabilities are equal to 0.2 and they will be 

changed according to a special rule through the 

algorithm’s execution in such a way that a sum of 

probabilities should be equal to 1 and no probability 

could be less than a preconditioned minimum 

balance. The list of crossover operators includes 11 

items, i.e., 1-point, 2-point and four uniform 

crossovers all with two numbers of parents (2 and 

7). The "idle crossover" is included in the list of 

Spacecrafts' Control Systems Effective Variants Choice with Self-configuring Genetic Algorithm

89



 

 

crossover operators to make crossover probability 

less than 1 that is used in conventional algorithms to 

model "childless couple".  

When the algorithm has to create the next off-

spring from the current population, it firstly has to 

configure settings, i.e. to form the list of operators 

with the use of the probability operator distributions. 

Then the algorithm selects parents with the chosen 

selection operator, produces an off-spring with the 

chosen crossover operator, mutates this off-spring 

with the chosen mutation probability and puts it into 

the intermediate population. When the intermediate 

population is filled, the fitness evaluation is 

executed and operator rates (the probabilities to be 

chosen) are updated according to the operator 

productivity. Then the next parental population is 

formed with the chosen survival selection operator. 

The algorithm stops after a given number of 

generations or if another termination criterion is met. 

The productivity of an operator is the ratio of the 

average off-springs fitness obtained with this 

operator and the off-spring population average 

fitness. The successful operator, having maximal 

productivity, increases its rate obtaining portions 

from other operators. There is no necessity for extra 

computer memory to remember past events and the 

reaction of updates are more dynamic. 

7 ALGORITHMS 

PERFORMANCE EVALUATION  

The performance of a conventional GA with three 

additional uniform crossover operators has been 

evaluated on the usual test problems for GA (Finck, 

Hansen, Ros, and Auger, 2009). Results are given in 

Table 1 below.  

Table 1: Results of GA performance evaluation. 

Crossover  Average performance 

1-point [0.507, 0.915] / 0.760 

2-point [0.132, 0.821] / 0.479 

UE  [0.645, 0.957] / 0.834 

UT [0.309, 0.919] / 0.612 

UP [0.269, 0.938] / 0.657 

UR  [0.624, 0.974] / 0.839 

Table 1 contains the reliability of the algorithms 

averaged over the 14 test problems from (Finck, 

Hansen, Ros, and Auger, 2009) each solved 1000 

times, and over all settings of the other (except 

crossover) operators (selection, mutation, etc.). The 

reliability is the percentage of the algorithm’s runs 

that give satisfactorily precise solutions. In Table 1, 

row headers "1-point, 2-point, UE, UT, UP, UR" 

indicate the type of crossover, respectively, 1-point, 

2-point, uniform equiprobable, uniform tournament-

based, uniform fitness proportional and uniform 

rank-based crossovers.  

Numbers in brackets demonstrate the variance of 

these indicators. The first number in brackets is the 

minimal value among the 14 tests; the second 

number in brackets is the maximal value among the 

14 tests. The last number is the corresponding 

indicator averaged over 14 test functions. 

After multiple runs and statistical processing of 

the results, the following observations were found 

(in terms of algorithm reliability). The best variants 

are the new rank-based and conventional 

(equiprobable) uniform operators. Tournament-

based crossover seems to be weak but it is the only 

operator having maximum reliability of 100% on 

some test problems where other operators fail.  

Table 2: Comparison results of SelfCGA and problem 

single best algorithms. 

No Crossover Average Min Max 

1 
UE 0.818 0.787 0.894 

SelfCGA 0.886 

2 
UE 0.841 0.808 0.903 

SelfCGA 0.866 

3 
UE 0.901 0.887 0.921 

SelfCGA 0.901 

4 
UR 0.925 0.877 0.959 

SelfCGA 0.976 

5 
UT 0.950 0.901 1.00 

SelfCGA 1.000 

6 
UE 0.953 0.861 0.999 

SelfCGA 1.00 

7 
UT 0.897 0.832 0.927 

SelfCGA 0.878 

8 
UR 0.741 0.667 0.800 

SelfCGA 0.830 

9 
UT 0.967 0.917 0.983 

SelfCGA 0.987   

10 
UE 0.853 0.803 0.891 

SelfCGA 0.884   

11 
UR 0.821 0.734 0.888 

SelfCGA 0.892   

12 
UR 0.833 0.765 0.881 

SelfCGA 0.897   

13 
UR 0.956 0.902 0.998 

SelfCGA 1.000   

14 
UR 0.974 0.935 0.999 

SelfCGA 1.000   

The next stage in evaluating the algorithms is a 

comparison with the proposed self-configuring GA 

(SelfCGA). Below in Table 2 one can find the 
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results comparing SelfCGA with the single best 

algorithm having had the best performance on the 

corresponding problem.  

Saying "single" algorithm, we mean the group of 

algorithms with the same crossover operator but 

with all variants of other settings. The average 

reliability of this "single" algorithm is averaged over 

all possible settings. "Min" and "Max" mean GA 

settings given the worst and the best performance on 

the corresponding test problem. 

Analyzing Table 3, we can see that in four cases 

(1, 2, 3, 10, numbers are given in italics) SelfCGA 

demonstrates better reliability than the average 

reliability of the corresponding single best algorithm 

but worse than the maximal one. In one case (7th 

problem), the single best algorithm (with 

tournament-based uniform crossover) gives better 

average performance than SelfCGA. In the 

remaining 9 cases (numbers are given in bold) 

SelfCGA outperforms even the maximal reliability 

of the single best algorithm.  

Having described these results, one can conclude 

that the proposed way of GA self-configuration not 

only eliminates the time consuming effort for 

determining the best settings but also can give a 

performance improvement even in comparison with 

the best known settings of conventional GA. It 

means that we may use the SelfCGA in real world 

problems solving.  

8 SELF-CONFIGURING 

GENETIC ALGORITHM 

APPLICATION IN 

SPACECRAFT CONTROL 

SYSTEM DESIGN  

The described algorithm Self-CGA is a suitable tool 

for the application in hard optimization problems 

that arise in spacecraft control systems design.  

First of all we evaluate its performance on the 

simplified models of technological and command-

programming control contours with 5 states.  

To choose an effective variant of the 

technological control contour we have to optimize 

the algorithmically given function with 6 discrete 

variables. The optimization space contains about 

1.67∙107 variants and can be enumerated with an 

exhaustive search within a reasonable time. In such a 

situation, we know the best (k*) and the worst (k-) 

admissible values of indicators. Executing 100 runs 

of the algorithm, we will also know the worst value 

of indicators (k*) obtained as a run result. The best 

result of the run should be (k*) if the algorithm finds 

it. We use 20 individuals in one generation and 30 

generations for one run. This means the algorithm 

will examine 600 points of the optimization space, 

i.e. about 0.0036% of it. As the indicators of the 

algorithm performance we will use the reliability 

(the percentage of the algorithm’s runs that give the 

exact solution k*); maximum deviation MD (the ratio 

of k*- k* and k* in percentage to the last); and relative 

maximum deviation RMD (the ratio of k*- k* and k*- 

k- in percentage to the last). The comparison is made 

for 5 algorithms, namely 4 conventional GAs with 

new uniform crossover operators (UE, UR, UP, UT) 

and SelfCGA. For conventional GAs, the results are 

given for the best determination of all other settings. 

In Table 3 below, the results are shown together 

with the estimation of the computational efforts (the 

number of generations needed to find the exact 

solution averaged over successful runs, “Gener.”). 

Table 3: Algorithm reliability comparison for 

technological control contour model with 5 states 

(spacecraft readiness coefficient). 

Algorithm Reliability MD (%) RMD (%) Gener. 

UE 0.89 0.0021 0.3576 26 

UR 0.92 0.0017 0.2895 22 

UP 0.84 0.0024 0.4087 26 

UT 0.97 0.0009 0.1533 23 

SelfCGA 0.98 0.0003 0.051 21 

Similar evaluations for all 3 indicators of the 

command-programming contour are given in Table 

4 below. 

Table 4: Algorithm reliability comparison for command-

programming control contour model with 5 states. 

Algorithm Ind. Rel. MD (%) RMD (%) Gener. 

UE 

T 0.87 6.431 9.028 26 

t1 0.76 0.956 3.528 43 

t2 0.83 13.392 26.01 28 

UR 

T 0.95 3.987 5.6 21 

t1 0.93 0.341 1.258 39 

t2 0.93 11.347 22.04 26 

UP 
T 0.79 6.667 9.359 28 

t1 0.71 1.156 4.266 45 

t2 0.74 16.321 31.7 29 

UT 
T 0.91 4.873 6.84 23 

t1 0.81 0.956 3.528 44 

t2 0.86 13.392 26.01 25 

SelfCGA 
T 0.99 3.245 4.555 19 

t1 0.96 0.1226 0.4524 33 

t2 0.98 9.987 19.397 17 

The difference exists in the optimization   

problem size. 600 evaluations of the objective 

function correspond to 0.057% of the whole 
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optimization space as the model has only 5 discrete 

variables (about 106 variants).  

From Table 3 and Table 4 one can see that Self-

CGA outperforms the alternative algorithms for all 

problem statements and with all performance 

measures.  

Now we have to evaluate the performance of the 

suggested algorithm on generalized models which 

have much higher dimensions.  

The optimization model for the technological 

control contour has 11 discrete variables. The 

corresponding optimization space contains about 

1.76∙1013 points and cannot be enumerated with an 

exhaustive search especially if one recalls that the 

examination of one point includes solving a linear 

equations system with 40 variables. The best (k*) 

and the worst (k-) admissible values of indicators 

cannot be given and we use here their best known 

evaluations after multiple runs consuming much 

computational resources. Nevertheless, we still can 

try to obtain the resulting table similar to Table 3 

with statistical confidence. For the algorithms 

performance evaluations we use 40 individuals for 

one generation and 80 generation for one run that 

examines about 1.82∙10-7% of the search space 

examination. Results of numerical experiments are 

summarized in Table 5. 

Table 5: Algorithm reliability comparison for 

technological control contour model with 40 states 

(spacecraft readiness coefficient). 

Algorithm Reliability MD (%) RMD (%) Gener. 

UE 0.79 0.0115 0.2178 56 

UR 0.86 0.0099 0.1875 48 

UP 0.73 0.0121 0.2292 59 

UT 0.87 0.0095 0.1799 49 

SelfCGA 0.90 0.0092 0.1742 33 

For the last problem, i.e. for the model of the 

command-programming control contour with 96 

states and more than 300 transitions, we cannot give 

detailed information as we did above. This problem 

has 13 variables and contains 4.5∙1015 points in the 

optimization space. It requires enormous 

computational efforts to find reliable evaluations of 

the necessary indicators. Instead, we give a smaller 

table without MD and RMD measures. It gives us 

some insight on the comparative reliability of the 

investigated algorithms. The algorithms performance 

evaluation requires the examination of 2.2∙10-10% of 

the search space (100 individuals and 100 

generations). Results averaged over 20 runs are 

summarized in Table 6.  

Table 6: Algorithm reliability comparison for command-

programming control contour model with 96 states. 

Algorithm Indicator Reliability Generation 

UE 

T 0.76 65 

t1 0.67 81 

t2 0.75 69 

UR 

T 0.84 59 

t1 0.81 78 

t2 0.84 64 

UP 

T 0.70 69 

t1 0.59 76 

t2 0.63 72 

UT 

T 0.83 61 

t1 0.72 85 

t2 0.77 66 

SelfCGA 

T 0.91 58 

t1 0.87 75 

t2 0.89 53 

Table 5 and Table 6 show that the Self-CGA 

outperforms all alternative algorithms.  

When solving these problems for real we only 

need one run, but that one run requires much more 

computation power than any single run above.  

9 CONCLUSIONS  

In this paper, the mathematical models in the form 

of Markov chains have been developed and 

implemented for choosing effective variants of 

spacecraft control contours. These models contain 

tens of states and hundreds of transitions that make 

the corresponding optimization problems hard to 

solve.  

It is suggested to use the genetic algorithms in 

such a situation because of their reliability and high 

potential to be problem adaptable. As GAs 

performance is highly dependent on their setting 

determination and parameter tuning, the special self-

configuring GA is suggested that eliminates this 

problem. The high performance of the suggested 

algorithm is demonstrated through experiments with 

test problems and then is validated by the solving 

hard optimization problems. The self-configuring 

genetic algorithm is suggested to be used for 

choosing effective variants of spacecraft control 

systems as it is very reliable and requires no expert 

knowledge in evolutionary optimization from end 

users (aerospace engineers). We did not try to 

implement the best known GA with optimal 

configuration and optimally tuned parameters. 

Certainly, one could easily imagine that the much 

better GA exists. However, it is a problem to find it 

for every problem in hand. The way of the self-

configuration proposed in this paper that involves all 

ICINCO 2012 - 9th International Conference on Informatics in Control, Automation and Robotics

92



 

 

variants of all operators can be easily expanded by 

adding new operators or operator variants. The self-

configuring process monitoring gives the additional 

information for further SelfCGA improving. E.g., if 

the high level mutation is always the winner among 

mutation variants then we can add some higher level 

mutation operators in the competitors list instead of 

lower level variants. Another example is the 

possibility of 1-point and 2-point crossovers 

removing from the crossover operators list that was 

evident in our experiments. 

The future research includes also not only 

direct expansion in using the simulation models and 

multicriterial optimization problem statements but 

also the improvement of Self-CGA adaptability 

through the population size control and adoption of 

additional operators and operator variants. 
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