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Abstract: In this paper we consider the effects of delay caused by real-time image acquisition and feature tracking in
a previously documented Vision-Augmented Inertial Navigation System. At first, the paper illustrates how
delay caused by image processing, if not explicitly taken into account, can lead to appreciable performance
degradation of the estimator. Next, three different existing methods of delayed fusion are considered and

compared. Simulations and Monte Carlo analyses are used to assess the estimation error and computational

effort of the various methods. Finally, a best performing formulation is identified, that properly handles the
fusion of delayed measurements in the estimator without increasing the time burden of the filter.

1 INTRODUCTION Bottasso and Leonello (2009) combined in a syner-
gistic way vision-based sensors together with classi-

In this paper we consider the handling of delay asso- cal inertial navigation ones. The method made use of

ciated with tracked feature points within a previously an Extended Kalman F|It_er (EKF)’ assuming that all
documented Vision-Augmented Inertial Navigation measurements were available with no delay.
System (VA-INS) (Bottasso and Leonello, 2009). However, latency due to the extraction of infor-
Navigation approaches often use vision systems, mation from imageS in real-time applications is one
since these are among the most information-rich sen-0f the factors affecting accuracy and robustness of
sors for autonomous positioning and mapping pur- vision-based naVigation Systems (JoneS and Soatto,
poses (Bonin-Fontand et al., 2008). Vision-based 2011). Since image processing procedures required
navigation systems have been in use in numer- for tracking feature points between stereo images and
ous applications such as Autonomous Ground Vehi- across time steps are time consuming tasks, visual
cles (AGV) and underwater environments (Dalgleish observations are generated with delay. If delays are
et al., 2005). Recently, they have been gaining in- Small or the estimation is performed off-line, then the
creased attention also in the field of Unmanned Aerial use of a classic filtering approach leads to acceptable
Vehicles (UAV) (Liu and Dai, 2010). Vision sys- results. Otherwise, the quality of the estimates is af-
tems provide long range, high resolution measure- fected by the magnitude of the delay. Consequently, it
ments with low power consumption and low cost. On becomes important to understand how to account for
the other hand, they are usually associated with rathersuch delay in a consistent manner, without at the same
low Sampie rates, since they often require Compiex time eXCQSSively ianeaSing the Computational burden
processing of the acquired images, and this limits and Of the filter.
hinders their usability in fast and real-time applica- Measurement delay has been the subject of nu-
tions such as UAVs. merous investigations, for example in the context of
Several attempts have already been documented insystems requiring long time visual processing (Porn-
the design and implementation of robust visual odom- sarayouth and Wongsaisuwan, 2009). If the delay
etry systems (Nister et al., 2006; Goedeme et al., is rather small, a simple solution is to ignore it, but
2007). Some authors have proposed the incorporationthis implies that the estimates are not optimal and
of inertial measurements as model inputs (Roumeli- their quality may be affected. Another straightfor-
otis et al., 2002) or states (Qian et al., 2001; Veth ward method to handle delay is to completely recal-
et al., 2006; Mourikis and Roumeliotis, 2007), us- culate the filter during the delay period as measure-
ing variants of the Kalman filtering approach to ro- ments arrive. Usually this method cannot be used in
bustly estimate the vehicle motion. The VA-INS of practical applications because of its large storage cost
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and computational burden. In chemical and biochem-
ical processes, methods have been proposed based
on the augmentation of the states (Gopalakrishnan
et al., 2011; Tatiraju et al., 1999). Other documented
methods fuse delayed measurements as they arrive
(Alexander, 1991; Larsen et al., 1998). These meth-
ods are effectively implemented in tracking and nav-
igation systems for handling delays associated with
the Global Positioning System (GPS).

The aim of this paper is to present a modification
of the VA-INS of Bottasso and Leonello (2009), based
on a delayed fusion process. In the new formulation,  Figure 1: Reference frames and location of sensors.
tracked feature points associated with delay are in-
corporated as delayed measurements in a multi-rate €1, e, €3), pointing North, East and down (NED nav-
multi-sensor data fusion process USing a non-linear igationa| System)_ A body_attached frame has origin
estimator. More specifically, the paper: in the generic material poir& of the vehicle and has

e Analyzes the effects of delay caused by image a triad of unit vectorss = (by,b,, bs).

processing on state estimation, when such delay =~ The components of the acceleration in the body-

is not explicitly accounted for in the estimator; attached frame are sensed by an accelerometer located
éa\t pointA on the vehicle. The accelerometer yields a
readingascc affected by nois@acc

e Considers implementation issues and assesse
the performance of three existing delayed fusion
methodsto incorporate delayed vision-based mea- @acc=0" — @3 + Nacc (1)

surements in the estimator; In this expressiong? indicates the body-attached
e Assesses the quality of the various formulations components of the acceleration of gravity, where

and identifies the most promising one, in terms of g* = R"g” with g* = (0,0,g)", while R= R(q) are

computational burden of the filter and of the qual- the components of the rotation tensor which brings

ity of its estimates, using simulation experiments triad £ into triad 3.

and Monte Carlo analysis. Gyroscopes measure the body-attached compo-
nents of the angular velocity vector, yielding a reading
Wyyro affected by a noise disturbanngro:

2 VISION-AUGMENTED o= 0 1 Ny @
INERTIAL NAVIGATION The kinematic equations, describing the motion of

the body-attached reference frame with respect to the
Bottasso and Leonello (2009) proposed a VA-INS to inertial one, can be written as
achieve higher precision in the estimation of the vehi- . ¢ 3 3 .3 B .3
cle motion. The[i)r implementation used relatively low Ve = 0" —Rl@acet 07 x @7 xga+ 07 X Tpa|
resolution and relatively high noise low-cost small- + Rigee, (3a)
size cameras, that can be mounted on-board small Ro- ¢y? — Ok (Wygyro + Ngyro), (3b)
torcraft Unmanned Aerial Vehicles (RAUVS). In this - -
approach, the sensor readings of a standard inertial Fos = Ve (3c)
measurement unit (a triaxial accelerometer and gyro,  q=T(w”)q, (3d)
a triaxial magnetometer, a GPS and a sonar altimeter)
are fused within an EKF together with the outputs of
so-called vision-based motion sensors. The overall
architecture of the system is briefly reviewed here.

wherevs is the velocity of poinB, w is the angular
velocity anda the angular acceleration, whitga is

the position vector from poir to pointA androg is

from pointO to pointB. Finally q are rotation param-
eters, which are chosen here as quaternions, so that
matrix T can be written as

T
The sensor configuration and reference frames used T(w*) = 1 [ Oﬂ —wz } . (4)
in the kinematic modeling of the system are depicted 2] 0 —wy
in Fig. 1. Gyro measures are used in Eq. (3b) for computing
The inertial frame of reference is centered at an estimate of the angular acceleration. Since this im-
point O and denoted by a triad of unit vectors= plies a differentiation of the gyro measures, assuming

2.1 Kinematics

395



ICINCO 2012 - 9th International Conference on Informatics in Control, Automation and Robotics

a constant (or slowly varying) bias over the differenti- - d(ty) P
ation interval, knowledge of the bias becomes unnec- L,)\] T*; J 4
essary. Hence, the angular acceleration is computed C@k)\ b \}(,‘»” i
as _/ g
a” ~ dp(Wgyro), (5) Ef.
c(tey)

whereay, is a discrete differentiation operator. The
angular acceleration at tintg is computed accord-
ing to the following three-point stencil formula based
on a parabolic interpolatioa(tx) = (3mgym(tk) -
40dgyro(tk—1) + (A)gyro(tkfz))/(Zh), where h = tx —
to1 =1 —tko.

A GPS is located at poin® on the vehicle (see
Fig. 1). The velocity and position vectors of poi&at Figure 2: G_eometry for the derivation of the discrete vision
noted respectively andr%, can be expressed as ~ based motion sensor.

tht1

VG = Vg +Rw” x rgg, (6a) whereC are the components of the rotation tensor
r5e=r5g+ Rrie. (6b) which brings triads into triad . The/tracked fea-
. - ture point distances are notdd andd® for the left
The GPS yields measurements of the position and 5 right cameras, respectively, and are obtained by
veloeity'efpointGafiected’byinoise, i.e. stereo reconstruction usirdf’ = p¢ b/d, wherep is

Vgps = VG + Nyge; (7a) the position vector of the feature point on the image
. planebisthe stereo baseline addhe disparity. This
Fgps = FoG + Mrgps: (7b)  process yields at each time stgp; an estimatelysn

A sonar altimeter measures the distahcglong ~ affected by nois@ysn
the body-attached vectdys, between its location at

— Ck+1
pointSand poinfT on the terrain. The sonar altimeter s = d(tici2) %+ Man (13)
yields a readindpsonaraffected by nois@song; i.€. for the left camera, and a similar expression for the
right one.
h=r5g,/Res—s, (8) 9
hsonar= N+ Nsonas 9) 2.2 Process Model and Observations

Whererng =rog-€andR=[R;j],i,j=1,2,3.

Furthermore, we consider a magnetometer which The estimator is based on the following state-space
senses the magnetic fiehl of the Earth in the body-  model
attached systems. The inertial component®?® are

assumed to be known and constant in the area of oper- X(t) = f (x(t), u(t),v(t)), (14a)
ation of the vehicle. The magnetometer yields a mea- y(t) = h(x(t)), (14b)
surementmagnaffected by nois@magn i.€. 2(t) = y(to) + Mk, (14c)
y T
m’ =R m”, (10) where the state vectaris defined as
Mragn = M + Mnagn (11) x= (vg' 0" 155,07 (15)

Finally, considering a pair of stereo cameras lo- ] . ]
cated on the vehicle (see Fig. 2), a triad of unit vec- Functionf(,-,-) in Eq. (14a) represents in compact
tors ¢ = (€1, €y, ¢3) has origin at the optical center ~ form the rigid body kinematics expressed by Egs. (3).
of the left camera, where is directed along the hor-  The input vectou appearing in Eq. (14a) is defined
izontal scanlines of the image plane, whitgis par- S measurements provided by the acceleromaigss
allel to the optical axis, pointing towards the scene. @and gyrostyyr, andv is their associated measure-
Considering thaP is a fixed point, the vision-based Mentnoise vector.
observation model , discretized across two consecu-  Similarly, Egs. (6), (8), (10) and (12) may be gath-

tive time instantsy andty 1 = ty + At, is ered together and written in compact form as an ob-
servation modeh(-) expressed by Egs. (14b), where
d(tey 1)1 = —AtCT (R(tkH)va (tkr1) the vector of outputy is defined as
+ 00 (te) x (€7 +Cd(t) %)) +d(t) . (12) y=(V& rig,hm? ,...d . d",.. )T, (16)
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The definition of model (14) is complemented by transformed image are found by computing distances
the vector of measuremergsand associated noige between descriptors. This descriptor is in general

vectors competitive with algorithms like SURF and SIFT, and
LT LT T T 4TIAT much faster in terms of generation and matching.
Z= (Vgps Fgps Nsonas Miagn - - Aysn dysn)*» (174) A real-time implementation of the system was

W= (0N Nsonas Mnagn -~ M Mysn) |- (17b)  based on an on-board PC-104 with a 1.6 GHz CPU

P ope’ and 512 Mb of volatile memory, with the purpose of
o analyzing the performance and computational effort
The state estimation problem expressed by of the feature tracking process. Images were captured
Egs. (14-17) was solved using the EKF approach, ini- 5 point Grey Bumblebee XB3 stereo vision cam-
tie_llly assuming that all measurements are available era, and resized images with a resolution of 640x480
with no delay. were used for tracking 100 points between frames.
. ) ) ) These tests indicate the presence of a 490 millisecond
2.3 Classic State Estimation using EKF latency (see table 1) between the instant the image is

S ) _ captured and the time the state estimator receives the
The EKF formulation is briefly reviewed here using required visual information.

the time-discrete form of Eqgs. (14) and assuming
andp to be white noises with covarian€@ andU. Table 1: Time consumption of image processing tasks.
The prediction stage of states and observations is per-

: ; ) r Task ing Tim
formed by using the non-linear model equations, Process Task__Computing 3

Image acquisition 100 ms
% =1+ f(Re_1,U4,0) At (18a) Resizing, rectification 40 ms
e |- h(f(*) (18b) Dense disparity mapping 150 ms
K k /> Feature extraction 130 ms
whereas a linear approximation is used for estimating Feature description 50 ms
the error covariance and computing the Kalman gain Feature matching 20 ms
matrices, TOTAL 490 ms
P =AP 1A +G QG , (19a)

K =Py H H P HT+UJ™ (190) 3 DELAYED EUSION IN VA-INS

MatricesA,, G, andH, are computed by linearizing

the non-linear model about the current estimate, Simulation analyses, presented later, show that the

half a second delay of the system is significant enough
B of . of _oh not to be neglected. In other words, directly feeding
A=+l Ge=Otgg, =50 0 i delayed vision-based measurements to the EKF

Finally, covariance updates and state estimates areeStimator will affect the quality of the estimates.

computed as The outp/uts of the vision—baseq motion sensors
d,s(s) andd’,(s) from a captured image at tine
P =l —KH, P, (21a) will only be available at tim&k = s + N, where

% = X+ K, [Zk— h(f‘ﬂ)] . (21b) N is the sample delay. Such delayed outputs are la-

beledd; (k) andd’,s,(k). On the other hand, mea-

surements from other sensors are not affected by such
2.4 Image Processing and Tracking delay, and are available at each sampling time. For

the purpose of handling multi-rate estimation and de-
The idea of VA-INS is based on tracking scene points lay, observations are here partitioned in two groups,
between stereo images and across time steps, to exene collecting multi-rate non-delayed GPS, sonar and
press the apparent motion of the tracked points in magnetometer readings (labeled rt, for real-time), and
terms of the motion of the vehicle. The identifica- the other collecting delayed vision-based observa-
tion and matching of feature points is begun with the tions (labeled vsn, for vision):

acquisition of the images; then, strong corners are ex- 222V 1T hsonan M), 22a
tracted from the left image with the feature extrac- - ( 9*29 gpiT sonat mmiﬁn) - (222)
tor of the KLT tracker (Jianbo and Tomasi, 1994), Z7" =(disp1), Ausriz)s - - Dusrn)) - (22b)

and a dense disparity map is obtained. Identified fea- The state estimation process is based on using a
ture points are encoded using the BRIEF descriptor proper EKF update for each group. More specifi-
(Calonder et al., 2010), and subsequently matches in acally, the recalculation, Alexander (Alexander, 1991)
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and Larsen (Larsen et al., 1998) methods are surveyed3.3 L arsen Method
here for fusing delayed tracked points in the VA-INS
structure as they arrive. All methods are briefly re- In our VA-INS, the successive tracked points, their

viewed in the following. uncertainty and consequently the exact measurement
model will be unknown until images are completely
3.1 Recalculation Method processed. Therefore, a method is needed that does

not require information abowt’>™ until new mea-
A straightforward estimate can be obtained simply by surements arrive.
recalculating the filter throughout the delay period. Larsen extended Alexander approach, by extrap-
As the vision-based measurements are not available inolating delayed measurements to the present ones
the time interval betweesito k, one may update states (Larsen et al., 1998):
and covariance using only non-delayed measurements vsn(int) _ vsri vsii ¢ vsif ¢
in this time interval. As soon as vision measurements % =z +H —Hs %s. (25)

originally captured at time are received with delay | arsen shows that the correction term is calculated
at timek, the estimation procedure begins frarby based on Kalman information in a way that closely

repeating the update procedure while incorporating resembles Alexander method, i.e.
both non-delayed measurements and lagged vision- N

based measurements. oyt

The computational burden of this implementa- M. _ill(l KeiMeni) Asiioay (26)
tion of the filter in the VA-INS is critical, because
of the need of fusing a fairly large set of measure-
ments. Therefore the approach, although rigorous an
straightforward, is not a good candidate for the imple-
mentation on-board small size aerial vehicles.

where the Kalman gain and covariance are kept frozen
guntil the delayed measurements arrive. Once this hap-
pens, they are updated in a simple and fast manner:

-1
K\lésn _ M*PSH\S/STT‘T |:H\slsrf‘ PSH\S/SWT + U\Iésrf:| 7
3.2 Alexander Method (272)

_ _ 3P, = K{SHSTPMT, (27b)
In this method (Alexander, 1991), a correction term
M, is calculated based on Kalman information and 3%, = M,K}S" (zk"srf - H‘;Sﬁﬁs). (27¢)
added to the filter estimates when the delayed mea-
surements are received:

N

! rt
M. = D (I B KS+iHS+i) Asii-1: (23) Fig. 3 shows an overview of the measurement pro-
cessing procedures for the standard EKF and Larsen
In the above equatiorKI(_i is used to distinguish it ~ method. The image processing routines are started at
fromK} ;. The Kalman gain and error covariance are time s, tracking feature points in new scenes; how-
updated at times as if the measurements were avail- €ver, there is no available vision-based measurement
able without delay. Then, at timewhen measure-  untiltimek = s+ N.
mentszk"S”“ become available with delay, their incor-

3.4 Flow of EKF-Larsen Processing

N ; i . Capturing 5 K
poration and the state update is obtained by using the images Time Izl |
following correction term in the Kalman equation T --_\G\ ——————————— -———-

Motion sensor

ki Vsnk.
6>‘<k:M*KgS”(sz"LHgS”“>‘<S). 24)  sequentl ) I - .] &

Filtering
T \7 1

The problem of implementing Alexander method EKFAarsen ﬁ j@ TT ﬁ
in the VA-INS arises since it is not possible to iden-  wuiti-rate ‘T T T. T T T
) i S+

tify which points are tracked until all image process- f%"ime T %
ing tasks at timé are completed. Consequently, the

global measurement moddl*", including the sub-
models of all tracked feature points in a new scene, is

Figure 3: Flow of sequential EKF/Larsen processing.

unknown at times. Moreover, the uncerta”"nyVS”k Meanwhile, the multi-rate real-time measure-
related to each pointis unknown, since this is changedmemséwl <i <N are fused through the EKF
by its distance and position in the image plane. Egs. (19b-21b) as they arrive, usikg,;. This will

produce the Kalman gaiKY,;, state estimateg!.;
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and covarianc®},;. Implementing Larsen approach

Navigation measurements are provided at a rate

requires only the state vector and covariance error atof 100 Hz, while stereo images at the rate of 2 Hz.

time sto be stored and the correction teM{"' to be

The GPS, available at a rate of 1 Hz, is turned off
after 5 sec in the flight, to clarify the affects of

calculated during the delay period as
i i the visual measurement delay. The state estimates
M = METE( - K HG ) Asyia. (28) are obtained by four parallel data fusion processes:
At time k, when the vision-based measurements classic EKF with non-delayed measurements, classic
become available, Larsen equations are used to incor-EKF with delayed measurements, recalculation and
porate delayed measuremegft” in the estimation ~ EKF/Larsen methods in the presence of delay.
procedure. The Kalman galt/®"is calculated using Fig. 5(a) shows the effects of delay on the EKF
Eq. (27a). Finally, visual measurements corrections estimates, presenting a comparison of positions ob-
5P, andd%,, obtained by Egs. (27b-27c), are added tained by classic EKF, fed with delayed and non-
to the covariance matrix and state vector of real-time delayed visual measurements. Fig. 5(b) shows po-
measurements upda@band)‘q‘(, to obtain new quan-  Sition estimates obtained by the two methods of re-
tities P}l andg{, . calculation and sequential EKF/Larsen in the pres-
ence of delayed visual measurements, in comparison
with the ideal classic EKF (without delay). Results
clearly show the negative effects of delay on the stan-
dard EKF estimation, which are optimally compen-
sated with the recalculation filter and the sequential
filtering by EKF/Larsen.

4 SIMULATION EXPERIMENTS

A Matlab/Simulink simulator was developed, that in-
cludes a flight mechanics model of a small RUAYV,
models of inertial havigation sensors, magnetometer, . ;

GPS and their noise models. The simulator is used in 2. NIOnTe C 210 STl Tt

conjunction with the OGRE graphics engine (Junker, I simulation i dh f id
2006), for rendering a virtual environment scene and A_Monte Carigggimulation Is used here for consid-
' ering the affects of random variation on the perfor-

simulating the image acquisition process. All Sensor e of the approaches, as well as evaluating the
measurements are simulated (see table 2) as the heli-

copter flies at an altitude of 2 m following a rectangu- compTUggRIEY time burden of each method. The anal-

lar path at a constant speed of 2 m/sec within a small /> co_nS|sted of 70 runs, Wh'Ch. IS t_he humber .Of
village, composed of houses and several other objectsS'mmat'(.)n.'S that were necessary in this case to br_mg
with re,alistic textures (see Fig. 4) the statistics to convergence. For each simulation

run, measurements and stereo images are generated
for the 100 sec maneuver described above, each with

Table 2: Sensors and vibration noise levels. randomly generated errors due to noise and random

Sensors Noise Level walks.

Gyro 50 deg/s The average error in the position, velocity and at-
Accelerometer 0.5/ titude estimates are shown in Figs. (6—8), using the
Magnetometer 41074 Gauss four implementations of the vision-augmented data

GPS 2m fusion procedures explained above. The average es-

timation errors for each approach obtained by Monte
Carlo Simulation are reported in table 3.

Considering random noise variations, the recalcu-
lation and EKF/Larsen methods show a good perfor-
mance.

In fact, the average errors of these methods is
very close to that obtained by the classic EKF with
no delay on the visual measurements. However, the
processing time of the filter recalculation increases
twofold, as shown by table 3, implying a considerable
additional computational burden. On the other hand,
the EKF/Larsen approach does not significantly affect
the processing time of the filter, and therefore conju-
gates high quality estimation and low computing time.

Figure 4: View of simulated small village environment and
flight trajectory.
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(a) Effects of delay on classic EKF estimate
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(b) Performance of delayed fusion methods

Figure 5: Comparison of position estimates in the X-Y plaia¢ EKF with (dark-line) and without (light-line) delay oisual
measurements; (b) Recalculation and EKF/Larsen methati ipresence of delayed visual measurements.

5 CONCLUSIONS

In this work, a previously documented VA-INS was
extended by implementing various approaches to han-
dle feature tracking delays in a multi-rate multi-sensor
data fusion process. Simulation experiments were
used together with Monte Carlo analyses to assess the
estimation error and the computational burden of the
methods.

The paper shows that delay caused by image pro-
cessing, if not properly handled in the state estima-
tor, can lead to an appreciable performance degra-
dation. Furthermore, recalculation and sequential
EKF/Larsen restore the estimate accuracy in the pres-
ence of delay, while Alexander method is not a suit-
able solution in this case because of tracking uncer-
tainties. Finally, the results of the paper indicate that
recalculation implies a significant computational bur-
den, while Larsen method is as expensive as the stan-
dard EKF.

This study concluded that Larsen method, for
the present application, provides estimates that have
the same quality and computational cost of the non-
delayed case.

EKF-Delay
=== EKF /Larsen Delay
8 Recalculation-Delay aa e
= EKF-No Delay { \

Pos X

Error(m)

PosY

0 10 20 30 40 50 60 70 8 90 100
Time (sec)

Figure 6: Position estimates error in X-Y-Z directions.

Table 3: Monte Carlo simulation results.

Position Velocity Attitude Filter
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